VLSI DESIGN

2001, Vol. 12, No. 4, pp. 515-525

Reprints available directly from the publisher
Photocopying permitted by license only

© 2001 OPA (Overseas Publishers Association) N.V.
Published by license under

the Gordon and Breach Science Publishers imprint,
a member of the Taylor & Francis Group.

Test Generators Need to be Modified
to Handle CMOS Designs*

JACOB SAVIR

ECE Dept., New Jersey Institute of Technology, University Heights, Newark, NJ 07102-1982

(Received 15 August 1999, In final form 11 September 2000)

CMOS designs have some unique properties that prevent existing test generators from
computing a test vector for a fault when one might exist. The problem lies in the
premises laid out on what it takes to detect a stuck-at fault. The basic premise that states
that it is required to set a line to 0(1) in order to detect a stuck-at 1(0) fault, and then
propagate the error to an observable point, needs to be re-examined. This is due to the
existence of indeterminate states throughout the logic. The paper distinguishes between
the traditional test vector (here called a hard-detect), and a potential test vector (here
called a soft-detect). Our proposed test set is the union of hard and soft-detects. We also
re-examine the issue of redundancy and show that it needs to be re-defined in order to
comply with CMOS technology behavior.

This paper shows several examples to illustrate the problem; describes what it takes in
order to remedy it; proposes possible enhancements to existing test generation
algorithms, and outlines the risks faced in the event that no correcting steps are taken.

Keywords: Testability; Sensitized path; Tri-state drivers; Pass-gate transistors

1. INTRODUCTION

CMOS designs make use of circuit elements that
do not lend themselves to gate level modeling
(using And, Or, Nand, Nor and Not gates).
Circuits such as pass-gate multiplexors and tri-
state drivers are just a few examples. Use of such
elements pose unique problems to test pattern
generators.

Normally a test generator requires a test view
description. A test view is a circuit description at

the gate level. This test view is only an approxima-
tion to the actual circuit schematic that is
described at the transistor level. Test generators
use test views in order to simplify the test
generation process that would otherwise be
prohibitive if done at the transistor level. There
has been sufficient experimental evidence to
indicate that patterns generated at the gate level
detect most of the transistor level defects.

Figure 1 shows a basic two-way pass-gate
multiplexor. This device cannot be accurately

*This work was supported by NJCST under the Center for Embedded System on a Chip Design.

515

516 J. SAVIR

FIGURE 1 A two-way pass-gate multiplexor.

modeled using gates because of two reasons. The
first reason is that in the presence of a pattern such
as Ey=E,=d, =1, d,=0 the output F is indeter-
minate (in some technologies this pattern will
actually damage the device). This indeterminate
(u) response from the circuit cannot be depicted if
the pass-gate multiplexor is modeled using And-Or
gates. Secondly, in the presence of a pattern that
disables both pass-gate transistors (E;=FE,=0)
the multiplexor response is, again, u, and has the
same problem discussed earlier (although this
pattern is not damaging).! In order to be able to
generate patterns that are both safe (not damag-
ing) and more representative of the actual circuit
behavior the pass-gate multiplexor is modeled at
the test view level using tri-state elements, as
shown in Figure 2.

TRD1 and TRD?2 are the test view representa-
tion of the pass-gate transistors. A TRD will pass
the value on its data input to the output, provided

TRD1
F
dl D B o ﬂ
E;
E,
4,
TRD2

FIGURE 2 Test view of a two-way pass-gate multiplexor.

"This is the High-Z state.

it is enabled, and produce an indeterminate state at
the output in case it is disabled.

In order to safe-guard against cases where both
enable lines are turned off (it may be prevented
from occurring in normal circuit operation, but is
likely to happen in test mode and/or in a faulty
machine condition) a pull-up device may be added
to the output. Figure 3 shows the two-way pass-
gate multiplexor with the pull-up device controlled
by the test line, TEST.

The pull-up transistor is designed and sized in
such a way that it will force the output F to
become 1 whenever the enable lines are turned off,
but will be “defeated” when exactly one of the
enable lines is turned on. In the case where both
pass-gate transistors are turned on and driving
opposite values, the test pull-up is normally not
strong enough to drive the output node to a 1. In
this case the output is still indeterminate (u).

Some CMOS designs may use test pull-down
devices rather than test pull-ups.

CMOS devices may use tri-state buses that are
driven by tri-state drivers. The test views of these
tri-state drivers are the same as for the pass-gate
transistors. We will, therefore, refer to either
occurrence by denoting the element by the symbol
TRD.

Test generation algorithms work under the
assumption that the function F, realized by the
combinational logic inside the circuit, performs a
mapping F: {0, 1}" — {0, 1}'", where n and m are the

Vpp

b— TEST

FIGURE 3 A two-way pass-gate multiplexor with a pull-up
device.

TESTABILITY 517

number of inputs and number of outputs respec-
tively. A test generator would try to compute a test
vector that would distinguish the fault-free F from
a faulty function F’ that performs a different
mapping F’: {0,1}"— {0,1}". We call such a
vector a hard-detect. This fundamental assumption
does not hold in CMOS designs due to the
existence of indeterminate states (u) throughout
the logic (we hereby distinguish between an
indeterminate state, », and a unknown state, x.
An indeterminate state is an indeterminate logic
level. An unknown state is a well-defined logic
level that might be either 0 or 1). A more accurate
representation of the mapping performed by the
output F would be F:{0,1}"— {0,1,u}”. Even
though it is possible to impose some design
restrictions that will guarantee the good-machine
mapping to be F: {0,1}" — {0, 1}, it is impossible
to guarantee it under an arbitrary faulty-machine
condition. Thus, the faulty behavior of the circuit
is always of the form F’:{0,1}" — {0, 1,4}™. This
fundamental difference is the source of the
problem when it comes to compute test vectors
for stuck-at faults in CMOS designs.

The problem with existing test generation algo-
rithms is that they try to detect a fault on a line
using a hard-detect, i.e., by first driving an opposite
value to that line, and then propagating the error
to an observable point. This is sufficient when the
circuit is free of tri-state elements. When the
circuit has embedded tri-state elements in it, some
of the values existing in the circuits are indetermi-
nates (#). As a result, a faulty machine behavior
may transform the value on a line in a variety
ways, none of which are within the scope of the
test generation algorithm. The uncovered cases are:

1. good value =u; bad value=0
2. good value =u; bad value=1
3. good value =0; bad value=u
4. good value =1; bad value=u

Whenever any one of these cases propagates to
an observable point, we get a different detection
class called possible detect (PD) [1]. Note that
Cases 3 and 4 occur at an output of a TRD when a

fault changes the value of the enable line from
1to 0.

A fault classified as a PD may still be detected
by the computed pattern. Let p— g denote a
change of a good-machine value p to a bad-
machine value g. In order to illustrate this point,
assume a case where, as a result of a fault, a u — 1
propagates to a primary output. The computed
pattern may or may not detect the fault in
question. It all depends on whether or not the
indeterminate state (z) happens to be within a
voltage range that is recognized as a 0 logic level. If
this is the case, then the computed vector detects
the fault. If this is not the case, then the computed
pattern does not detect the fault. Since there is no
way for a test generation algorithm to determine
whether or not the indeterminate state u will
resolve itself in a favorable way, the fault can only
be classified as a PD, and the computed pattern
only as a soft-detect (potential test vector).

Large CMOS designs may have as much as
20 % of the total fault universe in a PD class. If
the test generator cannot compute soft-detecting
vectors for these faults, then the fault coverage
achievable will only be around 80%. If the test
generator can cover the PD class and add the
patterns that potentially detect these faults to the
pattern set, a potential fault coverage of 100%
might be achieved. If we assume a random
resolution of the u states between 0 logic level
and 1 logic level in such a way that half of the time
it is “favorable” to the fault, and half of the time it
is not, then the fault coverage will be closer to
90%. If, on the other hand, 6% of the 20% do not
resolve to either 0 or 1 logic levels, and the other
14% resolve themselves equally in a “favorable”
and ‘“unfavorable” way, then the fault coverage
would be around 87%.

Since the PD class is a relatively large class in a
CMOS design, it is important to cover it by soft
test patterns. In order to be able to do this, test
generators need to be modified.

For the remaining of this paper we assume
that the circuit has been designed to conform
with the level-sensitive scan design (LSSD) rules

518 J. SAVIR

[4]. We are, therefore, concentrating our discus-
sion on the unique test problems associated
with the combinational logic between the scan
banks.

Section 2 revisits the redundancy issue and
extends its definition to fit CMOS designs. Section
3 shows experimental results supporting the new
redundancy definition. Section 4 revisits the test
generation issue and describes possible modifica-
tions to existing test pattern generators so that
they will be able to cover unique CMOS test
problems. Section 5 outlines some of the risks that
may be faced if existing test pattern generators are
used to detect faults in CMOS designs. Section 6
summarizes the results of this paper and provides
some further concluding remarks.

2. REDUNDANCY REVISITED

2.1. Some Examples

Before we present a number of examples showing
the problems associated with the notion of
redundancy in CMOS designs, let us introduce a
simple example to show how redundancy is used
today to simplify logic circuits.

Figure 4 (a) shows a 3-gate circuit. The fault m
stuck-at 1 (m/1) is undetectable. Since this fault is
undetectable the circuit can be further simplified
by injecting the value of the undetected fault and

[>o

(@)

(b)

FIGURE 4 (a) A redundant circuit. Fault m/1 undetectable.
(b) A simplified circuit after injecting m/1.

propagating it as far forward as possible. This
simplification process leads to the circuit of
Figure 4(b). This circuit only has 2 gates, and it
realizes the same function as Figure 4(a) (since
X1X3 + X2 = X1 + X2).

Test generators [3,5—9] have been trying to
identify redundant faults in order to suggest,
among other things, that the circuit may be
simplified. One of the corner stones of most test
generator algorithms is to have a fault declared
redundant if it can be proven that no test pattern
(i.e., hard-detect) can detect the fault. Thus, a test
generator will correctly declare fault m/1 in
Figure 4 (a) as redundant.

As soon as we move into the domain of CMOS
designs we realize that there are some very serious
problems with the current definition of redun-
dancy and the way it is being used in test
generation algorithms. Figure 5(a) shows two tri-
state drivers feeding a bus line that is terminated
by a pull-up device. The enable inputs are fed
orthogonally from primary input C. The faults m/1
and n/1 are undetectable. (The faults »/0 and n/0
are detectable due to the pull-up device.) As
a result, these two faults may be claimed “re-
dundant”, and circuit simplification may be
initiated. We first remove one of these faults by
injecting it with a constant value of “1”. After
removing this first “redundancy”, we check if the
other fault is still undetectable. Since it does
remain undetectable we remove it also. The
“simplified” circuit that results from this process

Bus Bus

E E

VA

N

(b)

FIGURE 5 (a) Two tri-state drivers with orthogonal Enable
signals. Faults m/1 and n/1 are undetectable. (b) A simplified
circuit after injecting m/1 and n/1.

TESTABILITY 519

is shown in Figure 5(b). Not only has this process
failed to simplify the circuit (as a matter of fact the
circuit of Figure 5(a) cannot be further simpli-
fied), but if actually implemented will cause
damage to some logic, because inputs A and B
can now drive opposite values into the bus. So,
obviously, the traditional notion of undetectability
does not immediately translate into redundancy in
this case.

Figure 5 (a) is a special case of the circuit shown
in Figure 6. The “l1-Hot Encoder” is a circuit
whose property is that only one of its outputs can
have the value “1” at any given time. Addition of
such a circuit is intended to guarantee a ‘‘safe”
operation of the tri-state drivers in normal mode;
to prevent damaging the device during scan, and
also forbid the test generator from computing a
damaging test pattern. The problem, though, is
that this “protection circuit” will, in the most part,
be wiped out once the “redundant faults” on the
enable lines of the tri-state drivers are identified.
This will happen for the same reasons it happened
to faults m/1 and n/1 in Figure 5 (a).

More sporadic occurrences of false redundancy
identification will occur whenever Muxes appear
inside the logic (and there are normally many such
instances).

2.2. Correcting the Problem

So how can this problem be filtered out? There
are, certainly, several ways of handling it. An

Scan Chain

L LT] Jeee] |]

1-Hot Encoder

FIGURE 6 “1-Hot” Encoder added to logic to assure enable
signal orthogonality.

Bus

obvious way would be to re-examine all faults
driving the Muxes and tri-state drivers that were
declared redundant, before actually embarking on
circuit simplification. What we are interested here,
though, is in an automatic solution to the problem
that will entail no human intervention.

A possible way of doing it is to define a logical
symbol u whose meaning is “indeterminate”. The
truth table for Inverter, And, Nand, Or, Nor, and
Xor gates and a tri-state element, using this
indeterminate value, is shown in Figure 7. Also
added to the rules of Figure 7 is the rule that any
clash between a 0 and 1 on a bus, or bus-like wire
(like shared output line of a Mux), is considered a
u, as well as any other clash where one of its
members is a u.

Before we introduce our proposed new
definition of a redundant fault, we would like
to draw the distinction between the notion of
“hard-detect” and the notion of “soft-detect”. A
hard-detect is the case where a traditional
detecting test pattern exists; i.e., there exists a
test pattern TP; for fault f; for which the
presence of the fault will cause at least one of
the primary outputs to either change from an
expected value of 0 to a wrong value of 1, or
from an expected value of 1 to a wrong value of
0. A soft-detect, on the other hand, is a case
where a hard-detect does not exist, but where a
test pattern TP’ exists for which the presence of
the fault will cause at least one of the primary
outputs to either change from a determinate
value (0 or 1) to an indeterminate value (u) or
vice versa. Given this distinction, we can now
redefine the notion of a redundant fault.

DeriniTION A fault is redundant if it does not
have either a hard-detecting nor a soft-detecting
pattern.

Based on this new definition fault m/l1 in
Figure 4 remains redundant, but faults m/1 and
n/l in Figure 5 are now irredundant. Figure 8
shows the soft-detecting pattern for m/1. Notice
that the clash between 0 and 1 on the bus has
generated the symbol u.

520 J. SAVIR

A
Ao F 5 —F
A F A B F
0 1 0 '0 g
1 0)
B} 1 1 1
u u 1 u
1 u u
u u u

o
|
w >
o]

' ~NO|w
'R N ~NOO >
' N~ O~NOlW
::e-0l’7q

F
1
0
0
u
u
u

FIGURE 7 Truth table of test primitives using the indeterminate state u.

T o ~"'Ol>

FIGURE 8 A soft-detecting pattern for m/1 in Figure 5.

Consider now the circuit of Figure 9(a). The
fault m/1 has neither a hard nor soft-detecting
pattern, even though it drives the enable line.
Figure 9 (b) shows the same circuit after removal
of m/1. No further reduction is possible.

@ >
]
@ >
-]

B F A B F
0 - 1 0 0 0
- 0! - 1|1
1 1 0 1 - 1
u 1 u u 0 u
1 u u 0 u u
u u u u u u

E

A E| F
- 0| u
0o 1| 0
1 1| 1
u - u
- ul u

Bus

(b)

FIGURE 9 (a) Circuit to be analyzed. (b) Resulting circuit
after removal of m/1.

TESTABILITY 521

The conceptual procedure for redundancy iden-
tification and circuit simplification is therefore:

1. For every fault that has been proven not to
have a hard-detect attempt to compute a soft-
detect.

2. List all faults from Step 1 that have neither a
hard nor a soft-detect. This is the redundant
fault list.

3. To simplify the circuit — sequentially remove
the redundant faults [3]. Before attempting
to remove a fault re-verify that it is still
redundant.

3. EXPERIMENTAL RESULTS

To test how effective the revised definition of
redundancy is, we took a D-algorithm-based [9]
test generator and modified it accordingly. The
program was used in two modes: first with the
original definition of redundancy, and then with
the revised definition. Our test vehicles were ten
large CMOS micro-processor chips that had over
one million transistors. All chips constituted a
“full-system”. The results are shown in Table 1.
As seen in Table I the new definition of
redundancy was able to reduce the size of the
redundancy class tremendously. All faults that
have been re-classified from redundant to irredun-
dant were carefully examined to determine if their
re-classification was correct. The examination

TABLE I Experimental results on ten chips

Red(%) Red(%)

Chip FC(%) Untested(%) (old) (new)
1 83 7 10 1

2 89 5 6 0.5
3 91 5 4 1

4 88 4 8 0

S 90 8 2 0.5
6 92 4 4 1

7 87 5 8 0

8 90 7 3 0.5
9 94 3 3 0

10 93 4 3 0

confirmed that all these faults were indeed
irredundant. Almost all the initially marked
“redundant” faults were situated within the up-
stream cone of the Enable lines of the tri-state
drivers and Muxes. The modified test generator
was able to unmark them as “irredundant”.

It should be noted that the “Untested” class
might have included more redundant faults, but
they remained in this class since the test generator
was unable to prove that they were, in fact,
redundant. This class, in general, will include
unproven redundancies and other aborted faults.

4. TEST GENERATION REVISITED

4.1. An Example

The following example has been created to
illustrate the test problems occurring in CMOS
designs. This is just an example, and it by no
means represents current design styles.

Consider the circuit of Figure 10. Figure 10 (a)
shows the inability of current test generation
algorithms to detect the fault g stuck-at 0 (g/0).
Figure 10 (b) shows a successful generation of the
potential test vector for this fault.

The circuit of Figure 10 is composed of two tri-
state drivers, TRD1 and TRD2, and one Or-gate,
G. Consider the fault g/0. Current test generation
algorithms [1, 2, 5—9] will assign a value 1 to g and
try to ““justify” this value by proper assignment to
the primary inputs, a and 4. The algorithm will
also try to sensitize the error condition on line g to
the primary output F by further assignment to the
primary inputs. In this particular case, the line
justification of g =1 requires both a and b to have
a value 1. As a result, both values entering gate G
are 1, preventing the fault g/0 from propagating to
the output F. Thus, a traditional test generator will
categorize fault g/0 as redundant.

Consider now a ‘“non traditional” way of
detecting the fault g/0. Let us try to compute a
test vector that assigns an indeterminate value (i)

522 J. SAVIR

b L
(a)
0
a ®
1
b @

(b)

1 = 1

FIGURE 10 An example that illustrates the deficiency of existing test pattern generation algorithms.

to line g. This will require driver TRD2 to be
disabled, allowing a to have a value 0. If we assign
a value 1 to input b, then driver TRDI is enabled,
passing a value 0 to its output. Thus, the good-
machine values entering gate G are 0 and u, and
the good-machine response is F=u. Since the

output undergoes a u —0 change, the fault g/0 can
be classified as PD, and the test pattern that
potentially detects this fault is a=0, b= 1. Notice
that if a pull-up transistor would have been added
to output F, the fault g/0 would have been
detected. The reason for this certain detection is

TESTABILITY 523

because the gate G, that in the absence of fault g/0
would have responded with a u, would now
respond with a 1 (due to the pull-up device). In
the presence of g/0 both inputs to gate G are 0, and
the output is F=0. In the bad-machine the pull-up
device plays no role since the output value is
defined!

As this example shows, the basic premise of test
generation algorithms, that it is necessary to
provoke a stuck-at 0 fault by injecting a 1, and a
stuck-at 1 fault by injecting a 0 prevents the test
generator from classifying the fault as a PD. It
may, in turn, classify it as redundant, which may
be a wrong classification.

Normally test generators are coupled with fault
simulators to efficiently mark as many faults as
possible as being detected, once a test pattern has
been computed for some target fault. It is possible,
under this scenario, to uncover some of the PD
class, but not all of it. This example can clearly
show this point. In this example, the only good test
pattern is a=1, b=1. This good (hard) test
pattern only detects the fault F/0. It cannot serve
as a potential test pattern for any other fault.
Thus, no test generator coupled with a fault
simulator can compute the potential test patterns
a=0,b=1, and a=1, b=0. In order to uncover
these potential test patterns it is necessary to
actually target the remaining faults in the
“non-traditional” way, as described earlier.

(XX}
u o

4.2. Modifying the Test
Generation Algorithms

In lieu of the example shown earlier several
changes are needed. The first change relates to
the way a fault is provoked. In order to provoke a
stuck-at 1 fault on a line it is necessary to allow for
a u— 1 change, and a 0 — u change, as well as the
traditional 0 — 1 change. Similarly, in order to
provoke a stuck-at 0 fault on a line it is necessary
to allow for a u — 0 change, and a 1 — u change, as
well as a 1 — 0 change.

The second change to be made is related to
the notion of a sensitized path. Traditionally, a
sensitized path is defined as a path along which all
values are defined (0 or 1), and that has the
property that a change of values in the origin of

‘the path (0 — 1,1 — 0) propagates to an observa-

ble point (primary output or latch). This definition
has to be extended to include the case were there
are u’s along the path, and a change of values in
the origin of the path (u—1,1—-u,u—0,0—wu)
propagates to an observable point, and changes its
response from either 0 — 1, or 1 —0, or 0 —u, or
u—0, or u—1, or 1 ->u. A possible scenario for
this more general sensitized path is illustrated in
Figure 11.

Several comments are in order regarding the
implementation of the test generation algo-
rithm. Since the majority of stuck-at faults can
be handled by the “traditional” algorithms, it

FIGURE 11 A sensitized path having s that leads to a PD.

524 J. SAVIR

should remain its major engine. Experience with
“traditional” test generators shows that they
can compute vectors for 80% of the stuck faults.
It is the other 20% that need special handling.

We propose to design the test generator so that
it is composed of a primary and secondary engines.
The primary engine is the ‘“traditional” test
generator where faults are provoked “the old”
way, and paths are sensitized “the old” way. The
secondary engine will attempt to compute test
vectors the “new way”’, namely by allowing for the
more generalized definition of a sensitized path, as
described above.

The test generation process goes as follows. The
fault list is passed on to the primary engine with a
given abort limit (a limit on how many attempts
should be made to compute a vector before the
fault is abandoned). The primary engine termi-
nates when either all faults are detected, or when
all the untested faults reach their abort limit. Upon
termination of the test pattern generation process
in the primary engine, the list of the yet untested
faults is passed on to the secondary engine with a
given abort limit. The test generation process ends
with the termination of computation in the
secondary engine.

5. RISKS FACED WHEN THE TEST
GENERATOR IS NOT MODIFIED

There are several problems associated with using
“traditional” test generators in CMOS designs.

One obvious outcome of using a “‘traditional”
test generator in CMOS designs is a reduced fault
coverage. This reduced fault coverage will affect
the product defect level and the number of field
returns.

Another down side associated with the use of
“traditional” test generators is reduced diagnos-
ability. This is due to not having all testable faults
covered by test patterns (even if they are only
potential (soft) test patterns).

A more sophisticated problem occurs when
“untestable” faults are wused to remove

“redundancy” from the design. Most test gen-
erators will classify a fault as being redundant
when all possible assignments (whether local or
global) to the lines affecting the fault have been
exhausted leading to no detection. A truly
redundant fault may give rise to circuit simplifica-
tion that removes the fault, and still maintains the
same circuit functionality. Since a ‘“‘traditional”
test generator is no longer complete, its redun-
dancy list cannot be trusted. It may very well
be that a fault listed as “redundant” by the
“traditional” test generator is actually potentially
testable (i.e., the secondary engine described ear-
lier can compute a potential test pattern for that
fault). Any circuit simplification actions taken
based on this false redundancy may be detrimental
to the circuit functionality. An example to this case
is the removal of fault g/0 in Figure 10 and faults
m/1 and n/1 in Figure 5.

The notion of redundancy needs to be changed
so that it relates to the true mapping of the func-
tion, which in general is F, F’:{0,1}" — {0, 1,u}™.
In other words, a fault is redundant if and only if
F=F' under this more general mapping.

6. CONCLUSIONS

This paper discusses some unique test problems
associated with CMOS designs. We have shown
that existing test generators may not be able to
compute a test for a fault even if one might exist.
This problem is due to the use of circuit elements
such as pass-gates transistors, and tri-state drivers.

We have shown that in order to detect stuck-at
faults in CMOS designs, it is sometimes necessary
for the test generator to allow the fault to be
provoked by an indeterminate () state. We have
also shown that in order to detect a fault in
CMOS designs, it is sometimes necessary to allow
indeterminate states to propagate along a sensi-
tized path. Since these two conditions are out-
side the scope of existing test pattern generators,
they cannot perform a complete and thorough
job.

TESTABILITY 525

The notion of redundancy, the way we know it,
has to be revisited. A fault cannot be classified as
being redundant if it cannot be tested by a
pattern that assigns a known value to the line
(hard-detect). It may very well happen that the
fault may be detected by a pattern that assigns an
indeterminate value to the line (soft-detect).
Again, this is outside the scope of existing test
generators.

Test generators may be easily enhanced to
remedy the unique problems associated with
CMOS designs. We have proposed to have the
modified test generator be composed of two parts:
a main engine and a secondary engine. The main
engine should treat faults the “old way”. All the
faults left uncovered by the main engine should be
passed on to the secondary engine that will try to
compute test vectors by allowing the more general-
ized definition of fault provocation and path
sensitization.

Failure to use an enhanced test generator on
CMOS designs may lead to a reduced fault
coverage, reduced diagnosability, and an increase
in product defect level (increase in the number of
field returns).

References

[1] FastScan Reference Manual, 1993 —1994.

[2] Abramovici, M., Breuer, M. A. and Friedman, A. D.
(1994). Digital Systems Testing and Testable Design. IEEE
Press.

[3] Abramovici, M., Breuer, M. A. and Friedman, A. D.,
Digital Systems Testing and Testable Design. IEEE Press,
Piscataway, New Jersey, 1994.

[4] Eichelberger, E. B. and Williams, T. W. (1978). A Logic
Structure for LSI Testability. J. Design Automation and
Fault-Tolerant Computing, 2, 165—-178.

[5] Fujiwara, H. (1985). Logic Testing and Design for
Testability. MIT Press.

[6] Fujiwara, H. and Shimono, T., On the acceleration of test
generation algorithms. IEEE Trans. Computers, C-32(12),
1137-1144, December, 1983.

[7] Goel, P, An implicit enumeration algorithm to gen-
erate tests for combinational logic circuits. IEEE Trans.
Computers, C-30(3), 215—222, March, 1981.

[8] Goel, P. and Rosales, B. C., PODEM-X: An automatic
test generation system for VLSI logic structures.

In: Proc. 18th Design Automation Conf., pp. 260—-268,
June, 1981.

[9] Roth, J. P., Bouricius, W. G. and Schneider, P. R.,
Programmed algorithms to compute tests to detect
and distinguish between failures in logic circuits.
IEEE Trans. on Electronic Computers, EC-16, 567580,
October, 1967.

Author’s Biography

Dr. Savir holds a B.Sc. and an M.Sc. degree in
Electrical Engineering from the Technion, Israel
Institute of Technology, and an M.S. in Statistics
and a Ph.D. in Electrical Engineering from
Stanford University. He is currently a Distin-
guished Professor at New Jersey Institute of
Technology, where he held the position of Direc-
tor of computer engineering (1996—2000), and
Newark College of Engineering Associate Dean for
research (1999-2000). Previously with IBM, Dr.
Savir was a Senior Engineer/Scientist at the IBM
PowerPC Development Centre in Austin, TX; at
IBM Micro electronics Division in Hudson Valley
Research Park; at IBM Enterprise System in
Poughkeepsie, NY, and a Research Staff Member
at the IBM T. J. Watson Research Center,
Yorktown Heights, N.Y. He was also an Adjunct
Professor of Computer Science and Information
System at Pace University, N.Y., and SUNY
Purchase, N.Y.

Dr. Savir’ research interest lie primarily in the
testing field, where he has published numerous
papers and coauthor-ed the text “Built-In Test for
VLSI: Pseudorandom Techniques” (Wiley, 1987).
Other research interest include design automation,
design verification, design for testability, statistical
methods in design and test, fault simulation, fault
diagonosis, and manufacturing quality.

Dr. Savir has received four IBM Invention
Achievement Awards, six IBM Publication
Achievement Awards, and four IBM Patent
application Awards. He is a member of Sigma
Xi, and a fellow of the Institute of Electrical and
Electronics Engineers.

- i

/> . =
= &

Advances in

Civil Engineering

Journal of

Robatics

Advances in
OptoElectronics

International Journal of

Chemical Engineering

The Scientific
WQrId Journal

International Journal of

Rotating
Machinery

Journal of

Sensors

Hindawi

Submit your manuscripts at
http://www.hindawi.com

Y :-
.

VLSI Design

‘.
.

Internatio Urna
Antennas and
Propagation

Modelling &
Simulation
in Engineering

International Journal of
Navigation and
Observation

e

Active and Passive
Electronic Components

Shock and Vibration

International Journal of

Distributed
Sensor Networks

Journal of
Control Science
and Engineering

Journal of
Electrical and Computer
Engineering

International Journal of

Aerospace
Engineering

