VLSI DESIGN

1996, Vol. 4, No. 4, pp. 293-307

Reprints available directly from the publisher
Photocopying permitted by license only

© 1996 OPA (Overseas Publishers Association) Amsterdam B.V.
Published in The Netherlands under license by

Gordon and Breach Science Publishers SA

Printed in Malaysia

A Sea-of-Gates Style FPGA Placement Algorithm

KALAPI ROY, BINGZHONG (DAVID) GUAN and CARL SECHEN

Department of Electrical Engineering, FT-10, University of Washington, Seattle, WA 98195

Field Programmable Gate Arrays (FPGAs) have a pre-defined chip boundary with fixed cell
locations and routing resources. Placement objectives for flexible architectures (e.g., the
standard cell design style) such as minimization of chip area do not reflect the primary
placement goals for FPGAs. For FPGAs, the layout tools must seek 100% routability within
the architectural constraints. Routability and congestion estimates must be made directly
based on the demand and availability of routing resources for detailed routing of the partic-
ular FPGA. We present a hierarchical placement approach consisting of two phases: a global
placement phase followed by a detailed placement phase. The global placement phase min-
imizes congestion estimates of the global routing regions and satisfies all constraints at a
coarser level. The detailed placer seeks to maximize the routability of the FPGA by consid-
ering factors which cause congestion at the detailed routing level and to precisely satisfy all
of the constraints. Despite having limited knowledge about the gate level architectural de-
tails, we have achieved a 90% reduction in the number of unrouted nets in comparison to an
industrial tool (the only other tool) developed specifically for this architecture.

Keywords: Field Programmable Gate Arrays, placement, routability

1. INTRODUCTION

With the advent of new Field Programmable Gate Ar-
rays (FPGAs), additional challenges and constraints
are imposed on placement and routing tools. Conven-
tional layout tools have been optimized for flexible ar-
chitectures such as standard cells or gate arrays. In a
row-based design, the cells are not restricted to fixed
cell locations and thus are free to be placed anywhere
in a row. The chip boundary of such designs is not
pre-defined before layout. The chip area is determined
after placement and routing is executed on the design.
The routing tools are free to expand or contract the
routing regions estimated by the placement tool if
needed. The placement tool thus is not required to es-
timate the exact amount of routing resources required

293

for a particular placement configuration. For perfor-
mance critical designs, the placement tools are re-
quired to satisfy the timing constraints.

The primary objective of these prior placement and
routing algorithms is to minimize chip area. These
tools are required to ensure 100% wirability and to
meet the timing requirements. Due to the computa-
tional complexity of accurately estimating chip area
at the placement stage, the wire length metric is con-
ventionally used [1] in the cost function for place-
ment algorithms. Two important goals of placement
algorithms are achieved by minimizing the total wire
length of semi-custom designs (like standard cells):

1. Minimization of chip area
2. Minimization of congestion in the routing regions.

294 K. ROY et al.

These goals do not reflect the primary goals of the
placement algorithms for FPGA technologies. FPGAs
have a pre-defined chip boundary with fixed cell lo-
cations and routing resources. Instead of minimizing
the chip area, the placement tool needs to assign the
logic blocks of the circuit to the given cell locations
such that the design is 100% routable. In this process
the tool is required to maximize the utilization of
logic within the architectural constraints of the
FPGA. Traditional objectives like meeting timing re-
quirements and minimizing congestion are as impor-
tant as for other technologies.

For FPGAs, if the number of routing segments re-
quired for a particular placement configuration of an
FPGA exceeds the number available, the placement is
invalid, however dense and compact it may be. The
routability of a net is not a direct function of its
length and the congestion of its routing region. The
routing architecture guides the routing pattern of a
net depending on the availability of resources in the
regions the net segments traverse.

Attempts at modifying the conventional placement
algorithms to meet the new constraints of FPGAs are
certainly possible and are used in the absence of new
tools. Initial placement using TimberWolfSC is itera-
tively improved to meet FPGA constraints in [2]. The
subject of routing channels in standard cell or gate-
array designs is well studied. Such knowledge can be
used to design tools for row-based FPGAs as in
[2]. FPGAs which are array-based (Xilinx) or based
on the sea-of-gates style (CLI) have practically no
similarities with row-based semi-custom designs.
Moreover, timing constraints are the only hard con-
straints handled by tools such as [1]. Additional con-
straints specific to FPGAs cannot be handled. These
tools produce good results given a minimum of con-
straints and thus are not suitable for the placement of
FPGA:s.

Several attempts have been made to combine logic
synthesis with placement and routing in order to gen-
erate more routable designs [3,4]. Routing directed
placement has been proposed [5] for the TRIPTYCH
FPGA. An integrated placement and routing approach
was proposed for the LABYRINTH FPGA [6]. Al-
though current FPGA design styles have some simi-

larities, they differ from one another in their logic
block design and routing architectures. Placement
and routing tools have to be specifically designed to
handle each architecture separately.

The focus of this paper is on the placement algo-
rithms which are aimed at a sea-of-gates style FPGA
architecture. Currently, an industrial tool (the only
such tool available) is being used for placement and
routing of this particular FPGA. This tool has direct
access to the gate level architectural details of the
logic circuit. We have developed our placement strat-
egy (SOGFP, Sea-Of-Gates FPGA Placement pro-
gram) which operates at the macro level of the netlist
and currently does not make use of the gate level
architectural details of each macro. The knowledge of
the basic routing architecture and the description of
the macros which consist of the basic logic cells are
used. The limitations of the basic routing architec-
ture, the fixed layout of the chip structure with its
I/Os, and the routing convention of the clock/reset
signals impose multiple constraints on the placement
tool. With a minimum of knowledge about the gate
level architectural details our approach has signifi-
cantly outperformed the existing industrial tool.

The paper is organized as follows. Section 2 de-
scribes the particular architecture this paper focuses
on and discusses the layout challenges posed to a
place-and-route tool. Section 3 describes our two-
phased placement approach. Finally, in section 4 we
test our program on several industrial circuits and
compare its results with those of the only commercial
placement tool developed for this architecture.

Depending on the complexity and the connectivity
of a logic block in an FPGA, the routing structure
must be designed so that it offers a maximum of flex-
ibility for its interconnections in order to achieve
high density placements. If the number of routing
segments required for a particular placement config-
uration of an FPGA exceeds the number available,
the placement is invalid, however dense and compact
it may be. The placement tools are no longer required
to pack cells as dense as possible without considering
the routing estimation for such a placement; the lim-
its of the routing architecture must be taken as the
foremost constraint.

PLACEMENT ALGORITHM 295

2. A SEA-OF-GATES STYLE FPGA
ARCHITECTURE

The FPGA architecture (Figure 1) we are addressing
consists of a symmetrical two-dimensional array of
blocks. Each block consists of a symmetrical (m X m)
array of identical cells, where m is typically equal to
8. The total logic capacity of this FPGA is about 5000
equivalent gates. A large variety of logic can be con-
figured in each cell either as a single cell macro or as
a larger macro which consists of a pre-routed group
of cells.

2.1. Routing Architecture

The routing resources consist of three types of con-
nections. First, a cell can be directly connected to its
neighboring cells by fixed wires in the North, South,
East and West directions. Second, there are buses (lo-
cal and express, in Figure 2) which traverse the span
of a block and are connected through repeaters for
long distance connections. Third, a programmable
logic cell can also be configured as a routing cell, for
example, as a through wire or a fanout junction (see
Cell C in Figure 2).

For direct connections to adjacent cells, there are
two sets of connections on all four sides of the cell.
One wire in each set is for an input connection to the
cell and the other is for an output from the cell. How-
ever, depending on the cell configuration, the choice

VOSIOlS 9 p m @ o B @

I
I»,@ 4 8 " Macros
a =
Cells 1
[Em==4 B
¢ N\
ap L o
Blocks e a
\ \ 8
[NmmE
oo oo
FIGURE 1 A simplified schematic of the FPGA architecture,

where m = 4.

Edge of a block

\4_ RSNy

Repeaters —
—

N

P
<

[RpE § .

FIGURE 2 The routing architecture of our problem.

of these direct connections could be limited. The in-
puts and the outputs of a particular logic block con-
figured in a macro can be configured in only a limited
number of ways, thus limiting the usage of all possi-
ble paths in or out of the cell.

A cell has four local buses running parallel to each
of its edges. On each side of the cell there is an exit
to the local bus (see Cell A in Figure 2). These local
buses are only a block long. But there are repeaters at
the terminals of these buses to connect them into a
longer routing segment if needed. Thus there are two
local buses per column and two local buses per row
of cells in each block. In addition there is a pair of
express buses in each column and row of cells run-
ning next to the local buses. These buses have no
direct access from the cells. Thus, express buses are
efficient and faster for longer net connections over the
entire core whereas the local bus connections are suit-
able for long net connections within a single block.
At the junction of two blocks there are repeaters
which can be used either to connect segments of only
local buses or only express buses together for a
longer route segment or to connect a local bus and an
express bus for a straight connection or a “U” con-
nection. These connections provide signal regenera-
tion and are thus unidirectional. Bidirectional connec-
tions can also be achieved by augmenting the re-
peater with appropriate logic.

296 K. ROY et al.

2.2. Clocks and Resets

The top edge of the array has the logic for the distri-
bution of the clock signals and the bottom edge of the
array has the logic for distribution of the reset sig-
nals. The layout tool must route the clock and reset
sources to the top and the bottom edge of the core,
respectively (Figure 3). Any single-cell macro or
cells of a larger macro which are placed in a column
that a clock source feeds can be clocked implicitly by
that clock signal. A similar situation is true for resets.
Each column can be fed by only one clock and one
reset. Depending on the number of clocks and resets
in the circuit, the placement of the cells is restricted
by the rules posed by the clock and reset arrange-
ments. Since clocks/resets fed to a column are avail-
able throughout the whole column, register intensive
circuits are easy to configure in this FPGA architec-
ture.

2.3. I/O Pins

There is a fixed I/O frame available to configure I/O
pads in this architecture. The slots for I/O’s are
equally distributed on all four sides of the core (Fig-
ure 1). Two adjacent columns/rows cater to one I/0O
slot, each column/row having routing resources asso-
ciated with an input buffer for the I/O and an output
buffer for the I/O, respectively.

xternal clock source
£
Derived clock ——-
source B I Clock A
— B3 Clock B
-

FIGURE 3 Examples of clock nets.

2.4. Limitations of the Routing Architecture

Every cell in this FPGA has pins: Al, BI, AO, BO,
and L (Figure 4). Pins Al, BI are input pins; AO, BO
are output pins; and pin L can be configured as either
input or output pin. If L is configured as an input pin,
a cell can be configured as a logic block with at most
3-inputs and 2-outputs. If L is configured as an output
pin, a configurable logic block can have at most
2-inputs and 3-outputs. The inputs and the outputs of
a particular logic cell can be configured only in a
limited number of ways, thus limiting the usage of all
possible paths in or out of the cell. Depending on the
configuration of a programmable logic cell, only a
subset of the input and output pins may be available
for routing.

Sense of direction: While routing the source of a
signal to its sinks, if a net segment is assigned to a
bus, the bus acquires a direction from the source to
the sink (Figure 5). Thus, given the positions of the
input pins of the sinks, routing resources are assigned
such that they satisfy this direction and that the
source successfully accesses the appropriate sink in-
put pins. There are at most four local buses available
to a cell. However, there may not be any bus avail-
able for the particular direction and side a pin re-
quires access. For such a case, the pin can be routed

AIBO BIAO

AOBI BOAI

FIGURE 4 Pin configurations of a cell.

PLACEMENT ALGORITHM 297

routing cells 3}
Input pin
source i i
Output pin f local bus Il'lpllt pin
‘ocal bus) Input pin

\
'

FIGURE 5 A route segment of a signal illustrating the sense of
direction.

to a nonadjacent bus if there is a path to it by means
of a routing cell (i.e. unused logic cell). These limi-
tations lead to the usage of a considerable amount of
logic cells configured as routing cells around the
macros as additional routing resources as shown in
Figure 5. Adjacent cells which have common signals
can be connected using the direct wires between the
cells. However, this is not possible if the correspond-
ing pins of such a signal are not available on the side
between the cells. Also, if the direction of the signal
to be routed conflicts on the direct connection, an
alternate path has to be found possibly using other
routing resources like a bus or an empty cell config-
ured as a routing cell.

Absence of switch boxes: Unlike the array style of
FPGAs, e.g. Xilinx [7], there are no switch boxes
available to connect tracks/buses. As analyzed in [8],
the flexibility of the switch box design has a great
impact on the routability of an FPGA. The switch box
provides the resources for a route to change direc-
tions from a vertical track/bus onto a horizontal track/
bus or vice versa. In the absence of switch boxes, any
change of direction in a route will have to made at the
cost of other available routing resources. In this sea-
of-gates style FPGA, a change of routing direction is
typically implemented using routing cells as shown in
Figure 5. As a result, utilization levels of this FPGA
fall far below typical utilization levels of leading ar-
chitectures like Xilinx.

Figure 6 shows the scheme to route the net which
comes out of pin A of cell C1, and goes into pin B of
cell C2. If there is no empty cell in between, we will
not be able to route the net as shown in the Figure 6a.
Only when there is a routing cell R1, which we con-
figure to take input from pin Al and send output to
pin BO, can we route the net from pin A of cell C1
and pin B of cell C2 (Figure 6b). Thus for certain
direct connections between neighboring cells, avail-
ability of routing cells aids the routability. These sit-
uations suggest that the placement program should
separate the macros as much as possible so that
routability of a placement is maximized.

3. TWO-PHASED HIERARCHICAL
PLACEMENT

The placement tool’s primary objective is to deter-
mine the best position for each macro and I/O pad
such that the routability of the placement is maxi-
mized within the following architectural and design
constraints:

a) bounded array structure of the chip, b) fixed rout-
ing resources, c) clock and reset constraints, d) fixed
pad frame and the routing convention of external I/O
signals, and e) signal path timing constraints.

The task of handling all of the above constraints
and maximizing routability cannot be handled by
conventional macro/standard cell placement tools.
With multiple FPGA constraints, the problem needs
to be solved by means of a divide-and-conquer strat-

AO Al

20 c1 BO |RI

Cl ol BI 2

BI

C2

@
(b)

FIGURE 6 The scheme to get from pin AO of C1 to pin BI of
cell C2.

298 K. ROY et al.

egy. The placement tool cannot lend itself to consid-
ering both global issues and the detailed issues simul-
taneously as is possible in the flexible standard cell
designs. In the coarse view of the problem, the place-
ment tool must consider global connectivity and con-
gestion estimates of the global routing regions irre-
spective of the detailed routing conventions. All con-
straints, including timing, can be viewed at a coarser
level. Using the global solution as a guideline, the
placement tool can next consider the local regions.
Congestion at the detailed view can be determined by
the demand and availability of routing resources in a
local routing region. Detailed placement of macros
must be achieved based on the local routing estimates
while precisely satisfying all constraints at a detailed
view. We thus use a hierarchical placement approach
consisting of two phases: a global placement (or par-
titioning) phase followed by a detailed placement
phase.

3.1. Phase 1: Global Placement

The objective of the global placement stage is to ob-
tain a placement of the macros and pads with respect
to global connectivity and congestion; and to satisfy
all constraints at the global level. The blocks are the
architectural boundaries of equal size sections of the
chip each accommodating an m X m array of cells.
The block boundaries provide a partitioning guideline
for the global placer. The macros in the circuit are
thus partitioned into the blocks during this stage. The
ratio of the number of pads to the number of macros
for these circuits is much larger than the correspond-
ing ratio for standard cell designs. Each peripheral
block caters to a set of pads and contains the only
routing resources these pads have access to. For these
reasons, the placement of the pads in this problem is
critical. Pad placement must be performed with re-
spect to direct I/O connectivity of the macros and
thus must be performed simultaneously while macros
are being partitioned. Long distance connections be-
tween blocks are made through long wires or buses in
this architecture. For such straightforward bus con-
nections, minimizing the total wire length effectively

minimizes congestion in addition to reducing the glo-
bal lengths of nets between blocks and I/Os. Thus,
the routability of the global connections due to the
chip I/O signals and the inter-block signals can be
maximized by simply minimizing total wire length
between blocks and pads. However, in the process of
minimizing wire length, the circuit should be distrib-
uted throughout the chip as uniformly as possible.
This is due to the following reasons:

1) The chip area is fixed and thus all of the chip core
is available for use.

2) Dense packing of macros causes congestion and
high demand for routing resources.

Thus the global placer must seek a partitioning in
which each block is assigned a number of macros
such that the total number of active cells in each
block is comparable. The partitioning algorithm
should also satisfy the timing constraints.

Recursive mincut bipartitioning strategies cannot
be deployed successfully for global placement since
issues such as total wire length and the length of
critical signal paths cannot be controlled. Recursive
mincut bipartitioning can only control the number of
pinouts required by a partitioned block and this is
inadequate. We have identified a need for an auto-
matic N-way partitioner which understands the notion
of distance between the various partitions. The parti-
tioner should be able to control the number of pinouts
on each partition and ensure that signal path lengths
do not exceed their bounds while the total wire length
is minimized.

3.1.1. Simulated Annealing based N-way
Partitioning

The global placement and partitioning is achieved by
a simulated-annealing-based algorithm. This algo-
rithm is a timing-driven n-way partitioner which un-
derstands the notion of distance between the various
partitions. It uses a simplified cost function which
consists of the total wire length and a penalty for
timing violations. The cost function does not consist
of any penalty function involving capacity of parti-

PLACEMENT ALGORITHM 299

tions analogous to overlap penalties in [1]. Instead,
during new state generation, the partitioner only
picks moves which are feasible. This allows the algo-
rithm to condense the search space of new states and
thus improves run time. The new state generation
function picks moves which involve both macros and
I/0O pads in order to accomplish pad placement at the
same time as macro partitioning. The annealing
schedule used is a statistically derived schedule pro-
posed by Lam [10] and extended by Swartz [9].

Each block is considered a partition and the block
edges are the cut lines for partitioning. During the
partitioning process, an FPGA macro will move from
block to block. Its location at any instant is taken to
be the center of the block to which it currently be-
longs. A large number of partitions make the calcula-
tions of the wire length more precise, especially with
respect to timing. However, with a large number of
partitions, the search space for macro moves is large.
This makes annealing more expensive in terms of
CPU time. An effective trade-off between the accu-
racy of wire length and CPU time was obtained by
setting the number of partitions equal to the number
of blocks in this case. For chips with a lower number
of blocks, the partitioner introduces additional cut
lines to further divide each block into multiple parti-
tions.

Cost Function C

The partitioner cost function C consists of two terms
as shown in (1). The first term is the total wire length,
represented by W. The second term is the timing pen-
alty function, represented by P,.

C=W+P, (1)

Total Wire Length W

Since the final wire length of each net cannot be de-
termined until the detailed placement and routing are
done, the wire length of each net is estimated in the
partitioning stage. The estimation uses the half perim-

eter of the minimum rectangle that encompasses the
net. The total wire length estimate for a particular
configuration of cells is the sum of three terms, W,,,.,
the total wire length of the non-clock and non-reset
nets (there are N, such nets), W,, the length of the
routable portion of the clock nets (there are N, such
nets), and W,, the length of the routable portion of the

reset nets (there are N, such nets).

W=W, +W, +W,)
Ny
Wy = 3 (S0 + S,(m).)

where S,(n) and S,(n) are the width and height of a
minimum rectangle, respectively.

The wire length of the clock and reset nets are
estimated slightly differently. The connection be-
tween the sinks of those nets and the feeding cell in
the top or bottom edge of the core is implicit through
the corresponding columns as shown in Figure 3.
Hence, the y span from the source of the clock to the
top edge of the core is the only part of the y span
which should be included in the cost function. Simi-
larly, the y span of a reset signal is only that from the
source of the reset to the bottom edge of the core.

N,
W, = 2, (S(n) + (chip_top_y — source_y (n)))
n=1
4

N,

W, = > (S(n) + (source_y (n) — chip_bottom_y))
n=1

®)

In order to minimize the CPU time necessary to
update W for large nets, we use an incremental net-
span updating scheme. The incremental scheme de-
vised for the partitioner takes advantage of the grid-
ded nature of the block structure used and thus is
simpler and faster than previously reported methods
[9,1]. Since detailed placement is going to follow this
partitioning stage, the clusters of FPGA macros are
assigned to the center of the blocks and the pins of a
block are also taken to be at the center of the block.

300 K. ROY et al.

Unlike placement, where we need the exact location
of a pin for precise wire length calculations for each
net, the partitioner only needs to store the number of
pins for a net at each grid line. Thus, updating the pin
configuration of a net after a move is easy. The global
scale of the grid lines are stored in lookup table. The
x and y span of a net is calculated using the maximum
and minimum of the active grid lines (i.e. these grids
contain one or more pins) of the net.

Timing Penalty

The timing penalty in the cost function is calculated
based on the slacks generated in the critical paths of
the circuit during global placement. A critical path
may consist of several nets. The timing penalty is
minimized dynamically during placement. The total
delay on a path p is the sum of the delay generated in
the configurable logic blocks (CLB), T,(p), and the
total interconnect delay, Tx(p) [11].

Tpd(P) = Ty(p) + Tx(p) 6)

Tx(p) is the sum of all the constituent net routing
delays, Tx(n), due to the interconnections of the net.

Ty(p) = VE Tx(n) Q)

n€p

Logic Delay: The total logic delay of a path p is:

T, (p) = Np'Tcyps ®)

T¢;p is the intrinsic delay of the CLB. Np, is the
number of logic levels or depth of the particular crit-
ical path and is available from the logic synthesis
stage of the circuit.

Routing Delay: Tg(n) is a function of the routing
architecture of this FPGA, fanout of a connection,
length of a connection, the process technology, and
the programming technology. The two main compo-
nents of Tr(n) are delay due to the switches in the
interconnect path and the parasitics of the wire seg-
ment. The total switching delay including the parasit-

ics seen by the wire segments used by the net can be
modeled as a lumped RC:

Tg(n) = ReyCgy = ReyACy + C,))]

The drive resistance, Rgy, is the switching ON re-
sistance. Since exact values Rgy, are not easy to com-
pute before detailed placement, we use pre-computed
estimates of Rgy, for this particular FPGA. C,,, is the
switch loading capacitance which consists of the gate
input capacitance, C,, and the parasitic capacitance,
C,, of the wire segments used to form the intercon-
nection. C, depends on the process technology used
for the wiring segments and can be computed using
the lumped capacitance model and is proportional to
wire length. The wire length of a net can be estimated
at the partitioning stage using the half-perimeter
bounding box:

C,=Cy, 5, + Cy S,(n) (10)

C,, and C, are the capacitances (per unit length)
of the vertical and horizontal tracks or buses in the
routing architecture. Thus (9) can be expanded as:

The total path delay for p is:

Tpd(P) =Tp) + Vze (RSWCg + st[CL,, S,(n)
n€p

+ C, S,(m)). (12)

As reported in [9], the total timing penalty is com-
puted as the sum of the penalties over all critical
paths specified. For each critical timing path, the user
supplies an upper bound 7,,(p) and a lower bound
T,,(p) on the required arrival times. The penalty as-
signed for a path p is the amount the delay deviates
from satisfying the bounds.

PLACEMENT ALGORITHM 301

Tpd(p) - Tub(P) if
Ty(p) — T,/p) if
0 otherwise

Tpd(p) > Tub(p)
T,{p) < Ty(p)

13)

P(p) =

The total timing penalty is the sum of penalties
over all the critical paths specified.

NP
P, = 3 P(p) (14)
p=1

New State Selection Procedure

A key objective of the partitioner is to achieve
roughly comparable utilization in each of the parti-
tions. The utilization (U) in a partition as defined as
the number of cells used by macros in that partition
divided by the total number of cells in that partition.
The a priori target or baseline utilization (Ug) for
each partition is defined as the total number of cells
used by macros throughout the chip divided by the
number of cells on the chip. To obtain uniform utili-
zation, a proposed move is only tested through the
annealing criterion if it satisfies the wutilization_test.
Basically, a proposed move is evaluated only if the
new utilization (U,,,,) does not exceed the baseline
value (Up) or if the new utilization is closer to the
baseline than the current utilization.

A move passes the utilization_test according to the
pseudo-code shown in Figure 7. Here, U is the utili-
zation of the partition before a move and U,,,,, is the
new utilization of the partition if the proposed move
is accepted. The partitioner uses two main types of
moves: a single object move or a pairwise inter-
change of two objects. For new state generation, we
randomly select an object. If the object is a macro, a

utilization_test (move)
if Un¢w5 Uy, PASS

else
if U, —Up| <|U-Ug Pass
else FAIL

FIGURE 7 Function for balancing utilization.

single macro move from one partition to another is
attempted first. If such a move does not pass the uti-
lization test, a pairwise interchange of two macros is
attempted. If the object is a pad, a single pad move/
pairwise interchange of two pads is attempted to an-
other I/O slot depending on whether the second slot is
empty or occupied, respectively.

3.2. Phase 2: Detailed Placement

The global placer assigns a group of macros to a
block. The objective of the detailed placement stage
is to obtain an exact placement of the macros follow-
ing the topological directions from the global place-
ment results. The detailed placer must maximize the
routability of the FPGA by considering factors which
cause congestion at the detailed routing level. While
maximizing routability, the detailed placer must pre-
cisely satisfy all of the constraints in order to gener-
ate a feasible placement.

In order to maximize routability for the placement,
the amount of routing resources required for the
placement must be minimized. Congestion in a local
routing region can be determined by the demand and
availability of routing resources for detailed routing.
Since the total wire length model breaks down for
estimating demands for routing resources at this
level, the placer needs to pursue the factors which
strongly affect routability for the given routing archi-
tecture. We studied the characteristics of the routing
architecture and found that routability is strongly af-
fected by factors such as: typical amounts of routing
resources required for a macro configured in this ar-
chitecture, the routing conventions typically used for
various net topologies, flexibility of the macros in
terms of their multiple versions or configurations.
Without access to the gate level architectural details
and direct knowledge of routing congestion from a
detailed router, accurate estimation and prediction of
exact routing demands is nontrivial at the placement
level. However, we found that because there are lim-
ited routing resources (e.g., buses) available for every
cell to use in this architecture, increasing the number
of potential routing cells around a macro and mini-

302 K. ROY et al.

mizing the utilization of routing buses are both im-
portant to maximize routability of the placement.
Dense packing of macros causes congestion and high
demand for routing resources. The chip area is fixed
and all of the chip core is available for use. The mac-
ros must thus be placed such that they have suitable
routing area available around them.

The detailed placer must also precisely satisfy all of
the constraints in order to generate a feasible place-
ment. The initial state of the detailed placement prob-
lem, obtained from the practitioner in the first phase,
contains instances of macro overlapping. Overlapping
must be removed. Timing violations and clock/reset
conflicts must be eliminated. Our detailed placement
algorithm is based on the following objectives:

1) eliminating overlapping;

2) eliminating clock/reset conflicts;

3) eliminating timing violations;

4) increasing the space between macros;
5) reducing the number of buses used.

Probe Distance

In order to measure the spacing between macros, we
have introduced the concept of a probe distance (PD)
from a macro. The probe distance from a cell of a
macro in a given direction is the number of steps
(cells) that the macro can move without hitting an-
other macro or the boundary of the chip. In case an-
other macro overlaps this macro, the probe distance
will be a negative number with a magnitude equal to
the number of steps needed to move the macro in the
opposite direction to eliminate the overlap of the two
macros. For example, in Figure 8, the probe distances
from cell A towards the north, south, east, and west
directions are 2, 3, 2, and 0, respectively. Since mac-
ros B and C overlap, the probe distance from cell C
towards the north, east, and west directions are —1,
—2, and —1, respectively.

Minimum Probe Distance

We then define the minimum probe distance towards
a direction (say east) for a macro to be the smallest of

%

7
N\

@]

2,
v

NE{D | M
QR

FIGURE 8 Examples of probe distance calculation.

the probe distances from all the cells on the east
boundary. The minimum probe distances in the north-
east, southeast, southwest, and northwest directions
are defined in a similar manner. In this case the
probes are made from the corresponding corner cells.
For example, the minimum northeast (NE) probe dis-
tance from macro E is just the NE probe distance of
cell D, or 1. The minimum probe distance (MPD) for
the macro as a whole is defined as the smallest min-
imum probe distance among those in all eight direc-
tions. The MPD gives a measure of how close a
macro is to the other macros. If the initial state of a
placement problem contains instances of macro over-
lapping, the overlap of a macro can be reduced by
increasing MPD.

Maximizing Routability

Given a particular macro, the more unused cells
around its periphery, the more likely it is that suffi-
cient routing resources exist for connections to all of
the pins on the periphery of the macro. Furthermore,
given a particular pin on a cell on the periphery of a
macro, the larger the probe distance, the more likely
it is that the routing to this pin can be successfully
completed. A periphery cell which has a shorter probe
distance is much more difficult to route to than a pe-
riphery cell which has a longer probe distance. To
reflect this observation, we therefore developed the
following inverse routability measure for a macro m.

PLACEMENT ALGORITHM 303

1
InverseRoutability = IR (m) = Y, —————
ne [PD(nc) + €]

1
; [PD(c) + & + 0.5

15)

where the non-corner periphery cells of a macro m
are represented by nc, and the corner periphery cells
are represented by c. Note that when the expression
in (15) is minimized, then the macro is positioned
such that its 1//* repulsion forces to all of its neigh-
boring macros is minimized. Our experiments have
shown that 1//* repulsion forces are more effective
than 1/r for this detailed placement problem.

The corner cells are treated differently for the fol-
lowing reason. The probe distance is zero for two
cells adjacent at a corner as well as for two cells
adjacent at a side, but the former is somewhat more
routable, although not as much as two cells with a
probe distance of one. Hence the extra factor of 0.5 is
added to the probe distance for the corner cells. Since
probe distances can be zero for non-overlapping mac-
ros, we add € to the probe distance to assure numer-
ical stability. Currently we use € = 0.5. Figure 9.1
shows the probe distances for macro m. We compute
its inverse routability measure as:

Rom=2+tp 22,3 1

152 22 252 32 35°

%
7
/

3
N2

N\
v,

NN

FIGURE 9.1

All of the probe distances for macro m.

Figure 9.2a illustrates the probe distances for macro
m after it has been moved one step in the SE direc-
tion. Now,

R =2+ +L 2 2 1_yss6

2 2 A2 2 2 g2
1 15 27 35 45 5 17

Note that this arrangement is much less routable as
indicated by the sharp increase in the inverse
routability measure. Finally, Figure 9.2b shows the
probe distances for macro m after it has been moved
one step in the NW direction.

1 17 2 1 1 1
IRm)=—+—=+—+=+—+—+—
152 22 257 3% 357 47 45°
=2.230 (18)

Clearly this arrangement is more routable, and this is
reflected in a reduction of IR as well.

Bus Utilization

The buses traverse a length of a block in both hori-
zontal and vertical directions. However, once a sec-
tion of a bus in a block is used for a signal, the entire
bus is dedicated to that signal and is not available for
use by any other signal. Pins in the same column and
same row can be connected using the same bus
within the bounds of a block (Figure 10). The mini-
mum number of buses required for a net traversing
more than one block is equal to the number of blocks
covered by this net in each direction. This number is
given by the number of inter-block grid lines crossed
by the net. Hence, we have formulated a measure for
bus utilization by summing up the active grid lines
(i.e. these grids contain one or more pins) of the net.
To obtain the total bus utilization (BU), we sum the
measure for all nets on all the macros.

Clock/Reset Conflicts

We use NumClk [i] to denote the number of different
clock signals present in column i, and NumSig [i] [j]

NN 22\1\\\\\\\
313 2 4
N 2/—2 N
" NEZZLN v N0
4 \ 2112 13 \
/ N N

4
N

NN

FIGURE 9.2 a) Probe distances for macro m after a one-step move in the SE direction. b) Probe distances for macro

m after a one-step move in the NW direction.

to denote the number of pins which are located in
column i and belong to clock net j. Since the archi-
tecture only allows one clock signal in every column,
we define the number of clock conflicts as:

1

ClockConflicts =) ((NumClIk[i]— 1)

X (E NumSig [i] [[/] — MaxNumSig [i]))
j

19)
where,
ENumSig [1[j/] = total number of clock pins in
/ column i,
E
busl bus4
|
blocks I
\ busZL bus3 "':J?"‘A‘L‘
1 “& \
D N el S
buss—p{ 3 1 -:
. E&_.,__,B_

bus/6

FIGURE 10 Inter-block and intra-block bus utilization.

MaxNumSig [i] = maximum number of clock pins
for any clock net in column i,
and the leftmost summation in
(19) is over all columns having

NumClik [i] > 1.

Therefore, when there is only one clock signal in a
column, we do not have conflicts in that column.
When there is more than one clock signal present in
the column, the net which has the most pins in the
column is called the dominating clock net. All other
nets are called non-dominating clock nets. The num-
ber of conflicts is equal to the number of pins of all
non-dominating nets weighted by the number of
clocks in this column (Equation (19)). Adding a dom-
inating clock net pin to a column will not change the
conflicts, but adding a non-dominating clock pin will
cause the conflicts to increase, while adding another
non-dominating clock net will increase the conflicts
the most. A similar definition is used for reset con-
flicts. The sum of both clock and reset conflicts is
denoted by CRC.

Detailed Placement Algorithm

The detailed placement algorithm is shown in Figure
11. The main idea is to randomly select a macro and
move it one step (cell) in one randomly selected di-
rection out of the eight possible directions. A move is
accepted or rejected according to the accept function.

PLACEMENT ALGORITHM 305

Detailed Placement Algorithm
1) Randomly select a macro, m;

2) Probe from m to get its MPD;

Calculate IR(m);
Calculate CRC;

this move;

threshold.

If MPD(m) 2 O(no overlap with others),

Estimate routing resources (BU) used by the nets of m;
Compute the new timing penalty, P.;

3) Randomly choose one of the eight directions;

4) Move m one step in the selected direction;

5) Do step 2 for the new location of m;

6) Using the Accept function, determine whether to accept or reject

7) Continue until the number of continuously rejected moves exceeds a

Accept function

one of the following is true:

If MPD(m) < 0 (there is overlap), accept only when overlap is reduced or
eliminated (i.e., MPD is increased);

If MPD(m) 2 0 (there is no overlap), accept when P, is not increased AND

1) IR(m) measure is reduced and CRC is not increased;
2) CRC is reduced and MPD(m) is not decreased;

3) BU is reduced and CRC is not increased.

FIGURE 11 Detailed placement algorithm.

The process continues until the number of continu-
ously rejected moves exceeds a given threshold.

4. RESULTS

Table I contains a profile of the test circuits that we
have obtained from an industrial source for this
FPGA architecture. Most of these circuits have a

Table I FPGA circuit profile

Circuit #Macros #Nets #Pins #Clk/#Rst #IO’s Avg. Fanout

pl 250 317 1060 0/0 60 3.34
p2 277 307 960 0/0 60 3.13
p3 439 385 1021 171 80 2.65
p4 359 459 1310 212 55 2.85
pS 329 316 1083 3/1 93 3.43
p6 212 275 819 1/1 69 2.98
p7 305 346 1047 212 60 3.03
p8 305 346 1047 272 60 3.03
p9 268 290 965 2/5 60 3.33
p10 314 345 1166 212 60 3.38
pll 314 345 1166 212 60 3.38
pl2 314 345 1166 212 60 3.38

combination of clocks and resets. Each circuit was
placed using our placement approach, SOGFP, as
well as the industrial placement tool from CLI. Each
placement, whether obtained from CLI or SOGFP,
was routed using the CLI router. In order to compare
the quality of the placement tools, Table II shows the
number of unrouted nets which remained after rout-
ing. In all cases, SOGFP outperforms the industrial

Table I Number of unrouted nets after using the same routing
tool

Circuit CLI SOGFP Reduction(%)
pl 3 0 100
p2 1 0 100
p3 1 0 100
p4 4 0 100
pS 0 0 —
p6 19 4 79
p7 23 4 91.3
p8 17 0 100
p9 10 0 100
pl0 15 3 80
pll 18 4 77.8
pl2 26 8 69.0

Average 90.6

306 K. ROY et al.

tool. On average, SOGFP reduced the number of un-
routes by 90%. Five circuits unroutable after CLI
placement were 100% routable after using the place-
ment obtained from SOGFP. Figure 12 shows an in-
dustrial FPGA circuit (p10) placed using SOGFP. The
CPU time required for the largest circuit was about
30 minutes on a SUN SPARC 2.

Circuits with 10 or fewer unrouted nets can usually
be fully routed by manual interaction. An improved
router would likely be able to achieve 100% routabil-
ity for those circuits. This is the subject of current
research.

5. CONCLUSION

A new hierarchical placement approach has been de-
veloped for a sea-of-gates style FPGA architecture. In
this two-phased approach, the circuit is physically
partitioned into groups of FPGA macros over the
available chip area and the pads are placed in the
global placement phase. The global placement phase
minimizes congestion estimates of the global routing
regions and satisfies all constraints at a coarser level.
Following the topological directions from the global

1T

SE.

1333133
podod
. 4

=
s

Eaites
s fEE i

31

FIGURE 12 Placement of an industrial FPGA circuit (p10).

placement phase, a detailed placement phase is exe-
cuted to determine the exact location of each macro.
The detailed placer maximizes the routability of the
FPGA by considering factors which cause congestion
at the detailed routing level and precisely satisfies all
of the constraints. Despite having limited knowledge
about the gate level architectural details, we have
achieved a 90% improvement over the results pro-
duced by an industrial tool (the only tool available)
developed specifically for this architecture.

Acknowledgments

This research was funded by the Semiconductor Re-
search Corporation, Intel Corporation, Digital Equip-
ment Corporation, National Semiconductor Corpora-
tion, and Cadence Design Systems. The authors
would like to thank NSC for providing the circuits.

References

[1] C. Sechen and K. W. Lee, “An improved simulated anneal-
ing algorithm for row-based placement,” in Proc. IEEE Intl.
Conf. on Computer-Aided Design, 1987, pp. 478-481.

[2] S. Nag and K. Roy, “Iterative wirability and performance
improvement for FPGAs,” in Proc. 30th Design Automation
Conf., 1993, pp. 321-325.

[3] S. Trimberger and M. R. Chene, “Placement-based parti-
tioning for lookup-table-based FPGAs,” FPGA 92, First In-
ternational ACM/SIGDA Workshop on Field Programmable
Gate Arrays, 1992, pp. 136-142.

[4] N. Bhat and D. Hill, “Routable technology mapping for FP-
GAs,” FPGA 92, First International ACM/SIGDA Workshop
on Field Programmable Gate Arrays, 1992, pp. 143-148.

[5] E. Walkup et al., “Routing-directed placement for Triptych
FPGA,” FPGA 92, First International ACM/SIGDA Work-
shop on Field Programmable Gate Arrays, 1992, pp. 33-38.

[6] J. F. Beetem, “Simultaneous placement and routing of the
LABYRINTH reconfigurable logic array,” in W. Moore and
W. Luk, Editors, FPGAs, pp. 232-243, Abingdon EE&CS
Books, Abingdon, England, 1991.

[7] S. Brown, R. J. Fancis, J. Rose, and Z. G. Vranesic, Field-
Programmable Gate Arrays, Kluwer Academic Publishers,
1992.

[8] B. Tseng, J. Rose, and S. Brown, “Using architectural and
CAD interactions to improve FPGA routing architectures,”
FPGA 92, First International ACM/SIGDA Workshop on
Field Programmable Gate Arrays, 1992, pp. 3-8.

[91 W. Swartz and C. Sechen, “New algorithms for the place-
ment and routing of macro cells,” in Proc. IEEE Int. Conf.
Computer-Aided Design, 1990, pp. 336-339.

PLACEMENT ALGORITHM 307

[10] J. Lam and J. M. Delosme, “Performance of a new anneal-
ing schedule,” in Proc. 25th Design Automation Conf.,
1988, pp. 306-311.

[11] J. M. Vuillamy et al., “Performance evaluation and enhance-
ment of FPGAs,” in W. Moore and W. Luk, Editors, FPGAs,
pp. 137-146, Abingdon EE&CS Books, Abingdon, England,
1991.

Authors’ Biographies

Kalapi Roy received the B.Tech degree in electrical
engineering from the Indian Institute of Technology,
Kharagpur, and M.S. and M.Phil degrees from Temple
University and Yale University. She received her
Ph.D degree from University of Washington in June
1994 and is currently working in the Physical Design
Group at Cascade Design Automation. She has devel-
oped and supported several tools in the TimberWolf
automatic placement and routing tools since Septem-
ber 1989. She spent the summers of 1990-1992 with
the corporate CAD group at National Semiconductor
Corporation, Santa Clara. Her research interests are
in performance driven multi-way partitioning of in-
tegrated circuits, design of FPGAs and multiple
FPGA systems.

Bingzhong David Guan received BS degree from
the University of Science and Technology of China,

Heifei, China, in 1989, MA degree from the Univer-
sity of Southern California in 1990 and MSEE degree
from the University of Washington in 1992. He is
currently working towards the Ph.D. degree in elec-
trical engineering at the University of Washington.
His research interests include automatic layout of in-
tegrated circuits, particularly, FPGA and automatic
standard cell generation to minimize chip area. He is
a member of Eta Kappa Nu and IEEE.

Carl Sechen received the B.E.E. degree from Min-
nesota and the M.S. degree from M.LT. In 1987 he
received the Ph.D. degree from UC Berkeley. From
July 1986 through June 1992 he was an Assistant and
then an Associate Professor at Yale. Since July 1992
he has been an Associate Professor in the Department
of Electrical Engineering at the University of Wash-
ington. His primary research interests are the design
and computer-aided design of analog and digital in-
tegrated circuits. He is the principal developer of the
TimberWolf placement and routing package. He is a
consultant for DEC, Intel, National Semiconductor,
AMD, IBM, and Cadence.

- i

/> . =
= &

Advances in

Civil Engineering

Journal of

Robatics

Advances in
OptoElectronics

International Journal of

Chemical Engineering

The Scientific
WQrId Journal

International Journal of

Rotating
Machinery

Journal of

Sensors

Hindawi

Submit your manuscripts at
http://www.hindawi.com

Y :-
.

VLSI Design

‘.
.

Internatio Urna
Antennas and
Propagation

Modelling &
Simulation
in Engineering

International Journal of
Navigation and
Observation

e

Active and Passive
Electronic Components

Shock and Vibration

International Journal of

Distributed
Sensor Networks

Journal of
Control Science
and Engineering

Journal of
Electrical and Computer
Engineering

International Journal of

Aerospace
Engineering

