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This paper introduces a new design approach that combines stages of logic and physical design. The logic function is
synthesized and mapped to a two-dimensional array of logic cells. This array generalizes PLAs, XPLAs and cellular Maitra
cascades. Each cell can be programmed to a wire, an inverter, or a two-input AND, OR or EXOR gate (with any subset of
inputs negated). The gate can take any output of four neighbor cells and four neighbor buses as its inputs, and sends its result
back to them. This two-dimensional geometrical model is well suited for both fine-grain FPGA realization and sea-of-gates
custom ASIC layout. The comprehensive design method starts from a Boolean function, specified as SOP or ESOP, and
produces a rectangularly shaped structure of (mostly) locally connected cells. Two stages: restricted factorization, and
column folding, are discussed in more details to illustrate our general methodology.
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1. INTRODUCTION

ate arrays and standard cells are currently the most
popular technologies used in ASIC design. On the

other hand, the two level Sum-of-Products (SOP) struc-
ture is widely used in Programmable Logic Devices
(PLDs). For two-level logic, there are effective synthesis
tools for both SOP minimization [23] and Exclusive-
Sum-of-Products (ESOP) minimization [25,28]. While
the standard PLA is composed of an AND plane for
product terms, and an OR collecting (output) plane, the
recently introduced XPLA (Exor PLAto[25]) has an
AND plane for product terms and an EXOR collecting
plane. Another advantage of the two-level SOP or ESOP
implementation is that the difficult placement and routing
problems, inherent to gate array and standard cell tech-
nologies, are avoided.
The two-level approach, although commonly used in

the PLD technology, requires large area and leads to low
performance when applied to larger circuits. On the other
hand, multiple-level-logic gate arrays and standard cell
realizations can have high performance and consume a
smaller area. The multiple-level-logic design, however,

is much more difficult, both on the logic level and on the
physical design level (placement and routing). Using
architecture constraints during logic synthesis could
decrease complexity of the physical design stage. But
until very recently not much has been published on
combining the logic and physical design stages.

Therefore, as the result of the above trade-off, there is
an increased interest in developing new FPGA architec-
tures that would combine the power and flexibility of
multi-level circuits with the regularity and ease of use of
logic based on two-level expressions. Two approaches:
fine-grain FPGAs and Complex PLDs (CPLDs), have
been recently proposed. CPLDs have partitioned PLA/
PAL arrays connected by global routing channels. Fine-
grain FPGAs have been developed by Concurrent Logic
[5,6] (now Atmel [2]), Algotronix [1] (now Xilinx),
Pilkington 14], Motorola 16], Plessey, Apple, Toshiba,
and National Semiconductor. Although quite different in
details, these fine-grain FPGA architectures have some
very specific common properties.
Below we will create a generic model of a "two-

dimensional logic array" that includes most of the
important properties of these fine-grain FPGA architec-
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tures. Although quite simple, the model is also well
suited for custom ASIC design in sea-of-gates or similar
technologies.
A very practical and interesting research problem

related to new programmable architectures is to find
some scientific evidence and experimental confirmation
with respect to merits of the existing fine-grain architec-
tures: how "good" are they? can they be improved? how?
To our knowledge, while designing these architectures
([ 14] being the only exception), there was no research on
selecting the best cells’ functionality, their connection
patterns, a number and location of buses, etc. The
architectures were created purely on the "try and error"
principle, with several modifications in next chips’ gen-
erations and software redesigns. It is then very important
to create new general methodologies and related proto-
typing software to help design new fine-grain architec-
tures. We propose here such a methodology and related
software. We will call it the "Fine-Grain FPGA Design-
er’s Work Bench".
Our approach to create optimal fine-grain FPGA

architectures is through the Device and Algorithm Co-
Generation. Conventionally, the devices are designed
first. Next, the optimization methods are created to
support the synthesis and mapping for these devices.
When the design of FPGA architecture is completed,
with no consideration of future physical design prob-
lems, the software tool design may become unnecessarily
complex at the later stages. If the existing algorithms
were evaluated on prototype architectures, and the cor-
responding improved algorithms were created concur-
rently with the devices, the creation of the high-perfor-
mance tools would be significantly easier. The tools
should be also able to better utilize all the distinct
properties of the devices.
The best way to deal with circuits of high complexity

is to preserve their regularity as much as possible. Logic
synthesis and technology mapping are still performed
separately (with a recent exception of combining the
technology mapping with placement [7]). However, a
good logic synthesis result does not necessarily guaran-
tee the good result of technology and physical mappings,
since the physical constraints are not taken into account
at the stage of logic synthesis. For instance, algebraic
factorization [4] is a popular method to generate mul-
tiple-level logic forms from two-level logic expressions.
However, without taking certain layout-related con-
straints into account, such as the limited number and
connectivity of buses, a synthesis result having less
literals may need more space for routing than another
result with more literals.

In the traditional approach where the logic optimiza-
tion phase is followed by technology mapping and then
placement and routing, a large number of logic cells are
used for wiring connections or left unused at all. This

problem is mainly caused by not preserving local con-
nectivity during the synthesis steps. Therefore, fre-
quently, local buses are used to complete even very short
connections, which increases circuit delay. Better solu-
tions that use different logic implementations with a
larger number of logic cells but with predominantly local
connections are lost during the technology mapping. The
traditional technology mapping algorithms optimize area
by minimizing the number of logic cells used, and circuit
delay by optimizing the number of logic levels. In the
"macro block" approach which is currently used in the
industry, a technology independent multi-output repre-
sentation of a Booleln function is covered with a
minimum number of small standard subfunctions (mac-
ros) which have no uniform shapes, and do not preserve
local connectivity between macros. Consequently, the
number of cells which need to be used for routing
between macros is very large. On average, about 70% of
the area occupied by the design in ATMEL 6000 series
fine-grain FPGAs [2] is wasted if the traditional synthe-
sis methods are used [6].

Several approaches have been proposed that use vari-
ous layout constraints during logic synthesis. The first
research on applying variable ordering in factorization is
reported in [26]. The approach based on trees and
decision diagrams (which are Directed Acyclic Graphsm
DAGs) [8,15] has been also adapted to fine-grain FPGAs
[27,30]. It makes use of the diagrams’ regularity and the
specific types of logic gates (AND/EXOR, MUX), used
in these decision diagrams. These gates are also well-
suited to the existing devices from Atmel or Motorola
[27,30]. In some cases, however, when the circuit is
finally mapped to a rectangular area, the triangular
structure of the tree/DAG decomposition may waste a
large amount of area for routing.

Therefore, we propose here a totally new approach to
combined logic synthesis and physical design. Starting
from an observation that the architectures have rectangu-
lar arrays of simple, locally connected cells, we create our
design method especially for such arrays. The "generic
two-dimensional array" uses two-input AND, OR and
EXOR cells with local connectivity and limited numbers
of horizontal and vertical buses. Such generic model
includes in itself several simpler, constrained models,
each of which can be both a base of logic synthesis/
physical design and serve to create a new FPGA archi-
tecture with restricted cell functionality and connections.
For instance, below we restrict ourselves to the simplified
model composed of two listinct planes: the complex
(input) plane and the collecting (output) plane. The input
variables of the input plane are in vertical buses. The
linear sequence (a row of the input plane in the array) of
AND, OR and EXOR operators with corresponding
literals is called a Maitra term. The outputs of the Maitra
terms are given to horizontal buses. The Maitra term is
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therefore a generalization of the AND term (product
term). (AND terms are realized in the AND planes of
PLAs realizing the SOPs. The name "Maitra term" comes
from "Maitra cascades" [17].) Similar to PLAs and
XPLAs, the collecting (output) columns of the two-
dimensional array use OR or EXOR gates.
The given above, particular two-plane specializa-

tion of the "generic two-dimensional logic array model"
will be called the "Complex Maitra Logic Array"
(CMLA). This model allows for simpler logic synthesis
methods, and also can be a base for designing new
architectures.
The CMLA concept is well suited for both fine-grain

Field Programmable Gate Arrays (FPGAs) and ASIC
design. CMLA is a powerful generalization of PLAs
since the number of Maitra terms for any Boolean
function is much larger than both the number of prime
implicants in SOP form of this function, and the number
of ESOP terms used in ESOP form of this function.
Unfortunately, there are no efficient methods in the
literature for finding Maitra terms for an arbitrary Bool-
ean function, and particularly for a multi-output function.

In addition, similar to PLAs and gate matrix layout
[29], our CMLAs can be folded in many ways. All
well-known algorithms for folding and gate-matrix lay-
out can be thus used [7,9,10,11,12,13,29]. However, both
the properties of our general array model and the specific
properties of particular commercial FPGAs call for new
approaches to this folding problem [24].
The comprehensive approach to both the development

of new architectures and the creation of software for
existing architectures, proposed here, includes two
stages:

1. Logic synthesis which takes the geometry and
layout constraints into account to create a CMLA in
which every output function is an OR or EXOR of
Maitra terms.

2. Folding the CMLA in order to further decrease the
area of the layout.

Each of the above stages can be solved in several
ways, and this paper attempts to emphasize the general
model of the two-dimensional array and the associated
design methodology, rather then the details of any
particular method to solve the partial problems. Thus, we
illustrate the logic synthesis stage with two possible
approaches: the orthogonal canonical expansions, and
the restrictedfactorization. The second approach will be
presented in more detail. The result of the logic synthesis
stage is a logic structure, which similarly to other
multiple-level logic structures, has the advantages of
high speed and reduced area. In addition, however, the
routing problem involved in our approach is greatly

simplified. Although the CMLA structure is more general
than PLAs and gate arrays, it still preserves their routing
regularity. A Boolean function realized by such a CMLA
can be easily mapped to a rectangular area on the chip.
The second, folding, stage can be solved in a "tech-

nology independent" way, illustrated here. Or, it can take
into account particular cell properties of the given
fine-grain FPGA to make the folding even more efficient.
One solution to the technology-specific folding, for
Atmel 6000 architecture, is presented in [24].
The paper is organized as follows. In section 2 we

introduce the general model of a two-dimensional cellu-
lar array that includes several existing FPGA architec-
tures and technologies, and can be also used to prototype
new ones. Section 3 describes the general logic synthesis
for CMLA model and introduces briefly two particular
methods: the synthesis based on orthogonal uxf-forms
and the restricted factorization. Section 4 formally intro-
duces the mathematical apparatus necessary to create the
complex terms, the generalization of Maitra terms gen-
erated in the restricted factorization. Section 5 gives the
complete algorithm to generate the complex terms, and
section 6 illustrates the application of this algorithm to a
circuit example. Section 7 discusses the column folding
problem for our arrays and presents the algorithm and an
example. Section 8 discusses the results. Conclusions are
presented in section 9. Proofs of theorems and other
details are in the Appendix.

2. THE GENERAL MODEL OF A TWO-
DIMENSIONAL LOGIC ARRAY

Cellular arrays were studied extensively during sixties
and seventies [3,17,18,19,31]. In these studies, however,
the connectivity patterns of cells were too restricted and
the buses were mostly absent. Because of these limita-
tions, when the number of inputs of a function becomes
larger, the number of cells grows rapidly, often exponen-
tially. The classical cellular arrays were then never
commercialized, and the PLD and FPGA technologies
were developed with no reference to them.
Below we propose a generalized architectural model

of several fine-grain devices, that includes also some
classical cellular array models. Our "generic" model is a
two-dimensional array of identical cells with the follow-
ing properties"

Each cell can be configured into a 2-input
1-output basic logic "gate. The basic logic gate
can be an AND gate, an OR gate, or an EXOR
gate. Prograrranable inverters at each input are
assumed to be available inside the cell. The cell
can then realize an arbitrary function of at most 2
inputs.
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2. Horizontal buses are connected to all cells in the
row and vertical buses are connected to all cells
in the column.

3. Each cell has connections to its four adjacent
cells. The cells at a border or a corner of an array
have three or two adjacent cells, respectively.

4. Each cell can either get its two inputs from any
two of its four adjacent cells, or one input from
any of its adjacent cells and one input from one
of buses connected to it. (Selection of inputs is
done by electrically, configurable multiplexers).
There are no restrictions on which one of the two
inputs should be from which adjacent cell, or
which input should be from which bus.

5. Each cell can send its output to any bus and/or

any adjacent cell. The only restriction is that a
cell cannot connect both its input(s) and output
to the same adjacent cell, or the same bus.

6. There are some other constraining parameters
such as the size of the cells, the number of buses,
and the number of storage elements. For ASIC
design, these constraining parameters can be
modified in software. For FPGA design, these
parameters are fixed.

The genetic architecture proposed by us is shown in
Figure 1. We will call it the "Generic 2-Dimensional
Logic Array", or "2-D Array", for short.
The cells which are programmed (electrically config-

ured, personalized) to logic gates will be called logic
cells. A routing cell is a cell which passes a signal (wire)
only. An empty cell is a cell unused in a mapping.
The 2-D Array approach provides a compromise

between the two main mapping approaches to fine-grain
FPGAs; i.e. "module block" and "cellular array" ap-
proach. Each of these approaches provides advantages as
well as disadvantages for the mapping problem. In the

Vertical Buses
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FIGURE Generic Architecture of a Two-Dimensional Logic Array.

module block approach, the general function is decom-
posed into smaller subfunctions which would not have
uniform shapes but can be optimized locally. On the
other hand, the modules in the module block approach
would not have uniformity of local communications and
with the routing restrictions of fine-grain FPGAs lead to
wasteful routing (high percent of empty and routing
cells). In the case of cellular array, the whole function is
mapped into regular structures which can grow signifi-
cantly with a large number of input variables. However,
the routing is local and therefore best fits the fine-grain
routing resources.

It is our opinion that the design of the next generation
of fine-grain FPGA devices should be based not only on
the design experience but also on experimenting with
software tools for "generic" fine grain devices, for
instance as th.e one propos.ed here. The device architect
should experiment with these tools by assigning values
to various constraining parameters, such as: cell’s per-
sonalizations, number of inputs, cells’ connectivity, num-
ber and location of buses (vertical, horizontal, oblique),
types of buses (local, global, intermediate), hierarchy,
and possible others. Therefore, when used with some
particular set of constraints, our methodology and "ge-
neric algorithms" produce an efficient tool for respective
fine-grain FPGA technology. When used without any
constraints, the proposed approach produces the tools four
custom ASIC logic/layout co-design.
The CMLA model is created from the "generic 2-D

Array" by separating the array into two planes: "complex
term plane" and "collecting plane" and restricting corre-
spondingly the connectivity and reconfigurability of cells
in each plane. For instance, by using only Maitra terms in
the complex plane, each cell there can have only one
input from a neighbor and one input from a vertical bus,
and send its output to only one neighbor. Similarly, the
cells in the collecting plane can be programmable only to
OR and EXOR. All such restrictions simplify greatly the
cell and its connectivity pattern. This decreases addition-
ally the total area and speeds-up the circuit. Similarly,
other new models can be created by imposing certain
constraints on our generic 2-D Array model.

3. LOGIC SYNTHESIS APPROACHES FOR
THE CMLA MODEL

The following methods from the literature can be
adapted to generate terms for CMLAs:

1. Classical cellular array methods [3,17,18,19,31 ].
2. Methods based on orthogonal expansions [21] and

Universal XOR Forms [22].
3. The constrained factorization [24].
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The classical methods seem to be too restricted for
both the generic and CMLA models, but some of the
algebraic ideas introduced by them seem still worthy of
further investigations, and can be used to’ improve the
efficiency of the methods proposed here. In the remain-
ing of section 3 we will introduce two new methods: one
is based on Universal XOR Forms [22] (section 3.1), and
the other is based on restricted factorization to complex
(Maitra) terms (section 3.2). While the first (Boolean/
spectral) method is more general and usually leads to
better solutions because of extremely large space of
solutions it searches, the second (algebraic) method in
our current implementation leads to much faster pro-
grams.

form. In general, the coefficients of the orthogonal
expansion for a Boolean function are obtained by mul-
tiplying the matrix of this expansion by the vector of
minterms of this function. Matrix of expansion is an
inverse to the matrix of basis functions [21]. By repeat-
ing this procedure for the expansion matrices corre-
sponding to all the bases from some family F of bases,
and selecting the base for which the minimum number of
coefficients are non-zero, one obtains the exact minimal
form in this family F of bases.
The total number of UXF forms was shown to be

2(2"- 1)(2"- 1) 2"

2" =lI1 2i 1)

3.1. Synthesis Based on UXF Forms

3.1.1. Universal XOR forms In the vector space
over GF(2) formed by the set of n-variable switching
functions under addition mod-2, every switching func-
tion can be represented uniquely as a linear combination
of the basis functions [22]. The task of the identification
of all canonical forms of the switching functions in this
field thus entails the identification of all possible bases of
the 2n-dimensional vector space . A Universal XOR
form (UXF) is a basis vector in vector space . Each
term in the UXF is a basis function.

If the basis functions are realized as products of
literals, the basis functions will be called monoterms. For
instance, the set of all UXF forms includes all possible
AND/EXOR canonical forms including all known
(Reed-Muller, Fixed-Polarity Reed-Muller, Generalized
Reed-Muller, Kronecker-Reed-Muller), and lesser-
known AND/EXOR forms [8]. Some UXF forms also
include terms which require gates other than AND and
NOT for their realization. They include various AND/
OR/EXOR canonical forms [21,22].
One well known XOR canonical form is that of the

Reed-Muller Canonical (RMC) form. The standard ca-
nonical sum-of-minterms form can also be considered an
UXF. As an example, the monoterms of the RMC (the
coefficient of the Reed-Muller expansion) and the min-
terms are related by the following nonsingular matrix for
the case of functions of two variables:

1111
a 0101 a
b 0011

b
ab 000

ab

The Reed-Muller expansion is a particular example of an
orthogonal expansion and the RMC is a particular UXF

where n is the number of variables in the function [22].
Among all these forms, there are those families of

forms which have easy circuit realization for a given
fine-grain FPGA architecture.

3:1.2. CMLA synthesis using universal XOR forms
UXF forms can be used in the CMLA approach. In such
case uxf-terms are realized as rows of the complex plane
(called the orthogonal plane, since all terms realized by
it are orthogonal functions). The output plane includes
only EXOR gates. The general scheme of such restricted
CMLA is shown in Figure 2. The CMLA array is
comprised in this case of the orthogonal (or basis) plane
realizing the terms, and an EXOR plane collecting them.
Each level (row) in the orthogonal plane realizes an

FIGURE 2 CMLA realization of the UXF form.
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uxf-term of the function. These terms are then EXORed
together in the EXOR plane.

In the orthogonal plane, it is assumed that the primary
inputs are carded across the levels through buses. The
uxf-terms are then constructed through allowable gates
in the level. As an example, the product ac can be
produced by getting a signal from the bus, passing it
through the "b-cell" via a wire (a connection cell) and
then ANDing a and c in the "c-cell". In similar way,
various terms composed from connection cell ("wire"),
AND, OR, and EXOR cells can be realized in the
orthogonal plane. An example is shown in Figure 3.

While the number of all UXF forms is enormously
large, the constraints of the technology limit the number
of basis vectors that can be utilized in a given architec-
ture. As the rows o’f arrays realize the basis elements of
a given basis which have a coefficient of 1, it may not be
possible to realize every possible basis element in a
single row. As an example, let us assume that the array is
comprised of only AND gates. Furthermore, let us

la,bl

FIGURE 3 An example of an orthogonal plane.

assume that one of the basis elements is a + b, where a
and b are two primary inputs. In this architecture, the
OR-type basis elements can not be realized. Therefore,
basis elements have to be chosen based on the target
architecture. Or, vice versa, the new target architecture
may result from a particularly powerful family of bases.

Obviously, for every family of forms there exists the
best form, the one which has the least number of
non-zero coefficients. Such coefficients correspond to the
uxf-termsmthose basis functions that actually appear as
rows in the layout realization of the function. For any
type of cells and their connectivity pattern, one creates a
family of basis functions, and next finds the correspond-
ing expansion matrices and minimal forms. In [22] some
narrower families of bases are presented, The bases that
have all basis functions composed of connection cells
and two-input AND gat.es create Fixed Polarity Reed
Muller forms. The bases that have all basis functions
composed of two-input AND and OR gates create
AND/OR canonical forms [22]. Bases with functions
omposed of two-input AND, OR and EXOR gates can
also be identified. The expansion of a given Boolean
function in a base is done by multiplying the matrix of
the expansion by the vector of minterms of this function.
The procedure is repeated through all expansion matrices
of the set of bases. The best form is found for which the
given function has the minimum number of uxf-terms
[221.

This method is very general and can be applied to any
cells and connectivity patterns, potentially it can produce
results of very small area. It can also lead to the
development of new fine-grain architectures. However,
its current realization is not very efficient numerically,
since it takes much space and time to calculate all
expansion matrices and next to multiply them by the
vector of minterms. Therefore, another method is also
presented below.

3.2. Synthesis Based on Constrained Factorization

3.2.1. Maitra terms and Complex terms In this
section, new concepts, Maitra term and complex Maitra
terms will be first introduced. Then our method of
constrained factorization will be discussed. An example
will be given to help present the principle of our method.

Definition 1A: A forward Maitra term is defined
recursively as follows:

1. a literal is a forward Maitra term.
2. if M is a forward Maitra term then

Ma,.Ma, Ma,Ma,M+ a, and M + a

are also forward Maitra terms if no literal or its comple-
ment appears in the string more than once.
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Definition 1B: A reverse Maitra term is defined
recursively as follows:

1. a literal is a reverse Maitra term.
2. if M is a reverse Maitra term then

a M, a M, a M, a )M, a / M, and a + M

are also reverse Maitra terms if no literal appears in the
string more than once.
Forward and reverse Maitra terms are called simple
Maitra terms.

Example 1: Each of the following expressions repre-
sents a forward Maitra term:

(a b)+c, (a+b)c,

(a ) b)+?), ((cb)+a) d

Each of the following expressions represents a reverse
Maitra term:

c + (ab), c(a+b)

Example 2: ((a b) + b)c is not a Maitra term because
the literal b appears twice.

Example 3: a + (b ) + d is not a forward Maitra term
because it cannot be generated from the forward Maitra
term definition (analyzing the expression from fight to
left, a + (b ?) is not a forward Maitra term). However, if
the order of variables is changed to b, c, a, d, then
(b ?) + a + d becomes a forward Maitra term.

This example shows that whether a given logic ex.-
pression is a Maitra term or not, depends on the order of
variables in this expression. Some expressions which are
not Maitra terms can become Maitra terms by changing
the order of variables in them.

For every order of input variables, a Boolean function
can be decomposed to an OR or EXOR of Maitra terms.
This is always possible, since the AND terms (used in
SOPs and ESOPs) are particular cases of the Maitra
terms.

a b c d

routing wir

FIGURE 4 Realization of factored term that is not a Maitra term.

but in a custom ASIC implementation, but one can add
wires freely to the routing channels. However, in an
FPGA implementation, the number of buses is very
limited, thus the routing must be done by programming
the logic cells to wires. This is a big waste of resources,
and this is why some factorized forms are much more
useful than some others.

Figure 5 shows a realization of a forward Maitra term

f ((a + b)c + d )e that resulted from the restricted
factorization. Obviously, there is no routing wire needed,
assuming order of variables a, b,.c, d, e. Lack of routing
wires is convenient in both ASIC and FPGA implemen-
tation. However, for some other orders of variables, such
as d, c, a, b, e, several additional wires would be
required. Therefore, the order of variables in the realiza-
tion must reflect the order in the Maitra term. By flipping
vertically the schematic of a forward Maitra term from
Figure 5 one would obtain the schematic of a reverse
Maitra term.

Definition 1C: A bidirectional Maitra term has the form

M1 operator M2

where operator is a Boolean function of two arguments,
M1 is a forward Maitra term, and M2 is an reverse
Maitra term, such that M1 and M2 have different sets of
variables and do not exhaust together all input variables
of the function.

For instance, M1 M2 = {(ab) + c} {e (f + g)} is
a bidirectional term of functionf (a, b, c, d, e, f, g) since
M1 is a forward term on variables {a, b, c}, M2 is a
reverse term on variables { e, f, g }, sets (a, b, c } and (e,

The following two figures explain the reason for f, g} are non-overlapping, and variable d is not used in
introducing the concept of the Maitra term. Figure 4
realizes a functionfr (a + b) (c + d). This is a factorized
expression implemented by an array of three cells. Note
that a routing wire is needed. Function fr is not a Maitra
term and it cannot be changed to Maitra term by
changing the order of literals and operators. Therefore, a
wire will always be needed for above function fr to
implement the three operators in a row. In a fine-grain
FPGA implementation, this routing wire can be realized
by a bus or a row of cells. When a Boolean function
becomes more complicated, the number of routing wires
needed increases. This increases the routing complexity

any of these sets.
Fig. 6 illustrates the realization of the bidirectional

term.

a b c d e

FIGURE 5 Realization of a forward Maitra term in a row of a CMLA.
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a b c

FIGURE 6 Bidirectional Maitra term realized by a row of a CMLA.

Definition 1D: A complex Maitra term (complex
term for short) is a forward Maitra term, a reverse Maitra
term, or a bidirectional Maitra term.

After the product terms have been factorized to
complex terms, the next stage is to perform the output
column folding. In this stage, the number of complex
terms is known. Each complex term is connected to one
or more output functions. To minimize the area, a proper
order of complex terms is found such that the number of
overlapping nets is minimized (net is a list of terms and
associated output functions). The nets that do not overlap
are next put to the same column. This is similar to the
gate matrix problem in which non-overlapping nets can
be put to the same track.

Example 4: Given a SOP expression for a three-input
two-output function:

fl (a + b) c + d + abc

f2=acd+abcd
The first function has two complex terms, (a + b)c + d
and a b c. The second function has also two complex
terms. A realization shown in Figure 7 needs two output
columns. The rows are now permuted to avoid overlap of
nets connected to each column. Then the two output
columns can be combined into one column, as shown in
Figure 8, and the total number of output columns is
reduced.

ab c

Based on the above discussion, the outline of the
combined factorization/folding approach is the follow-
ing.

1) Start from a minimized SOP expression, a mini-
mized ESOP expression, or a minimized mixed
SOP/ESOP expression. Use one column for each
input variable and one column for each output
variable. Use one row for each product term. For
an expression with n inputs, rn outputs, and p
product terms, this function is mapped into n + rn
columns and p rows. This is the initial solution. It
does not take into account factorization and fold-
ing, and is thus the worst case solution, to which
our solutions will be compared.

2) Factorize product terms to complex terms, such
that each complex term can then be put in one row.
After the factorization, the number of complex
terms is not greater than the number of product
terms.

3) To reduce the number of rows as much as possible,
perform step 2) iteratively and reshape the product
terms. Repeat until some cost improvement criteria
are satisfied.

4) Permute the rows with complex terms in order to
minimize the number of overlapping nets.

5) Minimize the number of columns by folding,
merging the nonoverlapping nets into the same
columns.

3.2.2. A complete example of factorization and folding
The following example of a two-bit adder illustrates the
above procedure. This function has 4 inputs and 3
outputs and has been minimized as an ESOP of 8 product
terms:

ab c d

f2
FIGURE 7 Initial CMLA for example 4. FIGURE 8 Folded CMLA for example 4.
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fo acabdbcd

fl b)d

f2 cbd)a

Thus the initial solution requires 8 rows and 7 columns.
Each product term is mapped into one row. There are 4
columns for inputs and 3 columns for outputs. By setting
the order of the input variables as (b, d, a, c) the three
product terms inf2 can be combined into a complex term.
Three product terms in fo can be factorized to two
complex terms as shown in Figure 9.
A cube (product term) B and cube C in Figure 9(a) can

be reshaped to B’ and C’ in Figure 9(b). Since the true
minterm 1111 is covered by three cubes A, B’ and C’, the
operators between these cubes can be either EXOR or
OR:

fo ac@-dbd@bcd acbcd@abd

ac+ bcd + abd (bd + a)c+ bda

The result of the factorization is:

fo (b d + a)c + b d a
which has two complex terms;

fl b ])d
which has one complex term;

f2 b d a )c
which has one complex term.

After the output folding, the final result is shown in
Figure 10.

4. RESTRICTED FACTORIZATION
THEORY

Since the outlined above factorization problem involves
more constraints than the standard factorization, and

b d a c

f2
FIGURE 10 The final CMLA of the two-bit adder after folding.

since the conventional algebraic division method [4]
does not take these constraints into account, we have
developed a new factorization method for this specific
problem. We call this restricted factorization. The new
method is based on cube calculus operations [23,25,28].
In this section, the concepts of distance and difference of
two product terms, and a cube operationmexorlink are
first introduced. Then the method to generate complex
terms from product terms is discussed.
The algorithm to combine product terms to complex

terms is based on calculating the difference and the
distance of the cubes for every pair of cubes representing
product terms. This is used to decide whether two
product terms can be combined to a complex term. It also
determines the cases when the cubes need to be reshaped
in order to increase the possibility of re-combining them.
This reshaping is done using the exorlink operation.

01

01 11 10

B

C (a)
A

Ol

IO

01 11 10

/’
C (b) \

A
FIGURE 9 Example of Reshaping Cubes before Factorization to

Complex Terms.

4.1. Definitions

In positional cube notation, a literal with a positive
polarity (a variable with no negation) is coded as 10, a
literal with a negative polarity (a variable with negation)
is coded as 01, and a missing literal is coded as Figure
11.
Definition 2: The distance of two terms is the number
of variables for which the corresponding literals of these
terms have different polarities.
Definition 3: The difference of two terms is the number
of variables for which the corresponding literals of these
terms have different values.
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Here "different values" means different codings, and
"different polarities" means disjoint codings. For in-
stance, 11 and 10 are different values, 10 and 01 are also
different values. For binary logic, the only case of
different polarities are 10 and 01. The difference of two
product terms T and T is indicated by difference
(Ti, T) d’. Similarly, the distance of T and T2 is
indicated by distance (Ti, T2), d".

Example 5: Given are three terms T a c, T2 a b d,
and T3 b c d. The difference of T and T2 is 4, because
all four pairs of literals are different. The distance of T
and T2 is 1, because the literals of variable a have
different polarities. The difference of T2 and T3 is 2,
because for variables a and c there are different literals.
The distance of T_ and T3 is 0, because no literal has
different polarities.

Let T g...g,, and T2 P...3n be two terms. The
exorlink [28] of terms T and T2 is defined by the
following formula:

T (R) T2 {: ...-i-I (-i Yi)Yi+I Yn Ifor such
1 n, that "i

Example 6: Given two product terms a b e and a b c d
e. The exorlink of these two terms is shown in Figure 11.

In Figure 1 l a, three arrows indicate the three pairs of
literals with different values. Since the difference of the
two terms is three, three resultant cubes are generated.
Figure lb shows the generation of the first resultant
cube. The first literal in the resultant cube is copied from
the first term. The second literal is the result of EXOR
operation of the corresponding literals from the first and
the second terms (remember, EXOR is performed on the
positional cube notation, therefore, 1 [01] [11]
[10] 0). The remaining three literals in the resultant
cube are copied from the second term. The second and
the third resultant cubes are generated in a similar way by
performing EXOR operation on the third and fourth
literals, respectively. The final result is an ESOP of three
terms:

a b e a - c d e a c d e ff a b " d e a b l e

Given two product terms, an exorlink operation gen-
erates a set of resultant product terms. The number of

resultant product terms is equal to the difference of the
two given product terms.
Definition 4: Two product terms T and T2 are referred to
as directly combinable, ifthese two product terms are in
one of the following forms,

(4.1)

T J J2 i-1 i i+ 1"" "n (4.2)

72 i+ n
:j 3jforj>_ i+l

In equation (4.1), the two product terms can be combined
to

(12""i-1 [ i) i+l"’n
.Example 7: a b d e c d e (a b c) d e
In equation (4.2), the two product tes can be combined
to

(12 .i.li1) i+1"" "n

here x indicates the negation of xi.

Example 8: a b c de de (a b c 1) d e ( + b +
c) d e, the two product tes e directly combinable.

4.2. Checking if Two Terms are Combinable

In the following the criteria for combining product terms
are discussed. The method is based on calculating the
distance, the difference and other properties of the two
terms. Let us observe that in case of ESOP minimization,
two product terms can be combined only if their differ-
ence -< 1. However, in case of restricted factorization
there are more opportunities to create complex terms,
since two product terms of any difference may be
combinable, however in different ways for various values
of the difference.

Example 9: Given are two product terms a b e and a b
d e. The difference of these two terms is 3. So, these

two terms can not be combined into a product term. They

0 0

(a) (b)

0 0

0 0

(c) (d)

FIGURE 11 The method of calculating the exorlink of product terms abe and ab’cde.



TWO DIMENSIONAL LOGIC ARRAYS 325

can, however, be combined into complex terms as
follows: a e q) a b c d e a b e + a c d e a (b +
c d) e (g d + b) a e.

For convenience, two given product terms in the forms

T ::.....,, and T2 :2...,, are assumed. Without
loss of generality, it is assumed that the pairs of literals
which have different values appear at the left side in the
terms. In other words, if the difference of the terms is 1,
then : is different in the two product terms. If the
difference of the terms is 2, then and :2 are different in
the two product terms.

4.2.1. Difference (T1, T2) <- 1

4.2.1.1. Difference (T1, T2) 0

Difference O means these two terms are identical. In
case of an ESOP, since A )A 0, these two product
terms can be removed. In case of a SOP, since A + A
A, one of the terms can be removed.

4.2.1.2. Difference (T1, T2)= 1

combinable or if they can become directly combinable
by reshaping them.

Theorem 2: If difference (T, T2) --< 2, terms T and T2 are
combinable.

Proof: See in the Appendix.
Other cases of combinability of product terms for

various values of difference and distance are discussed in
the Appendix. The given combinability criteria are used
in the algorithm to generate complex terms.

During the transformation from product terms to
complex terms, some SOPs may be created from initial
ESOPs, and vice versa. The SOP transformations similar
to the above ESOP transformations have been formu-
lated. They are not discussed here because of the lack of
space.

5. THE ALGORITHM TO GENERATE
COMPLEX TERMS

(1)

(2)

If distance (T1, T2) 0, then "1 only in one term.
Since 1 a a, these two product terms are
directly combinable.

If distance (T, T2) 1, then appears in both
terms, but in different polarities. Since a q)a 1,
these two product terms are also directly combin-
able.

Theorem 1" If the difference of two product terms is
greater than 1, then these two product terms are directly
combinable if and only if their distance is 0 and from all
the literals that do not appear concurrently in both terms
only one literal can appear in a term.

Proof: See in the Appendix.
If two product terms are not directly combinable, after

reshaping, they may or may not be combinable.

Example 10: a c q) a b c are not directly combinable. By
reshaping these two terms to c a b c, they become
combinable, since c q)a b c (1 q)a b) c (a + b) c.

Example 11: a b q)a c are not combinable. Since the
difference of these two terms is 3, performing exorlink
operation on these two terms will generate three resultant
product terms. These three resultant terms can not be
combined to a complex term. Further exorlink operations
can be applied to any two of the three resultant terms so
that they are reshaped to other product terms. By trying
all the possibilities one can prove that these product
terms can not be combined to one complex term no
matter how to reshape them.
Definition 5: Two product terms are referred as com-
binable either when these two product terms are directly

Based on the above discussion, the algorithm to create
complex terms from product terms has been created, the
pseudo-code of which is given in Figure 12.

Input: A minimized ESOPs with pt product terms.

(1) /* record the initial result as the best result */

best_result initial result

(2) /* Search all the candidate complex terms, use
rules for combinebility of product terms, record
their desired orders */

For each pair ofproduct terms Tj and Tk {
if the terms of the pair are combinable {

record the desired order of this pair.
} endif

} endfor
(3) /* Combine the desired orders which do not

conflict with each other, count the number of
product terms which correspond to these desired
orders. */

For each pair of desired orders {
if the two desired orders are the same {

combine them to one desired order,
record the number of product terms
corresponding to this desired order. }

else if there are no conflicts between the
two desired orders {

combine them to one desired order
which satisfies both the desired orders,
record the number of product terms
corresponding to this desired order.
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} endif
} endfor

(4) /* select the desired order which satisfies the
maximum number of product terms */
best order the first desired order in the list.

For each desired order {
if (the number of product terms
corresponding to this desired order

>the number of product terms corre-
sponding to the best desired order) {

assign this order as the value of the best
desired order.
} endif

} endfor
(5) /* generate complex terms */

For each candidate complex term {
according to the best order,
convert when possible the candidate
complex terms to the complex terms

) endfor
number_of_loops 0

(6) /* record the current result which contains all the
complex terms generated plus the remaining
product terms. Next reshape the remaining
product terms and repeat the above procedure. If
a better result is obtained, take it as the
best_result. */

iterate until number_of_loops > pt

current_result complex terms plus
remaining product terms
reshape current_result
if the current_result is better than the
best_result { number_of_loops 0 }
else { number_of_loops number_
of_loops + 1 }
best_result current_result

(7) /* reshape the remaining product terms */

For each pair ofproduct terms in best_result {
if the difference of the two terms <- 3 {

perform exorlink operation on them,
perform steps (2), (5) and (6).

} endif
} endfor

(8) output the results and stop the program

FIGURE 12 Pseudo-code of the algorithm to generate complex terms

6. A DETAILED EXAMPLE

In this section, an MCNC benchmark function SQUAR5
will be used as an example to show how the product
terms are factorized to complex terms. SQUAR5 has 5
input variables and 8 output variables. By first using
EXORCISM-MV-2 [28] the original function is reduced
to 19 product terms as shown in Table I.
On the left of the table each row corresponds to a

product term, each "1" indicates a variable, each "0"
indicates a negated variable, and each "--" indicates a
missing variable. On the right of the table, each column
presents an output function, a "1" indicates that the
corresponding row is connected to this function. For
instance, in column fl, two l’s indicate that two rows,
10111 and 11---, are connected to fl, which means

f =abcdeab

To find an optimum order of input variables, at first, each
pair of product terms is checked for combinability. If
they are combinable, the desired order is recorded. For
instance, the first row and the fourth row are a pair of
candidates, since a c and a b d can be factorized as
(b d c)a. The desired order.is (b d c a). Creating
desired orders is repeated until all the pairs of product
terms are checked. All the desired orders are recorded.
According to the algorithm from Fig. 12, the best order
selected is: (db c a e).

Based on this order, the complex terms are generated
(Table II).

For instance, row 1, a c and row 4, a b d can be
factorized as t2 (d b c)a. Let us observe that the
complex terms t3, t4, and t5 are reverse Maitra terms,
and all other complex terms generated are forward
Maitra terms. There are no bidirectional terms in this
example.

In this example, 19 product terms are factorized to 15
complex terms, 15. The intermediate result at this
point has 15 rows and 13 columns. Five columns are
needed for inputs and eight columns for outputs.

7. OUTPUT COLUMN FOLDING

In this section we present a new algorithm for the
multiple column folding problem. This problem is simi-
lar to the gate matrix optimization problem, but with
additional minimization objectives. Our input is a list of
terms and associated output functions, called nets. The
netlist obtained from the logic synthesis stage is already
organized as a two-dimensional rectangular array, which
preserves local connectivity.
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# a b c d

TABLE
SQUAR5 Benchmark Function

e fl A f3 f4 A f6 f7 A

2
3
4
5 0 0
6
7 0
8
9 0
10
11 0
12
13
14
15 0
16 0 0
17
18 0
19 0

0
0 0 0 0

0 0 0
0 0
0 0 0
0 0 0
0 0 0
0 0 0

0 0
0 0 0 0

0 0 0
0 0
0 0 0
0 0 0
0 0

0 0 0 0
0 0 0

0 0 0 0

0 0 0 0 0
0 0 0 0

0 0 0
0 0 0 0 0

0 0 0 0

0 0 0
0 0 0

0 0 0 0
0 0 0 0

0 0 0 0 0
0 0 0 0
0 0 0

0 0 0 0 0
0 0 0

0 0 0 0
0 0 0 0 0
0 0 0
0 0 0 0
0 0 0 0

Each term is mapped into one row of a CMLA. Then,
each term is connected to one or more output columns.
The main difference between our problem formulation
and traditional Gate Matrix (GM) problem formulation
is, that in addition to minimizing the number of columns
used for function realization we minimize also the
number of logic cells used for routing. We call this
problem the GM-RCM (Gate Matrix with Routing Cell

Minimization). Minimization of the number of columns
reduces the area occupied, and minimizing the number of
routing cells reduces the circuit delay.

7.1 Previous Work

Various methods have been published in the literature
dealing with the GM layout problem. An exact

# Row Complex Term

TABLE II
The Results of the Method

A f4 A f6 A f8

tl 1(316

t2 (34

t3 2 (3 6 (37

t4 11(312

t5 7(3 18

t6 8(3 14
t7 3(3 12
t8 3(36(3 17
t9 9

tl0 10
tll 13
t12 14

!13 15

t14 19

t15 17

a c (3 a b " b + c a

a c (3a b d (d b (3c) a

a b d (3 d (3 b ". d a (3 c + d
b - (3 b e (e + -)b
b ". d (3 b c d c (3 b d
a e (3 b c e b c (3 a) e

ce (3 b e (b (3c) e

c e(3d(3d=(d(3c) e

dbcae

ba
bc
bce

dbcae

dc
d

0

0 0
0 0
0 0
0 0

0 0
0 0
0 0

0
0 0
0 0
0 0

0 0

0 0

0 0 0 0 0 0

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

0 0 0 0 0

0 0 0 0 0 0
0 0 0 0 0

0 0 0 0 0
0 0 0 0 0

0 0 0 0 0

0 0 0 0 0
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algorithm, for this NP-hard [29] problem, which uses
dynamic programming is presented in [9]. Both, the
space and time complexity of this method are
exponential (space: O (m 2m), time: O (m2 2m), where m
is the number of gates. Therefore, a number of heuristic
methods have been invented. In a paper written by
Ohtsuki, et al [20], a graph-theoretical approach based
on interval graphs is used. The literature published later
generally uses the same problem formulation, however,
solves the problem in two different ways. Ohtsuki, et al.
[20] have solved this problem by generating an initial
solution and than improving this solution iteratively.
Wing et al. [29] generate many interval graphs
heuristically, and than select the best one. Huang, et al
[11] followed the same direction but in addition they
considered also a layout aspect ratio. Greedy approach
of assigning gates to rows one at a time was first
suggested by Deo, et al. in [9]. Later, Huang, et al. [12]
gave an algorithm that first selects nets and than selects
and assigns gates according to the previously selected
nets. In the paper written by Hu, et al. [10] this method
is combined with ideas from Artificial Intelligence. The
concept of most constraint (MC) and least impact (LI)
are used as criteria to select nets and gates. Although
various methods have been published, no method can
quickly generate high quality results.
We present the algorithm which solves the column

folding problem assuming the number of terms is fixed.
This is analogous to the GM problem in which the
number of gates is fixed. To minimize the area (a number
of columns used), we try to find an optimum assignment
of terms to rows of the CMLA, such that the number of
overlapping nets is minimized. The different nets can be
put in the same column, if they do not overlap. In
addition, to decrease circuit delay, we minimize a num-
ber of logic cells used for routing, the GM-RCM prob-
lem. We choose to solve this problem by solving two
subproblems separately. First we find an optimal order-
ing of terms that minimizes the number of cells used for
routing. Next, we find an assignment of nets to columns
such that no nets overlap and the number of columns is
minimized.

7.2. Definitions

Definition 6: A multi-net term is a term connected to
more than one net.

Definition 7: A single-net term is a term connected to
only one net.

Definition 8: A top cell is a logic cell which is in the
highest vertical position among the logic cells in the
same net.

Definition 9: A bottom cell is a logic cell which is in the

lowest vertical position among the logic cells in the same
net.

Definition 10: A used cell is either a logic cell or a
routing cell.
Definition 11: The max-net-number is the largest num-
ber of nets a term is connected to.
Such terms are referred to as max-net-terms.

Definition 12: A row-length is a number of used cells in
a row.

Definition 13: A max-row-length is the row-length of
the row with the largest number of cells.

Definition 14: A column-length is a number of cells
between the top cell and. the bottom cell.

Definition 15: A max-column-length is the largest col-
umn-length.
Definition 16: A cost function is a sum of column-
lengths of all columns used for function implementation.
In other words, the cost function is a number of cells
(logic cells and routing cells) used for mapping.

7.3. Our Approach

The key idea of our algorithm for column folding is to
use a global but simple approach. In previous work
[11,12,29], max-net-number was used as a guide for
heuristic moves. However, this number gives only a
lower bound on the solution, but no information on how
and if the lower bound can be achieved. Moreover, if
there is a loop in the input file, and at least one term that
belongs to that loop is a max-net-term, the lower bound
solution is impossible. The problem of finding these
loops is also quite complicated. In addition, finding all
these loops can only help to estimate the lower bound,
but cannot help to find the minimum solution. When the
rows are permuted, the column-length of each row, as
well as the max-column-length change. Therefore, in our
method the max-net-number is used as a lower bound,
but we use column-lengths, and especially the max-
column-length as the guide for the heuristic moves.
Two important ideas are introduced in this work. The

first one, which allows us to achieve very good results
without exhaustive row permutations is presented in step
three and the second one, which finds an optimum net
assignment very efficiently is presented in step five of the
algorithm description. The main steps of our algorithm
are presented below.

1. Separate the single-net terms from the multi-net
terms. Minimize the.multi-net terms first and add
the single-net tdrms later
It is not difficult to prove that the max-column
number should not be increased if the single-net
term is added to the fight place into a set of
minimized multi-net terms.
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2. Generate initial solution by assigning terms to
rows in the descendant order of the number of
nets.

3. Move the top rows down and the bottom rows up.
While every two rows can be permuted, some
permutations increase the cost function, some
decrease, and others have no effect. Our
experimental results show that moving the top
and bottom rows is an efficient way to find good
solution while avoiding permuting all the rows
exhaustively.

4. Add the single-net terms after the multi-net terms
are minimized.
If only multi-net terms are minimized, the cost
function represents the cost associated with
multi-net terms only. Therefore, adding the
single-net terms will increase the cost function.
We insert the single-net terms in each available
position, one term at a time, and then select a
solution with the minimum cost increase.

5. Minimize the number of columns by combining
the nonoverlapping nets.
Once all the single-net terms are added, a column
combination is performed. If the bottom cell of
column A is higher than the top cell of column B,
or the top cell of column A is lower than the
bottom cell of column B, then the columns A and
B can be combined. We use the number of cells
between the bottom cell at the highest position
and the top cell at the lowest position as the cost
indicator. If we combine the column with the
minimum cost indicator, then the total number of
columns is equal to the max-row-length.

d b c a e

MGU 13 The final CMLA for the example from section 6,

7.4. The Example Continued

At the beginning of the folding stage, the problem from
section 6 is represented by a "term-net" table as shown in
Table III.

This table shows the same example as Table II. Here
is the first complex term in Table II, which is (b + c) a.

TABLE III
The term-net table for SQUAR5 Function

Term Net Term Net
tl 2 t9 2 3
t2 3 tl0
t3 4 tll 3
t4 4 t12 4
t5 5 t13 4
t6 5 t14 6
t7 6 t15 8
t8 7

The net 2 in Table III shows the relation between the
complex terms and the output function f2: since terms tl
and t9 occur in net 2, f2 e t9.
From the term-net netlist presented in Table III the

output functions can be reconstructed. For example,
since terms tl and t9 are the only terms that belong to net
2,f2 tl q)t9.

The final FPGA implementation of the example func-
tion is shown in Fig. 13. In the figure, symbol indicates
an AND gate, symbol + indicates an OR gate, and
symbol indicates an EXOR gate. Inverters are as-
sumed available inside each cell.

8. RESULTS AND DISCUSSION

The results of the factorization method and the folding
method specific to Atmel 6000 architecture are presented
in [24], so here we will concentrate only on the general
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TABLE IV
The Results of MINCOL

benchmark #Tms In.S. Mn.S. #L.C #R.C

b12 28 9 5 40 16
cu 16 11 2 23
squar5 19 8 4 28 17
misex2 27 18 4 38 4

vg2 184 8 3 198 102
examl 21 18 4 43 14

output column folding algorithm presented in this paper.
MCNC benchmarks, in two-level PLA format, have been
used to test the MINCOL (Column Minimizer) program.
These benchmarks are first minimized using the EXOR
minimization program EXORCISM-MV-2 [28]. The re-
suits of the MINCOL are presented in Table IV.

In the above table, #Tms and In.S. indicate the number
of terms and the number of the function outputs in the

both ASIC design and (fine grain) FPGA realization. This
methodology has several important advantages. It
merges the stages of logic synthesis and physical design
into a single stage, making use of the regularity of
structure. The structure of the mapping solution is a
regular array, which is good for several existing tech-
nologies. Our approach takes also advantage of the fact
that two-input AND, OR or EXOR gates with subsets of
negated inputs can be mixed in rows and columns of the
array, creating thus the (complex) Maitra terms and the
collecting columns.
Our methodology is based on a hierarchy of models.

For instance here we created two design models: the
"generic array" model, and the CMLA model included in
it. The creation of physical design tools becomes signifi-
cantly easier for the CMLA model. Since it was observed
that industrial tools for fine-grain FPGAs waste about
70% of cells on empty cells and routing cells (for

input file, respectively. The number of the function combinational and FSM benchmarks), the proposed ap-

outputs is equal to the number of columns in the initial .proach gives very competitive results in terms of the

solution. The minimized solution (Mn.S.) indicates the area. It gives also especially good results on data path

number of columns in the final solution. The number of
logic cells and the number of routing cells in the final
solutions are also shown in the fourth and fifth columns,
respectively. For all examples the number of routing cells
is smaller than the number of terms and the number of
logic cells. On average, each term uses less than one cell
for routing. This demonstrates one of the advantages of
our approach for mapping to fine-grain FPGAs as com-
pared to the approach currently used in the industry. For
the last example, examl from 12], our final solution has
4 columns (4 tracks in gate matrix problem) and is the
known minimum solution. However, the number of cells
used for routing in our solution is 16 and is smaller than
19 cells used for routing in the best published result [12].
The decomposition of the problem into two subprob-

lems does not influence the quality of the overall
solution. The minimum solution to the first subproblem
defines the lower bound for the solution of the second
subproblem. And as it was mentioned previously, the
solution with a number of columns equal to the lower
bound of the second subproblem defined by the max-
row-length can always be found with our algorithm.
The MINCOL algorithm is written in C and imple-

mented on a SPARC workstation. The preliminary results
are very encouraging for solving output column folding
for the fine-grain FPGA mapping problem, GM-RCM, as
well as for the general Gate Matrix problem.

9. CONCLUSIONS AND CURRENT
RESEARCH

The main technical contribution of this paper is the
proposition of a comprehensive design methodology for

circuits.
The methodology proposed by us is totally new and

must be thus tested on many more practical examples,
together with the pre- and post-processing algorithms.
Currently the most severe limitation of the method is the
size of circuits that we can deal with. Especially, a fast
algorithm to generate all UXF forms must be created.
However, the method can be applied to parts of a circuit
which was first partitioned or decomposed using general
methods. It can be thus treated as a generator of large
custom macro-blocks. The area of research that needs
further investigation is also the comparison of the speed
of the synthesized and device-mapped circuits to the
solutions obtained by standard logic synthesis tools and
mapped to fine-grain FPGAs using respective commer-
cial mappers. Thanks to a recent generous donation of
tools by Atmel, this research becomes now possible to
US.

Although our method is particularly tuned to Atmel
and Motorola architectures, we believe that the results of
this paper can be also used to create new architectures
and high-performance methods for other fine-grain FP-
GAs. Such architectures would be located between
fine-grain FPGAs and CPLDs. For instance, the circuits
obtained as above for the constrained CMLA model can
be more efficiently realized in a restricted layout than in
the layout corresponding .directly to the generic model.
Another variant of our algorithm, which applies only
forward Maitra terms instead of the complex terms,
would use only left local input to a cell, making thus the
complex plane more compact. One can imagine also a
new device architecture composed of a complex plane
and an OR/EXOR plane (possible, with several such
pairs of planes placed on a chip and connected by routing
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channels as in CPLDs). Concluding, by imposing addi-
tional constraints on the algorithms one can easily tune
them to new restricted device architectures allowing for
more compact layouts.
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APPENDIX

Proof of Theorem 1

Necessity: If the distance of the two product terms is
not 0, then there exists at least one literal that appears in
both terms with different polarities. According to equa-
tion (4.1) from section 4.1, none of the literals can appear
in both terms with different polarities. So, the distance of
the two terms must be zero. If both product terms have
two or more literals which appear in only one term, these
two terms can be factorized to the form

By definition, this is not a Maitra term.

SujSciency: Since the order of variables is not fixed, it
can be arranged like this: If a literal appears in both
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terms, the corresponding variable is shifted to the right
side of the term. If a literal appears only in one term, the
corresponding variable is shifted to the left side of the
term. If a literal is missing in both terms, the positions of
their corresponding variables are arbitrary. After the
arrangement, the two product terms will be either in the
form of equation (4.1) or in the form of equation (4.2).o

Proof of Theorem 2
Difference (T1, T2) = 2

1. If distance (T1, T2) 0, there are two cases.
(a) appears in one term and "2 appears in

another term. In this case they are directly
combinable.

(b) .f and "’2 appear in one term and are missing
in another term. In this case, since a b
a + b these two product terms are also
directly combinable.

2. If distance (T, T2) 1, assume : appears in
both terms in different polarities and "2 appears
in T and is missing in T2. Performing exorlink
on T and T2, a b a can be reshaped to 1 a
b, which corresponds to case (b) of distance 0
above. So, these two terms can be reshaped, and
become directly combinable.

3. If distance (T, T2) 2, then 3 and 32 appear in
both T and T2 and in different polarities.
Performing exorlink on T and T2, a b a can
be reshaped to a b, which corresponds to case
(a) of distance 0 above. So, these two terms can
also be reshaped, and become directly
combinable.

Thus, from above discussed case of Difference (T1, T2)
2, and cases presented in section 4.2 it results that if
difference (T, T2) --< 2, these two terms are always
combinable.

Other cases of Difference and Distance used in the
algorithm from Fig. 12 are presented below.

Difference (T1, T2) =
Distance (T1, T2) 0

There are two cases: in the first case all three literals
J, :2, and J3 appear in one term and are missing in
another term. In the second case two literals appear in
one term and one literal appears in another term. For
instance"

1. Sincel )abc= a+ b+c, terms landabc
are combinable.

2. Two terms a b c are directly combinable.

Concluding, if difference (T, T2) 3, and distance (T,
T2) 0, terms T and T2 are directly combinable.

Distance (T1, Tz)= 1
Assume -3 appears in both terms in different polarities.

1. : and "2 appear in one term and are missing in
another term. Since these two terms are disjoint,
the operator can be changed to +, then a
consensus operation can be performed: a b c
=abc+ c=ab+ c. In this case, thesetwo
terms are combinable.

2. appears in one term and-2 appears in another
term. In this case, trying all the possibilities
shows that these two terms are not combinable.

Distance (T1, T2) -> 2
In this case, trying all the possibilities shows that these

two product term are not combinable.

Difference (T1, T2) > 3

(3) If distance (T, T2) 0, and the two terms can be
arranged to the form of equation (4.2), these two
terms ate combinable.

(4) If distance (T, T2) 1, and the two terms can be
arranged to the form of equation (4.1), these two
terms are combinable.
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