Research Article

On the Interval Stability of Weak-Nonlinear Control Systems with Aftereffect

Andriy Shatyrko and Denys Khusainov

Department of Complex Systems Modelling, Cybernetics Faculty, Taras Shevchenko National University of Kyiv, Volodymyrsky Str., 64, Kyiv 01601, Ukraine

Correspondence should be addressed to Andriy Shatyrko; a_shatyrko@mail.ru

Received 28 April 2016; Revised 9 September 2016; Accepted 28 September 2016

Academic Editor: Yuriy V. Rogovchenko

Copyright © 2016 A. Shatyrko and D. Khusainov. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Sufficient conditions of interval absolute stability of nonlinear control systems described in terms of systems of the ordinary differential equations with delay argument and also neutral type are obtained. The Lyapunov-Krasovskii functional method in the form of the sum of a quadratic component and integrals from nonlinearity is used at construction of statements.

1. Introduction

The actuality of absolute interval stability problem of the dynamical systems, mentioned in the present paper, proves to be true as a lot of interesting reports at the international congresses and conferences and set of foreign publications, for example, [1–7]. The paper [7] is very interesting, because it gives us the most extensive, of the hitherto known, list of citations (825 point till 2006 year).

The investigation problems of dynamic systems with inexact specified parameters, or more, with the velocity vector (right-hand sides of differential equations), which can take their values from some of the sets, interested researchers for a long time. Classical (Lyapunov) stability means investigation of solutions at indignations by the initial data [8]. Its various generalizations (uniform on time and phase variables, by parts variables, asymptotical, exponential, orbital, etc.) also meant the unequivocal set of the law of dynamics of systems.

The solution of practical problems of control theory has caused occurrence concept "robust" (or interval) stability. Originally under robust stability, asymptotical stability of the linear stationary differential equations of the higher order was understood, under condition of a finding of their coefficients in the set intervals beforehand. Interesting fundamental necessary and sufficient conditions of interval stability of the linear differential equations with uncertainty parameters have been obtained at papers of Kharitonov [9–12]. However, at distribution of the obtained results to the dynamical systems, on differences equations and systems of the equations, systems with aftereffect have arisen essential difficulties.

The solution of control problems in linear systems leads to a finding of function (scalar function) \(u(x) \), at which feedback system

\[
\dot{x}(t) = Ax(t) + bu(x(t))
\]

should be asymptotically stable. Often this function depends on one scalar argument representing a linear combination of phase coordinates and some scalar function from the first and third squares of a plane. Investigations of asymptotical stability of the systems

\[
u(x(t)) = f(\sigma(t)), \quad \sigma(t) = c^T x(t)
\]

that is, systems

\[
\dot{x}(t) = Ax(t) + bf(\sigma(t)), \quad \sigma(t) = c^T x(t), \quad t \geq 0,
\]

with continuous function \(f(\sigma) \), lying in the set sector, became known as the absolute stability investigations of regulating (or control) systems.

Definition 1 (see [13, 14]). The nonlinear control system (3) is called absolutely stable if its trivial solution is globally
In (5) \(A, B, \Delta A, \text{and} \Delta B \) are \(n \times n \) constant matrices, \(b, c \) are constant \(n \)-vector column, and \(\tau > 0 \) is constant delay. Together with system (5) consider initial condition
\[
x(t) = \varphi(t), \tag{6}
\]

where \(\varphi: [-\tau, 0] \to \mathbb{R}^n \) is an arbitrary continuously differentiable function.

Elements of matrices \(\Delta A \) and \(\Delta B \) also accept values from the fixed intervals:
\[
\Delta A = [\Delta a_{ij}], \quad |\Delta a_{ij}| \leq a_{ij}, \quad i, j = 1, n, \\
\Delta B = [\Delta b_{ij}], \quad |\Delta b_{ij}| \leq b_{ij}, \quad i, j = 1, n. \tag{7}
\]

Nonlinear function \(f(\sigma) \) satisfies the “sector condition” \((4)\).

Definition 2. System (5) is called \((\Delta A, \Delta B)\) interval absolutely stable, if it is absolutely stable for arbitrary matrices \(\Delta A \) and \(\Delta B \) from given intervals \((7)\).

Under stability, asymptotic stability, and global stability of the delay system solution we understand traditional definitions; for example, see \([31]\).

At Shatyrko and Khusainov earlier papers conditions of interval stability of systems (5) using finite-dimensional Lyapunov’s functions
\[
V(x) = x^T H x + \beta \int_0^{\sigma(x)} f(\xi) d\xi, \quad \sigma(x) = c^T x
\]
have been obtained \([24–27]\).

At the present paper we will construct conditions of interval stability of system (5) with the help of Lyapunov-Krasovskii functional
\[
V(x(t)) = x^T(t) H x(t) + \int_{-\tau}^0 x^T(t + s) G x(t + s) ds \\
+ \beta \int_0^{\sigma(t)} f(\xi) d\xi, \quad \sigma(t) = c^T x(t). \tag{9}
\]

Throughout the paper we will use the following notation.
Let \(S \) be a real symmetric square matrix. Then the symbol \(\lambda \min(S) \) (\(\lambda \max(S) \)) will denote the minimal (maximal) eigenvalue of \(S \). We will also use the following vector norms:

\[
|x(t)| = \left\{ \sum_{k=1}^n x_k^2(t) \right\}^{1/2}; \quad \text{vectors norm (the Euclidean norm)} \text{ in } C_0\text{ space.}
\]
\[
\|x(t)\|_2 = \left\{ \int_{-\tau}^0 |x(t + s)|^2 ds \right\}^{1/2}; \quad \text{vectors norm in } L_2\text{ space.}
\]

For the real matrices we will use correspondent singular norm \(|A| = \left\{ \lambda_{\text{max}}(A^T A) \right\}^{1/2} \), and next notations \(\|\Delta A\| = \max_{\Delta a_{ij}} |\Delta A|; \quad \|\Delta B\| = \max_{\Delta b_{ij}} |\Delta B| \).

\(\theta \) is the zero-vector; \(\Theta \) is the zero-matrix, and \(I \) is the identity diagonal matrix.
Let us preliminary consider delay system without "interval perturbations":
\[
\dot{x}(t) = Ax(t) + Bx(t - \tau) + b f(\sigma(t)), \quad \sigma(t) = c^T x(t).
\]
(10)

Theorem 3. Let the positive definite matrices \(G, H\) exist and parameter \(\beta > 0\) such that the matrix
\[
S[G, H, \beta] = \begin{bmatrix}
-A^T H - HA - G & -HB - \left(\frac{1}{2} \beta A^T + I\right) c \\
-B^T H & G \\
-Hb + \left(\beta A^T + I\right) c & \theta^T \frac{1}{k} - \theta \beta c
\end{bmatrix}
\]
is positive definite too. Then system (10) with delay without interval perturbations is absolutely stable.

Proof. As function \(f(\sigma)\) satisfies condition (4), then for functional (9) the following bilateral estimations are true:
\[
\lambda_{\min}(H) |x(t)|^2 + \lambda_{\min}(G) \|x(t)\|^2_2 \leq V[x(t)] \leq \left[\lambda_{\max}(H) + \frac{k}{2} |c|^2\right] |x(t)|^2 + \lambda_{\max}(G) \|x(t)\|^2_2.
\]
(12)

We will calculate a total derivative of functional along system solutions. We will obtain
\[
\frac{d}{dt} V[x(t)] = -\left(x^T(t), x^T(t - \tau), f(\sigma(t))\right) \cdot S[G, H, \beta] \cdot \left(x^T(t), x^T(t - \tau), f(\sigma(t))\right)^T + \left(x^T(t), x^T(t - \tau), f(\sigma(t))\right) \cdot \Delta S[G, H, \beta] \cdot \left(x^T(t), x^T(t - \tau), f(\sigma(t))\right)^T.
\]
(13)

Or, using the so-called S-procedure [17],
\[
\frac{d}{dt} V[x(t)] \leq -\left(x^T(t), x^T(t - \tau), f(\sigma(t))\right) \cdot S[G, H, \beta] \cdot \left(x^T(t), x^T(t - \tau), f(\sigma(t))\right)^T.
\]
(14)

If the matrix \(S[G, H, \beta]\) is positive definite, then
\[
\frac{d}{dt} V[x(t)] \leq -\lambda_{\min}(S[G, H, \beta]) \cdot \left(|x(t)|^2 + |x(t - \tau)|^2 + |f(\sigma(t))|^2\right).
\]
(15)

Thus, according to Krasovskii weak theorem [31] if there exist the positive definite matrices \(G, H\) and \(S[G, H, \beta]\), such that
\[
\lambda_{\min}(H) |x(t)|^2 \leq V[x(t)] \leq \left[\lambda_{\max}(H) + \frac{k}{2} |c|^2\right] |x(t)|^2 + \lambda_{\max}(G) \|x(t)\|^2_2,
\]
(16)

\[
\frac{d}{dt} V[x(t)] \leq -\lambda_{\min}(S[G, H, \beta]) |x(t)|^2,
\]
then delay system (10) is absolutely stable.

Further we will obtain conditions of absolute interval stability of system (5).

Theorem 4. Let the positive definite matrices \(G, H\) exist and parameter \(\beta > 0\), such that the next inequality is true
\[
\lambda_{\min}(S[G, H, \beta]) > \|\Delta A\| \times |H| + \sqrt{\|\Delta A\|^2 |H|^2 + \|\Delta B\|^2 |H|^2 + \frac{1}{4} \beta^2 \|\Delta A\|^2} |c|^2.
\]
(17)

Then system (5) is \((\Delta A, \Delta B)\) interval absolutely stable.

Proof. As appears from the type of functional (9), bilateral estimations (12) are fair. We will calculate a total derivative of functional along solutions of system with “interval perturbations.” We will obtain
\[
\frac{d}{dt} V[x(t)] = -\left(x^T(t), x^T(t - \tau), f(\sigma(t))\right) \cdot S[G, H, \beta] \cdot \left(x^T(t), x^T(t - \tau), f(\sigma(t))\right)^T + \left(x^T(t), x^T(t - \tau), f(\sigma(t))\right) \cdot \Delta S[G, H, \beta] \cdot \left(x^T(t), x^T(t - \tau), f(\sigma(t))\right)^T.
\]
(18)

where
\[
\Delta S[G, H, \beta] = \begin{bmatrix}
\Delta A^T H + H \Delta A - \frac{1}{2} \beta \Delta A^T c \\
\Delta B^T H \Theta \theta \\
\frac{1}{2} \beta c^T \Delta A \theta^T 0
\end{bmatrix}.
\]
(19)

If the matrix \(S[G, H, \beta]\) is positive definite, then
\[
\frac{d}{dt} V[x(t)] \leq -\lambda_{\min}(S[G, H, \beta]) \cdot \left(|x(t)|^2 + |x(t - \tau)|^2 + |f(\sigma(t))|^2\right) + 2 \|\Delta A\| |
\]
\[\times |H| \times |x(t)|^2 + 2 \|\Delta B\| \times |H| \times |x(t)| \]
\[\times |x(t-\tau)| + \beta \|\Delta A\| \times |c| \times |x(t)| \times |f(\sigma(t))|. \]
(20)
From here we have
\[\frac{d}{dt} V[x(t)] \]
\[\leq - \left[\lambda_{\min}(S[G,H,\beta]) - 2 \|\Delta A\| \times |H| \right] |x(t)|^2 \]
\[- \lambda_{\min}(S[G,H,\beta]) |x(t-\tau)|^2 \]
\[- \lambda_{\min}(S[G,H,\beta]) |f(\sigma(t))| + 2 \|\Delta B\| \times |H| \]
\[\times |x(t)| \times |x(t-\tau)| + \beta \|\Delta A\| \times |c| \times |x(t)| \]
\[\times |f(\sigma(t))|. \]
(21)
Let us rewrite the first term from right side of inequality in two parts and we will present (21) as follows:
\[\frac{d}{dt} V[x(t)] \]
\[\leq - \left\{ \alpha \left[\lambda_{\min}(S[G,H,\beta]) - 2 \|\Delta A\| \times |H| \right] |x(t)|^2 \right\} \]
\[- 2 \|\Delta B\| \times |H| \times |x(t)| \times |x(t-\tau)| \]
\[+ \lambda_{\min}(S[G,H,\beta]) |x(t-\tau)|^2 \left\{ 1 - (1 - \alpha) \right\} \]
\[- \beta \|\Delta A\| \times |c| \times |x(t)| \times |f(\sigma(t))| \]
\[+ \lambda_{\min}(S[G,H,\beta]) |f(\sigma(t))| \].
(22)
where 0 < \alpha < 1, some constant. Then, as appears from Sylvester's criterion [32], performance of inequalities will be a condition of absolute interval stability of system with delay:
\[\lambda_{\min}(S[G,H,\beta]) - 2 \|\Delta A\| \times |H| > 0, \]
\[\alpha \left[\lambda_{\min}(S[G,H,\beta]) - 2 \|\Delta A\| \times |H| \right] \]
\[\cdot \lambda_{\min}(S[G,H,\beta]) - (\|\Delta B\| \times |H|)^2 > 0, \]
(23)
\[(1 - \alpha) \left[\lambda_{\min}(S[G,H,\beta]) - 2 \|\Delta A\| \times |H| \right] \]
\[\cdot \lambda_{\min}(S[G,H,\beta]) - \frac{1}{4} \beta \|\Delta A\| \times |c| > 0. \]

Let \(\Delta A \) be such that the first inequality is executed. We will rewrite the second and third inequalities in the next type:
\[\alpha > \frac{(\|\Delta B\| \times |H|)^2}{\lambda_{\min}(S[G,H,\beta]) - 2 \|\Delta A\| \times |H| \lambda_{\min}(S[G,H,\beta])}, \]
\[\alpha < 1 \]
(24)
And, if the next inequality will be true
\[\frac{(\|\Delta B\| \times |H|)^2}{\lambda_{\min}(S[G,H,\beta]) - 2 \|\Delta A\| \times |H| \lambda_{\min}(S[G,H,\beta])} < 1 \]
\[(1/4) \left(\beta \|\Delta A\| \times |c| \right)^2 \]
\[\frac{\lambda_{\min}(S[G,H,\beta]) - 2 \|\Delta A\| \times |H| \lambda_{\min}(S[G,H,\beta])}{\lambda_{\min}(S[G,H,\beta])}. \]
(25)
then always 0 < \alpha < 1 exists, at which the second and third inequalities (23) are true. And last inequality is equivalent to the following:
\[\frac{(\|\Delta B\| \times |H|)^2}{\lambda_{\min}(S[G,H,\beta]) - 2 \|\Delta A\| \times |H|} \]
\[\times |H| \left[\lambda_{\min}(S[G,H,\beta]) \right] \]
\[- \left\{ (\|\Delta B\| \times |H|)^2 + \frac{1}{4} (\beta \|\Delta A\| \times |c|)^2 \right\} > 0. \]
(26)
Let us rewrite it in the type
\[\lambda_{\min}(S[G,H,\beta]) \]
\[\times |H| \left[\lambda_{\min}(S[G,H,\beta]) \right] \]
\[- \left\{ (\|\Delta B\| \times |H|)^2 + \frac{1}{4} (\beta \|\Delta A\| \times |c|)^2 \right\} > 0. \]
(27)
It will be always true, if
\[\lambda_{\min}(S[G,H,\beta]) \]
\[> \|\Delta A\| \times |H| \]
\[+ \sqrt{\|\Delta A\|^2 |H|^2 + \|\Delta B\|^2 |H|^2 + \beta^2 \|\Delta A\|^2 |c|^2}. \]
(28)
As from performance of last inequality, the performance of the first inequality (23) is similar to Theorem 3, and we obtain statement (17) of Theorem 4.

Numerical Example. Consider the nonlinear direct control system (5), where
\[A = \begin{pmatrix} -14 & -12 \\ -11 & -20 \end{pmatrix}, \]
\[B = \begin{pmatrix} -1 & 0 \\ 1 & -2 \end{pmatrix}, \]
(29)
\[b = \begin{pmatrix} 1 \\ -1 \end{pmatrix}, \]
\[c = \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \]
with nonlinear characteristic \(f(\sigma) \) located in the sector 22.5°; that is, \(k = 0.5 \).

As the first step, matrices \(H \) and \(G \) for the Lyapunov-Krasovskii functional (9) can be obtained as a solution of “Lyapunov matrix equation” [20]:
\[A^T H + HA = -I, \]
\[B^T G + GB = -I. \]
(30)
From Theorem 4 conditions we obtain that our system will be

\[(\Delta A, \Delta B)\]

interval absolutely stable if the next restrictions will satisfy

\[\tau \leq 0.01,\]
\[\beta \leq 1.3,\]
\[
\left(\|\Delta A\| \leq 0.8, \|\Delta B\| \leq 0.8 \text{ at } \beta = 0.2\right).
\]

So, fact of system (5) stability essentially depends on its parameters (e.g., the sector solution \(k\), time-delay argument \(\tau\)) and Lyapunov-Krasovskii functional parameters \((H, G, \beta)\). To find the “better” ones, it is possible to solve the optimization problem. But this is the other problem, and solution of it can be found, for example, at [33].

3. Direct Control Systems of Neutral Type

We will consider the direct control system described by the differential equations with deviating argument of neutral type and interval given coefficients of linear part:

\[
\frac{d}{dt} (x(t) - D x(t - \tau)) = (A + \Delta A) x(t) + (B + \Delta B) x(t - \tau) + b f(\sigma(t)), \quad (32)
\]

\[\sigma(t) = c^T x(t).\]

In system (32) we use the same notations as for system (5) from the previous part. Here is the matrix \(D\) that satisfies a condition of “difference operator stability”: that is, \(|D| < 1\) [26]. And we need to extend initial conditions on our solution by the following [31]:

\[x(t) = \phi(t).\]

In the present section for construction of absolute interval stability conditions we will use the functional of Lyapunov-Krasovskii of the following type:

\[V\{x(t)\} = \int_0^t x^T(t + s) G x(t + s) \, ds + \beta \int_0^{\sigma(t)} f(\xi) \, d\xi.\]

As in the previous part, we understand under definition of absolute stability the global asymptotic stability of trivial solution of the system for an arbitrary nonlinear function \(f(\sigma)\), which satisfies sector condition (4). We understand terms stability, asymptotic stability, and global stability of the solution of neutral type systems in the sense of definitions given in the [31].

As is known, neutral type systems have their own specific features. As a general rule, system solutions are not continuously differential function in the nodes \(y = k \tau, k = 0, 1, 2, \ldots\). For the obtaining of any estimates we can use the functionals of different kind. For example, it may depend or not depend on derivative of solutions [31]. Hence, we may construct some estimates of the transition process in different metrics (e.g., \(C_0\) and \(C_1\) or \(L_2\)), which depends on the chosen type of functional. For Lyapunov-Krasovskii functional (34) bilateral estimates can be written as

\[
\lambda_{\min}(G) \|x(t)\|_2^2 \leq V\{x(t)\} \leq \lambda_{\max}(H) \left[\|x(t)\|^2 + |D| \|x(t - \tau)\|^2\right] + \frac{1}{2} \beta k |c| \times |x(t)|^2.
\]

That is why, in this work we formulate stability conditions of neutral type systems in the metrics \(\|x(t)\|_2 L_2\) space.

Let us preliminary consider the neutral system without interval perturbations:

\[
\frac{d}{dt} (x(t) - D x(t - \tau)) = A x(t) + B x(t - \tau) + b f(\sigma(t)), \quad (36)
\]

\[\sigma(t) = c^T x(t).\]

Also we will obtain absolute stability conditions of system (36).

Let us denote

\[
M[H] = \begin{bmatrix}
H & \quad HD \\
D^T H & \quad D^T HD
\end{bmatrix},
\]

\[
\Xi[G, H, \beta] = \begin{bmatrix}
-\beta A^T H - HA - G & \quad -HB + A^T HD \\
-\beta B^T H + D^T HA & \quad B^T HD + D^T HB + G
\end{bmatrix} \begin{bmatrix}
Hb + \frac{1}{2} (\beta A^T + I) c \\
\theta
\end{bmatrix} + \frac{1}{k - \beta \theta^T c}.
\]
Theorem 5. Let positive definite matrices G, H exist, and parameter $\beta > 0$, such that the matrix $\bar{S}[G, H, \beta]$ also is positive definite. Then system (36) without interval perturbations is absolutely stable in the metrics $\|\mathbf{x}(t)\|_2 L_2$ space.

Proof. For Lyapunov-Krasovskii functional (34) the following bilateral estimations are true:

$$
\lambda_{\min}(G) \|x(t)\|_2^2 \leq V[x(t)] \leq \lambda_{\max}(M[H]) \left(|x(t)|^2 + |x(t - \tau)|^2 \right) + \lambda_{\max}(G) \|x(t)\|_2^2 + \beta k |\sigma(t)|^2
$$

or

$$
\lambda_{\min}(G) \times |x(t)|^2 \leq V[x(t)] \leq \left[\lambda_{\max}(M[H]) + \beta k |c|^2 \right] \times |x(t)|^2 + \lambda_{\max}(G) \|x(t)\|_2^2.
$$

We will calculate a total derivative of functional (34) along the solutions of the system without interval perturbations. We obtain the following:

$$
\frac{d}{dt} V[x(t)] = [Ax(t) + Bx(t - \tau) + bf(\sigma(t))]^T
\cdot H \left(x(t) + Dx(t - \tau) \right) + \left(x(t) - Dx(t - \tau) \right)^T
\cdot H \left(Ax(t) + Bx(t - \tau) + bf(\sigma(t)) \right) + x^T(t)
\cdot Gx(t) - x^T(t - \tau) Gx(t - \tau) + \beta f(\sigma(t))
\cdot c^T \left[Ax(t) + Bx(t - \tau) + bf(\sigma(t)) \right].
$$

Or, using S-procedure [17],

$$
\frac{d}{dt} V[x(t)] \leq -\left(x^T(t), x^T(t - \tau), f(\sigma(t)) \right)
\cdot \bar{S}[G, H, \beta]
\cdot \left(x^T(t), x^T(t - \tau), f(\sigma(t)) \right)^T,
$$

where matrix $\bar{S}[G, H, \beta]$ is defined in (37). If it is positive definite, then

$$
\frac{d}{dt} V[x(t)] \leq -\lambda_{\min}(\bar{S}[G, H, \beta]) \times \left(|x(t)|^2 + |x(t - \tau)|^2 + |f(\sigma(t))|^2 \right).
$$

Thus, we have system of inequalities:

$$
\lambda_{\min}(G) \|x(t)\|_2^2 \leq V[x(t)] \leq \left[\lambda_{\max}(M[H]) + \beta k |c|^2 \right] |x(t)|^2 + \lambda_{\max}(G) \|x(t)\|_2^2,
$$

$$
\frac{d}{dt} V[x(t)] \leq -\lambda_{\min}(\bar{S}[G, H, \beta]) |x(t)|^2.
$$

And, according to Krasovskii weak theorem [31], if there are positive definite matrices G, H, at which matrix $\bar{S}[G, H, \beta]$ also is positive definite, the system is absolutely stable in the metrics $\|x(t)\|_2 L_2$ space. □

Further we will obtain absolute interval stability conditions of system (32).

Theorem 6. Let positive definite matrices G, H exist and parameter $\beta > 0$, such that the next inequality is true:

$$
\lambda_{\min}(\bar{S}[G, H, \beta]) > (\|\Delta A\| \times |H| + \|\Delta B\| \times |H|) + \sqrt{\left(\|\Delta A\| \times |H| + \|\Delta B\| \times |H| \right)^2 + \left(\|\Delta A\| \times |H| + \|\Delta A\| \times |H| \right)^2}.
$$

Then system (32) is $(\Delta A, \Delta B)$ interval absolutely stable in the metrics $\|x(t)\|_2 L_2$ space.

Proof. As appears from a type of functional (34), bilateral estimations (38) are true. We will calculate a total derivative of functional along solution of system with “interval perturbations.” We obtain

$$
\frac{d}{dt} V[x(t)] \leq -\left(x^T(t), x^T(t - \tau), f(\sigma(t)) \right)
\cdot \bar{S}[G, H, \beta]
\cdot \left(x^T(t), x^T(t - \tau), f(\sigma(t)) \right)^T,
$$

where

$$
\Delta S[G, H] = \left[\begin{array}{ccc} \Delta A^T H + H \Delta A & -H \Delta B + \Delta A \theta \Delta H & \theta \\ -\Delta B^T H + D^T H \Delta A & \Delta B^T \theta \Delta H + D^T \Delta B \theta & \theta \\ \theta & \theta & 0 \end{array} \right].
$$
If matrix $\mathcal{S}[G, H, \beta]$ is positive definite, then
\[
\frac{d}{dt} V[x(t)] \leq -\lambda_{\min}(\mathcal{S}[G, H, \beta])
\begin{align*}
&\cdot \left[|x(t)|^2 + |x(t - \tau)|^2 + |f(\sigma(t))|^2 + 2\|\Delta A\| \\
&\times |H| \times |x(t)|^2 + 2(\|\Delta B\| \times |H| + \|\Delta A\| \times |HD|) \\
&\times |x(t)| \times |x(t - \tau)| + \|\Delta B\| \times |HD| \times |x(t - \tau)|^2 \right].
\end{align*}
\] (47)

From here we will have that
\[
\frac{d}{dt} V[x(t)] \leq -\left[\lambda_{\min}(\mathcal{S}[G, H, \beta]) - 2\|\Delta A\| \times |H| \right] \times |x(t)|^2 \\
+ 2 (\|\Delta B\| \times |H| + \|\Delta A\| \times |HD|) \times |x(t)| \\
- \left[\lambda_{\min}(\mathcal{S}[G, H, \beta]) - 2\|\Delta B\| \times |HD| \right] \times |x(t - \tau)|^2 - \lambda_{\min}(\mathcal{S}[G, H, \beta]) |f(\sigma(t))|^2.
\] (48)

Then, as appears from Sylvester’s criterion [32], performance of system of inequalities will be a condition of absolute interval stability:
\[
\lambda_{\min}(\mathcal{S}[G, H, \beta]) - 2\|\Delta A\| \times |H| > 0,
\]
\[
\left[\lambda_{\min}(\mathcal{S}[G, H, \beta]) - 2\|\Delta A\| \times |H| \right] \times \left[\lambda_{\min}(\mathcal{S}[G, H, \beta]) - 2\|\Delta B\| \times |HD| \right] \\
- (\|\Delta B\| \times |H| + \|\Delta A\| \times |HD|)^2 > 0.
\] (49)

Let us rewrite the second inequality in a type:
\[
(\lambda_{\min}(\mathcal{S}[G, H, \beta]))^2 \\
- 2\|\Delta A\| \times |H| + \|\Delta B\| \times |HD|) \lambda_{\min}(\mathcal{S}[G, H, \beta]) \\
- (\|\Delta B\| \times |H| + \|\Delta A\| \times |HD|)^2 > 0.
\] (50)

It will be true especially if there will be positive definite matrices G, H and parameter $\beta > 0$, such that
\[
\lambda_{\min}(\mathcal{S}[G, H, \beta]) > (\|\Delta A\| \times |H| + \|\Delta B\| \times |HD|) + \sqrt{\|\Delta A\| \times |H| + \|\Delta B\| \times |HD|}^2 + (\|\Delta B\| \times |H| + \|\Delta A\| \times |HD|)^2.
\] (51)

From here the statement of Theorem 6 follows.

Directly from Theorem 6 the consequence, which is easier realized by checking out of the conditions of interval stability, follows.

Consequence. Let positive definite matrices G, H exist and parameter $\beta > 0$, such that the inequality is true:
\[
\frac{\lambda_{\min}(\mathcal{S}[G, H, \beta])}{\lambda_{\max}(H)} > (\|\Delta A\| + \|\Delta B\|) \\
+ \sqrt{(\|\Delta A\| + \|\Delta B\| \times |D|)^2 + (\|\Delta B\| + \|\Delta A\| \times |D|)^2}.
\] (52)

Then system (32) is $(\Delta A, \Delta B)$ interval absolute stable in the metrics $\|x(t)\|_2 L_2$ space.

4. Conclusion and Prospects

In the paper, the nonlinear systems of automatic control described in terms of the ordinary differential equations with delay and neutral type, and also having uncertainties in the set of linear parts, are received constructive algebraic criteria of interval absolute stability. At the expense of application of the alternative approach of Lyapunov-Krasovskii functional, forms of estimations in sufficient conditions of interval stability are essentially simplified in comparison with obtained analogous one on the basis of finite-dimensional Lyapunov’s functions of Lur’e-Postnikov types [24, 25, 34, 35]. The next fact also should be noted: if the conditions of Theorems 3–6 failed to satisfy, it is not a dead-end situation. In such case, you can go, for example, to the solving of the stabilization problem to a state of absolute stability [38, 39].

All this confirms the viability and prospects of Lyapunov’s direct method in the qualitative analysis of complex dynamical systems.

Competing Interests

The authors declare that there is no conflict of interests regarding the publication of this paper.

References

[34] A. V. Shatyrko, “Qualitative analysis of neutral type control systems under uncertainties from positions of Lyapunov functions,” Reports of the NASU, no. 5, pp. 43–48, 2012 (Russian).

