
Review Article
State of the Art and Recent Research Advances in Software
Defined Networking

Taimur Bakhshi

Center for Security, Communications and Network Research, University of Plymouth, Plymouth PL4 8AA, UK

Correspondence should be addressed to Taimur Bakhshi; taimur.bakhshi@plymouth.ac.uk

Received 29 July 2016; Revised 11 October 2016; Accepted 20 October 2016; Published 15 January 2017

Academic Editor: Giovanni Pau

Copyright © 2017 Taimur Bakhshi. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Emerging network services and subsequent growth in the networking infrastructure have gained tremendousmomentum in recent
years. Application performance requiring rapid real-time network provisioning, optimized traffic management, and virtualization
of shared resources has induced the conceptualization and adoption of new networking models. Software defined networking
(SDN), one of the predominant and relatively new networking paradigms, seeks to simplify network management by decoupling
network control logic from the underlying hardware and introduces real-time network programmability enabling innovation. The
present work reviews the state of the art in software defined networking providing a historical perspective on complementary
technologies in network programmability and the inherent shortcomings which paved the way for SDN. The SDN architecture
is discussed along with popular protocols, platforms, and existing simulation and debugging solutions. Furthermore, a detailed
analysis is presented around recent SDN development and deployment avenues ranging from mobile communications and data
centers to campus networks and residential environments. The review concludes by highlighting implementation challenges and
subsequent research directions being pursued in academia and industry to address issues related to application performance, control
plane scalability and design, security, and interdomain connectivity in the context of SDN.

1. Introduction

Software defined networking (SDN) is a relatively new para-
digm introduced in the world of computer networking
promising a fundamental shift in the way network configu-
ration and real-time traffic management is performed. While
the term itself is quite new, the salient history of SDN can
be traced back to the roots of several traffic engineering
and network control mechanisms developed through the
years [1–4]. The underlying objective of deriving centralizing
network control primitives has always been to improve the
overall network performance and to introduce some degree
of network control in at least a particular segment of a
much larger network. SDN is seen by many in industry and
academia as culmination of these efforts.TheOpenNetwork-
ing Foundation (ONF) [5], industry consortia furthering
the work in several of areas of SDN development, defines
the term SDN as “the physical separation of the network
control plane from the forwarding plane and where a con-
trol plane controls several devices” [1]. The SDN framework

tends to make the data plane completely programmable and
separated from the control logic and, therefore, eliminates
the existing manually intensive regime of fine tuning indi-
vidual hardware components. The paradigm introduces a
centralized control structure which dynamically configures
and governs all underlying hardware based on end user appli-
cation requirements. Software developers can utilize the high
level of network abstraction offered via the control plane to
define sophisticated network resource utilization models and
optimize the underlying network fabric according to evolving
service requirements. The resulting ease in management of
diverse set of network appliances according to real-time
traffic conditions provides substantial benefits to operators
and managers in efficiently provisioning resources as well as
introducing technological and business updates in a seam-
less fashion. SDN is hence attracting substantial attention
from both academics and industry professionals. In addition
to ONF industry conglomerate, the OpenFlow Network
Research Center (ONRC) was created to particularly focus
academic research in SDN [6], withmajor standard providers

Hindawi
Wireless Communications and Mobile Computing
Volume 2017, Article ID 7191647, 35 pages
https://doi.org/10.1155/2017/7191647

https://doi.org/10.1155/2017/7191647

2 Wireless Communications and Mobile Computing

such as ETSI, IETF, ONF, 3GPP, and IEEE itself, working
towards standardizing different SDN technicalities. However,
despite the stated advantages and the promise of simplified
management, the SDN framework encounters challenges in
practical implementation hampering its functionality and
resulting performance in avenues ranging from the cloud to
data center networking.

The present paper highlights the state of the art in soft-
ware defined networking by providing a brief historical
perspective of the field as well as detailing the SDN archi-
tecture. Furthermore, compared to similar work in [3, 7–10]
describing state of the art in SDN, recent deployments and
operational challenges are discussed in detail to give readers
a comprehensive understanding of evolving implementation
avenues and subsequent studies examining scalability and
real-time latency, robustness, design updates, and security
challenges in software defined networking. The rest of this
paper is organized as follows. Section 2 provides a brief
background to SDN, legacy programmable networks, and
supporting technologies as well as an appraisal of emerging
service requirements cumulatively addressed by the SDN
framework. Section 3 discusses the SDN architecture along
with an appreciation of prominent protocols and controllers
presently being deployed. Section 4 details SDN simulation,
development, and debugging tools. Section 5 summarizes
the progress in several SDN application avenues such as
data centers, campus environments, residential networks,
and wireless communications. Section 6 gives a perspec-
tive on research challenges and recent advances made in
SDN application performance, scalability, design, security,
and interdomain routing. Final conclusions are drawn in
Section 7.

2. Background and
Complementary Technologies

It is rather difficult to examine the etymology of “software
defined networking” as the fundamental requirement of
introducing network programmability has been around since
the inception of computer networks. The term, however, was
first coined in an article in 2009 [11] to describe work done
in developing a standard called OpenFlow giving network
engineers access to flow tables in switches and routers from
external computers for changing network layout and traffic
flow in real time. Technologies supporting the centraliza-
tion of network control, introducing programmability and
virtualization, have, however, existed prior to SDN and over
the years matured to varying degrees of adoption among
operators catering for individual application requirements.
A timeline depicting development of key technologies high-
lighting efforts in centralizing network control, network
programmability, and resource virtualization is presented
in Figure 1. A summarization categorizing the respective
technologies is provided in Table 1.The following subsections
briefly discuss some of these key supporting technologies
to provide a better understanding of their similarities and
inadequacies in comparison with SDN.

2.1. Centralized Network Control. Centralization of network
control could at least be dated back to the early 1980s where
AT&T introduced the network control point (NCP) [12]
offering a centralized database of telephone circuits and out-
of-band signalling mechanism for calling card machines.
The idea of control and data plane separation was also
used in BSD4.4 routing sockets in the early 1990s, allowing
route tables to be controlled by a simple command line
or by a router daemon [13]. Another significant milestone
in the development of centralized network control includes
the Forwarding and Control Element Separation (ForCES)
project, which started as an IETF working group in 2001.
ForCES employs a control element to formulate the rout-
ing table in traffic forwarding elements [14]. Each control
element interacts with one or more forwarding elements,
in turn managed by a control and forwarding element
manager offering increased scalability.With the development
and wider adoption of generalized and multiprotocol label
switching (G/MPLS), the routers required complex compu-
tations involving path determination satisfying multiple con-
straints ranging frombackup route calculations to using paths
conforming to a given bandwidth [15]. Individual routers,
however, lacked the computing power or network knowledge
to carry out the required route construction. The IETF path
computation engine (PCE) working group as a consequence
developed a set of protocols that allow path computation
by a client such as a router to get path information from
the computation engine which may be centralized or partly
distributed in every router [16]. The technology has attracted
significant attraction having more than twenty-five RFCs at
the time of writing. The scheme, however, lacks a dedicated
control or path computation engine discovery mechanism
and provides only reactive or on-demand facilitation of infor-
mation to computation clients. The Open Signalling (OPEN-
SIG) working group started in 1995 aiming to make the
ATM, Internet, and mobile networking both programmable
and open [17]. The group worked towards allowing access
to network hardware via programmable interfaces offering
distributed and scalable deployment of new services on
existing devices. The IETF took this idea to standardize and
specify the General Switch Management Protocol (GSMP), a
protocol managing network switch ports, connections, and
monitoring statistics as well as updating and assigning switch
resources via a controller [18]. The 4D project, initiated in
2004, proposed network design that separated the traffic
forwarding logic and the protocols used for interelement
communication [19].The framework proposed the control or
“decision” plane having a global view and catered by planes
further down the hierarchy responsible for providing element
state information and forwarding traffic. More recently, and
a direct predecessor to enabling SDN technology was the
Ethane project [20]. Proposed in 2007, the domain controller
in Ethane computed flow table entries based on access control
policies and used custom switches running on OpenWRT
[21], NetFPGA [22], and Linux systems to implement the
traffic forwarding constructs. Due to the constraints of having
customized hardware, Ethane, however, was not taken up
by many industry vendors as anticipated. In comparison,
the present scheme for SDN uses existing hardware and

Wireless Communications and Mobile Computing 3

C
en

tr
al

iz
ed

ne
tw

or
k

co
nt

ro
l

N
et

w
or

k
pr

og
ra

m
m

ab
ili

ty
N

et
w

or
k

vi
rt

ua
liz

at
io

n

1995
2000

2005
2010

20161980s

∗Tempest [33]

∗Tempest [33]

∗SNMP [31]

∗NCP [12]
∗BSD4.4 [13]

∗GeoPlex [32]
∗DCAN [25]

∗XMPP [26]
∗Active networks [24]

∗MPLS [15]
∗OPENSIG [17]

∗VINI [34]
∗Cabo [35]

∗NETCONF [30]
∗ForCES [14]

∗PCE [16]
∗4D [19]

∗GMPLS [15]

∗GSMP [18]

∗OpenWrt [21]
∗Ethane [20]
∗NetFPGA [22]

∗OpenFlow [23]

∗Open vSwitch [80]

∗Term “SDN” [11]
∗Ethane [20]

∗OpenFlow [23]
∗NOX [66]

∗NOX [66]

∗Open vSwitch [80]

∗Open vSwitch [80]
∗Mininet [96]
∗FlowVisor [68]

∗VxLAN [36]
∗NVGRE [37]

∗STT [38]

∗ONOS [48]

∗ALTO [27]
∗I2RS [28]

∗CiscoOnePK [29]

∗ONOS [48]
∗Onix [63]

∗OpenDaylight [45]
∗Ryu [44]

Figure 1: Diagram illustrating key developments in complementary networking technologies.

Table 1: Complementary technologies.

Functionality Control functions, APIs Complementary technologies

Centralized control Centralized/delegated control framework
NCP [12], BSD4.4 Routing Sockets [13], ForCES [14],
PCE [16], OPENSIG [17], GSMP [18], 4D [19],
Ethane [20], G/MPLS [15]

Network programmability
Low-level network abstraction Active Networks [24], XMPP [26], DCAN [25]
High-level network abstraction ALTO [27], I2RS [28], Cisco onePK [29]
Configuration API NETCONF [30], SNMP [31], GeoPlex [32]

Virtualization Network device virtualization and overlays Tempest [33], VINI [34], Cabo [35], VXLAN [36],
NVGRE [37], STT [38]

vendors are only required to expose interfaces to flow tables
on switches with OpenFlow [23] providing controller-switch
communication capability. Growth in centralized network
control has not been in isolation with parallel efforts in
bringing automation and programmability to the network
appliances examined in the following section.

2.2. Network Programmability. Network administrators have
long yearned for increased programmability of network
devices, as the present method of configuration (mainly via
CLI) despite being effective is rather slow and requires labo-
rious work in changing configurations growing significantly
with the size of the network. The US Defense and Advanced
Research Projects Agency (DARPA) envisioned the underly-
ing problems in integrating new technology in conventional
networking and the elaborate and tedious reconfigurations
required hampering acceleration of innovation in the mid-
1990s. The term active networks was proposed around the
same time and advocated custom computations on packets
to significantly reduce programmability of individual devices
[24]. An example of this would have been trace programs
running on routers and the idea of active nodes downloading
new service instructions to serve as firewall or offer other

application services. However, not having a clear application
at the time such as cloud services today and lack of cheap net-
work support, the idea did not fully achieve fruition. Another
network programming initiative in the mid-1990s was the
Devolved Control of ATM Networks (DCAN) [25]. The
underlying aimofDCANwas the designing anddevelopment
of infrastructure and services required to achieve scalability
in controlling and programming ATM networks. The work-
ing principle of DCN technology is that ATM switch control
decisions should be decoupled from the devices and dele-
gated to external entities, the DCAN manager. The DCAN
manager in turn uses programming instructions to manage
the network elements, quite similar to present day SDN.
Another similar project aimed at incorporating programma-
bility in the network elements was AT&T’s GeoPlex [20].The
project utilized Java programming language to implement
middleware functionality in networking. GeoPlex was meant
to be a service platform managing networks and services
using the operating systems running on Internet connected
computers. The resulting soft switch abstraction, however,
could not reprogram physical devices due to compatibility
with proprietary operating systems running on these devices.
Another vital addition to network programmability came in

4 Wireless Communications and Mobile Computing

the form of the extensible message and presence protocol
(XMPP) described in RFC 6121 which works quite similar to
SMTP but targeted at near real-time communication offering
additional functionalities of monitoring presence along with
messaging [26]. Each XMPP client sets up a connection with
the server in the network which maintains contact addresses
of clients and may let others know when a contact is online.
Messages are pushed (real-time) as opposed to polled in
SMTP/POP and the protocol is now being used in data center
networking as well as the upcoming Internet of Things (IoT)
paradigm tomanage network elements. Network clients have
XMPP clients which respond to XMPP messages containing
CLI management requests. Given its ubiquity of use in legacy
computing systems, XMPP has found considerable traction
in the SDN (southbound API) domain.

Offering an even higher level of abstraction from a
network administrator or service provider’s perspective, the
Application Layer Traffic Optimization (ALTO) protocol
started by an IETF working group and originally aimed at
optimizing P2P traffic by identifying nearby peers has seen
further extension for locating resources in data centers [27].
ALTO clients produce a list of resources, inherent constraints
such as memory, storage, and bandwidth and power con-
sumption, and present this information to the server which
gathers knowledge about the available resources and pro-
duces a detailed orchestration for the running applications.
Another routing strategy proposing splitting of decision
making between centralized management and applications is
the Interface to the Routing System (I2RS) project of IETF
[28]. Unlike a strict centralized SDN, I2RS proposes using
traditional routing protocols executed on network hardware
in parallel with centralized control. The scheme allows using
distributed routing while allowing individual applications to
influence routing decisions as required. Developments in net-
work programmability, however, have not been limited solely
to standardization bodies and workgroups. Technology ven-
dors such as Cisco have also sought to enable programmers
to develop application that can integrate with the network
fabric. The Cisco Open Network Environment Platform Kit
(Cisco onePK) provides a programmable framework allowing
operators to customize traffic flows and visualize network
information for easier deployment according to changing
business needs [29]. The framework is now being folded into
Cisco’s Application Centric Infrastructure (ACI) [39] which
seeks to further integrate software and hardware driven by
operational requirements.

2.3. Network Virtualization. Network virtualization can be
described as the representation of one or more network
topologies residing on the same infrastructure. Virtualization
has seen various phases of installation from being basic
VLANs, to various intermediate technologies and test beds.
A few milestone projects worth mentioning include Tem-
pest, VINI, and Cabo. Tempest originated at Cambridge
in 1998 and proposed the idea of a separation of control
framework from switches as well as switch virtualization
[33]. Tempest proved to be an early attempt at decoupling
traffic forwarding and control logic, specifically in the context
of ATM networks. Similar to present day SDN, Tempest

project put emphasis on having open programming interfaces
and additional support for network virtualization. On a
slightly separate strand focusing on testing new protocols and
services, the virtual network infrastructure (VINI) came to
light in 2006 offering researchers a virtual networking test
bed to deploy and evaluate multiple ideas simultaneously
on different network topologies using realistic routing soft-
ware, user traffic, and networking events [34]. VINI-enabled
network also allowed operators to run multiple protocols
on the same underlying physical network, controlling traffic
forwarding in individual network devices for each virtual
switch independently. From a service provider perspective
relying on hardware infrastructure from multiple infrastruc-
ture providers, Cabo project in 2007 proposed a separation
of infrastructure from services [35]. Cabo promotes the sep-
aration of infrastructure from service providers allowing the
latter to dynamically update service provisioning for users.
Using virtualization and programmable traffic routing, Cabo
offers the ability for service providers to runmultiple services
on networking gear belonging to disparate infrastructure
providers. Virtualization in presently deployed networks
provides sharing which can be either multiple logical routing
devices on a shared platform offering resource slicing such as
dedicated memory allocation or traffic forwarding software
utilities, all running on the same general purpose computing
hardware.

In addition to device virtualization projects, overlay tech-
nologies such as Virtual Extensible Local Area Network
(VXLAN) were developed as a means to mitigate the limita-
tions of present networking technology allowing extensibility
and application in larger data center and cloud deployments
[36]. VXLANs utilize MAC-in-IP tunnelling, creating state-
less overlay tunnels between endpoint switches, performing
encapsulation. Similar to VXLAN is the Network Virtu-
alization using GRE (NVGRE) [37]. NVGRE also embeds
MAC-in-IP tunnelling, with a slight difference in the header
format. VXLAN packets use UDP-over-IP packet formats
sent as unicast between two endpoint switches to assist load
balancing, while NVGRE uses the GRE standard header.
Another relatively newer virtualization technique is the
Stateless Transport Tunnelling (STT) again usingMAC-in-IP
tunnelling [38]. While the general idea of a virtual network
exists in STT, it is, however, enclosed in a more general
identifier called a context ID. STT context IDs are 64 bits,
allowing for a much larger number of virtual networks and
a broader range of service models. STT attempts to achieve
performance gains over NVGRE and VXLAN by leveraging
the TCP Segmentation Offload (TSO) found in the network
interface cards (NICs) of many servers. TSO allows large
packets of data to be sent from the server to theNIC in a single
send request, thus reducing the overhead. STT, as the name
implies, is stateless and packets are unicast between tunnel
endpoints, utilizing TCP in the stateless manner (without
TCPwindowing scheme) associated with TSO. In addition to
network virtualization, services such as DNS, access control,
firewalls, and caching can be decoupled from the underlying
virtual network to solely run as software applications on
high volume dedicated hardware and storage. Virtualization
of network functionality (VNF) aims at further reducing

Wireless Communications and Mobile Computing 5

the operational and capital expenditure for organizations
minimizing dedicated hardware requirements [40].

2.4. Requirement for SDN. While the network virtualization
technologies promised greater benefits as compared to con-
ventional and legacy protocols and architectures, the growth
in Internet, public and private network infrastructure, and
an evolving range of applications required a comprehensive
revamping of the existing networking framework. The use
of distributed protocols and coordination of changes in con-
ventional networks remains incredibly complex involving the
implementation of distributed protocols on the underlying
network hardware to facilitate multiple services for traffic
routing, switching, guaranteeing quality of service applica-
tions, and providing authentication. Keeping track of the state
of several network devices and updating policies becomes
even more challenging when increasingly sophisticated poli-
cies are implemented through a constrained set of low-level
configuration commands on commodity networking hard-
ware.This frequently results inmisconfigurations as changing
traffic conditions requires repeated manual interventions to
reconfigure the network; however, the tools available might
not be sophisticated enough to provide enough granularity
and automation to achieve optimal configurations.

The fundamental requirement of an overall framework
which fulfilled a range of operational requirements such
as ease of programmability, dynamic deployment, and pro-
visioning while facilitating innovative applications dictated
a new networking paradigm capable of satisfying these
prerequisites. Some of the technology and operational con-
cerns eventually leading to development of the SDN traffic
management framework are detailed as follows:

(i) Automation: an increased level of automation reduc-
ing the overall operational expenditure aswell as facil-
itating effective troubleshooting, reducing unsched-
uled downtimes, ease of policy enforcement, and
provisioning of network resources and corresponding
application workloads as required

(ii) Dynamic resource management: dynamically chang-
ing the size of the network and updating the topology
and the assigned network resources, which may be
further aided by network virtualization

(iii) Orchestration: orchestrating control of the complete
range of network appliances by hundreds or even
thousands such as in data centers or larger campus
network environments

(iv) Multitenancy support: with growing proliferation of
cloud based services, tenants preferring complete
control over their addresses, topology, routing, and
security and consequently separating the tenanted
infrastructure from hosted services

(v) Open APIs: users having a full choice of modular
plugins, offering abstraction, defining tasks by APIs
and not specifically concerned about implementation
details. Communication between two nodes to be fur-
nished without the specification of the exact protocol

(vi) Greater Programmability: a fundamental require-
ment of present network provisioning being the
ability to change device behaviour and configuration
in real time according to prevalent traffic conditions

(vii) Integrated security: the ability to integrate security
devices within the network fabric, leading to greater
accuracy in detecting security incidents and simplify-
ing management

(viii) Integrated resourcemanagement: in addition to secu-
rity devices, integrating multiple services seamlessly
such as load balancers and resource monitors, which
can be provisioned on demand and placed in the
network fabric as and when required

(ix) Improved performance: a control framework offering
the ability to incorporate innovative traffic engineer-
ing solutions, capacity calculation, load balancing,
and a higher level of utilization to reduce carbon
footprint

(x) Network Virtualization: the ability to provision net-
work resources without concerns about the loca-
tion of individual components such as routers and
switches

(xi) Visibility and real-time monitoring: improving real-
time monitoring and connectivity of devices

A centralized view of the distributed network through the
SDN control plane provides a more efficient orchestration
and automation of network services. While legacy protocols
can react after services come online, SDN can foresee addi-
tional service requirements and take proactive measures to
allocate resources. Furthermore, SDN based network app-
lications deliver highly granular user-defined policies on per-
application traffic flows. The following section examines the
architecture of the SDN framework in detail.

3. The SDN Architecture

The basic architecture of SDN utilizes modularity based
abstractions, quite similar to formal software engineering
methods [1, 2]. A typical SDN based network architecture
divides processes such as configuration, resource allocation,
traffic prioritization, and traffic forwarding in the under-
lying hardware in three basic layers, namely, application,
control, and data planes. Each of the planes has well defined
boundaries, a specific role, and also relevant application
programmable interfaces (APIs) to communicate with adja-
cent planes. A comparison between the existing distributed
traffic control of individual devices and the centralized SDN
architecture is illustrated in Figure 2. The key components of
the framework entail the following:

(i) Data (forwarding) plane: the data plane is a set of
network components which can be switches, routers,
virtual networking equipment, firewalls, and so forth.
The sole purpose of data plane is to forward network
traffic as efficiently as possible based on a certain set
of forwarding rules instructed by the control plane.
SDN architecture makes the networking hardware

6 Wireless Communications and Mobile Computing

SDN controller

Applications

Data plane

Data plane
Control plane

Control plane

Control plane

Data plane

Data plane

Data plane
Control plane

Data plane

Data plane

Data plane

(a)

Application plane

Control plane

Data plane

Network
services

Monitoring,
topology..

Business
Apps

N
or

th
bo

un
d

A
PI

So
ut

hb
ou

nd
 A

PI

Network
controller

Redundant
device

Ab
str

ac
t n

et
 v

ie
w

Se
rv

ic
e r

eq
ue

st

St
at

e i
nf

or
m

at
io

n

Fo
rw

ar
di

ng
 lo

gi
c

SDN compliant
switches

(b)

Figure 2: Diagram illustrating (a) decentralized and centralized network control and (b) SDN architecture.

rather inoculative by removing forwarding intelli-
gence and isolated configuration per network element
andmoving these functionalities to the control plane.
Communication between data and control planes
is achieved by APIs (southbound). At present, the
OpenFlow protocol severs as a southbound com-
munication protocol of choice supported by several
vendors as well as the ONF.

(ii) Control plane: control plane is responsible formaking
decisions on how traffic would be routed through
the network from one particular node to another
based on end user application requirements and
communicating resulting network policies to the data
plane. The central component of a control plane is
the SDN controller. An SDN controller translates
individual application requirements and business
objectives such as the need for traffic prioritizing,
access control, bandwidthmanagement, andQoS into
relevant forwarding rules which are communicated
to data plane components. Based on the size of the
network, there can be more than one SDN controller
for additional redundancy [22, 23]. By introducing
network programmability through the control plane,
it becomes possible to manipulate flow tables in indi-
vidual elements in real time based on network perfor-
mance and service requirements.The controller gives

a clear and centralized viewof the underlying network
giving a powerful network management tool to fine
tune performance.

(iii) Application plane: application plane comprises net-
work specific and business applications. An abstract
view of the underlying network is presented to appli-
cations via northbound APIs. The level of abstrac-
tion may include network parameters like delay,
throughput, and availability descriptors giving the
applications a wider view of the network [2, 7, 20].
Applications in return request connectivity between
end nodes and once applications or network ser-
vices communicate these requirements to the SDN
controller, it correspondingly configures individual
network elements in the data plane for efficient traffic
forwarding.

Centralizedmanagement of network elements provides addi-
tional leverage to administrators giving them vital statistics
of existing network conditions to adapt service quality and
customize network topology as needed. For example, during
periods of high network utilization, certain bandwidth con-
suming services like video streaming, large file transfers, and
so forth can be load-balanced over dedicated channels. In
other scenarios, such as during an emergency (fire alarms,
building evacuations, etc.), services such as VoIP can take

Wireless Communications and Mobile Computing 7

control of the network, that is, telephony taking precedence
over everything else. Major southbound and northbound
communication protocols and prominent controller choices
are presented in the following sections.

3.1. Southbound Communication Protocols. Southbound
APIs furnish network control enabling the SDN controller
to dynamically make network changes as per real-time
requirement. The OpenFlow protocol [23] maintained and
updated by ONF [5] is the first and most prominent south-
bound communication interface. OpenFlow defines control-
ler-data plane interaction facilitating administrators to
manage traffic according to changing business requirements.
Using OpenFlow, flows forwarding constructs can be added
and removed in switch flow tables tomake the network fabric
more responsive to service demands. Besides, the OpenFlow
protocol, Cisco OpFlex [41], has gained momentum among
southbound APIs. A number of networking vendors have
signed up to support implementation of OpenFlow including
Juniper, Big Switch, Arista, Brocade, Dell, IBM, NoviFlow,
HP, Cisco, Extreme Networks, and NEC, among others.
While OpenFlow is quite well-known, it is not the only one
available or under development. The extensible messaging
and presence protocol (XMPP) [26] has found a certain
degree of traction for further deployment especially in hybrid
SDN which uses a bulk of protocols such as OSPF, MPLS,
BGP, and IS-IS to run on SDN architecture. Operational
functionality of OpenFlow, XMPP, and OpFlex is further
detailed in the following subsections.

3.1.1. OpenFlow Protocol. OpenFlow is a major southbound
API developed in the early stages of SDN paradigm and is
meant to communicate control messages between the SDN
controller and networking components in the data plane
[23]. A typical OpenFlow compatible switch is comprised
of one or more flow tables matching incoming flows (and
packets) with policy actions such as prioritization, queueing,
and packet dropping.The SDN controller can manipulate the
flow tables either in (a) real time, reactively, for example,
if packet’s forwarding path is unknown and a switch sends
message to the controller asking for forwarding information
or proactively by sending complete flow entries based on
requirements dictated by higher applications residing in the
application plane. OpenFlow pipeline processing through
flow tables is depicted in Figure 3 and a sample table depicting
flow table entries is given in Table 2.

Once a packet arrives at the switch, matching is per-
formed in a single flow table and either sent to its destination
(outgoing port) or sent to other flow tables as dictated by
network control logic instructed by the controller. Matching
occurs on the basis of priority in flow table entries with the
topmatching entry in the flow table and corresponding action
executed. If no match is found (called a “table miss”), either
the packet is dropped or a request is sent to the controller
requesting processing instructions. Packets transverse flow
tables in the form of metadata communicated between
different tables. Flow entries can also point the packet to
particular group actions. Group actions allow a further set of

complex policies to be executed on packets compared to flow
tables such as route aggregation and multicasting.

Packets arriving at the ingress port of a switch are
generically processed in the following sequence:

(1) Highest priority matching flow entry in the first flow
table is found based on ingress port, metadata, and
packet headers. Priority is calculated on a top-to-
bottom approach with entries at the top carrying
higher priority.

(2) Relevant instructions are applied which comprise the
following:

(i) Modify the packet as instructed in the actions
list and (or) transmit through an output port.

(ii) Update the action set by adding deleting actions
in the actions list.

(iii) Update metadata.

(3) Send match data and action set to the next table for
further processing.

The fundamental difference between an action list and action
set is the time of execution [5]. An action list is executed as
soon as packet’s data leaves the flow table to make necessary
changes to this data, whereas an action set keeps accumulat-
ing and is executed once it transverses all relevant flow tables.
Flow tables are assigned numbers in sequence andmatch data
(along with action set) can generally only be sent from a table
of lower sequence to higher, assuring that packets move in
forward direction instead of backward direction in the switch.
An OpenFlow compliant switch maintains a TLS control
channel with the SDN controller and periodically sends keep
alive “hello” messages to communicate state information. To
ensure reliability in message delivery between the controller
and switch, TCP protocol is used. Well-known TCP ports
for OpenFlow traffic are 6633 and 6653 (official IANA port
since 2013-07-18). OpenFlow versions have evolved over the
past few years offering bug fixes and enhancements.The latest
version available at the time of writing is v1.5.

3.1.2. Extensible Messaging and Presence Protocol (XMPP).
Extensible messaging and presence protocol (XMPP) was
originally designed as a general communications proto-
col offering messaging and presence information exchange
among clients through centralized servers [26]. XMPP
remains quite similar to simple message transfer protocol
(SMTP); however, the schema is extensible through XML
encoding for user customization and additionally the pro-
tocol provides near real-time communication. Each XMPP
client is identified by an ID which could be as simple as
an email address. Client machines set up connections with
a central server to advise their presence, which maintains
contact addresses and may let other contacts know that a
particular client is online. Clients communicate with each
other through chat messages which are pushed as opposed
to polling used in SMTP/POP emails. The protocol is an
IETF standardization of the Jabber protocol and is defined
for use with TCP connections in RFC 6121. A number of

8 Wireless Communications and Mobile Computing

OpenFlow compliant
switch

In Out

OpenFlow pipeline processing

Network controller

table_miss (no matching entry found)

OpenFlow
control channel

Flow_table1 Flow_table“n” Execute
Action_SetAction_Set1 Action_Set“n”

Packet_In Packet_Out

{· · ·}{· · ·}

Figure 3: OpenFlow pipeline processing.

Table 2: OpenFlow Flow Table Entries.

Parameter Match fields Counters Instructions

Functionality Matching packet headers, ingress ports,
instructions and previous table metadata

Update respective counters based on
packet matches Apply per flow actions

Purpose Traffic segregation for further processing Measuring flow statistics, real-time traffic
monitoring

Flow routing, metering, queueing,
QoS, and so forth

open source XMPP implementations are also available with
variations being used in programs including Google, Skype,
Facebook, and many games. The protocol has found new
applications in hybrid SDN, Internet ofThings (IoT), and data
centers and is being used for managing individual network
devices. Network devices run XMPP clients which respond
to XMPP messages containing CLI management requests. In
data centers, every object such as virtual machine, switch,
and hypervisor can have an XMPP client module awaiting
instructions from XMPP server for authentication and traffic
forwarding as shown in Figure 4. The clients on receiv-
ing instructions update their configuration as per server
request.

While XMPP is defined in an open standard and follows
an open systems development and application approach
allowing interoperability among multiple infrastructures, it
also suffers a few weaknesses. The protocol by itself does
not guarantee QoS of message exchanges between the XMPP
client and the server and assured delivery mechanism has to
be built on top of XMPP. Additionally, the protocol does not
allow end-to-end encryption, a fundamental requirement in
modern dispersed and multitenanted network architectures.

Development work is continuing at least to deal with the
message delivery, with proposals targeting the creation of a
message delivery receipt mechanism.

3.1.3. Cisco OpFlex. Cisco OpFlex is another example of a
southbound SDN protocol, facilitating control-data plane
communication and aiming to become a standard policy
implementing language across physical and virtual envi-
ronments. In comparison with OpenFlow protocol which
centralizes all the network control functions using the SDN

controller, the Cisco OpFlex protocol instead concentrates
primarily on implementing and defining the policies [41].
The reason for enhanced focus on policies is to remove the
controller scalability and control channel communication
from becoming the network bottleneck and pushing some
level of intelligence to the devices using legacy protocols.
The framework allows policies to be defined within a logical,
centralized repository in the SDN controller, and the OpFlex
protocol communicates and enforces the respective policies
within a subset of distributed policy elements on the switches.
The protocol allows bidirectional communication of policies,
networking events, and statistical monitoring information.
Real-time provision of information may in turn be used
to make networking adjustments. The switches contain an
OpFlex agent supporting the Cisco OpFlex protocol. Work
is also being done on implementing open source OpFlex
agent to increase adoption across multiple platforms. Some
of the industry giants including Microsoft, IBM, F5, Citrix,
and Red Hat have shown commitment to embedding OpFlex
agent in their product line. OpFlex relies on traditional and
distributed network control protocols to push commands to
the embedded agents in switches. One of themain reasons for
the early adaption of OpenFlow has been the level of control
it can offer to developers for designing network control
applications withminimal support from network vendors. To
standardize OpFlex, Cisco submitted the protocol to IETF
standardization process and several vendors are presently
working to standardize as well as increase the adoption of the
protocol.

3.2. Northbound Communication Protocols. Since the incep-
tion of SDN, a number of networking vendors have started

Wireless Communications and Mobile Computing 9

XMPP server

XMPP clients

Data center implementation

Hypervisor

VM1

VM2

Controller

User

XMPP
server

Figure 4: XMPP client-server communication.

actively developing SDN oriented applications with the aim
of expediting adoption and reducing the OPEX and CAPEX
of future IT network infrastructures. The applications them-
selves vary in scope with some providing a comprehensive
network monitoring and control solution while others solely
targeting a particular aspect of load balancing, security, and
traffic optimization through SDN controllers. The archi-
tecture and APIs (northbound) of SDN applications vary
between vendors. Some have incorporated SDN controllers
inside applications, while others have defined custom north-
bound APIs for policy translation between controllers and
their own higher application layer SDN services. As per
the ONF SDN framework [1], applications might act as an
SDN controller in their own right or liaise with one or
more SDN controllers to gain exclusive control of resources
exposed by controllers. Applications can exist at any level of
abstraction with a general perception that the further north
(higher) we move in SDN framework, the greater the level
of abstraction. A specific distinction between applications
and controller is not precise [2, 3]. A controller-application
interface may mean different things to different vendors.
However, the fundamental principle of abstracting network
resource view for use by applications and allowing real-
time network programmability forms the cornerstone of SDN
control plane.

The ONF constituted a special working group in June
2013 towards standardizing architecture across the industry
for northbound interfaces (NBIs) [5]. Although there is
considerable debate within industry whether such a stan-
dardized interface is even required, the benefits of having an
open northbound API are also significant. Open northbound
API allows developers from different areas of industry and
research to develop a network application, as opposed to
only equipment vendors. It also gives network operators
the ability to quickly modify or customize their network
control. The ONF, the consortium, has therefore so far
avoided northbound API standardization to allowmaximum
innovation and experimentation. As a direct result, more
than 20 different SDN controllers that are currently avail-
able feature varying northbound APIs, based on the needs
of applications and orchestration systems residing above.
Despite the ONF’s efforts, there is a chance there will not ever
be a standardized northbound API. Routing and switching

vendors that traditionally rely on network-based applications
and features to differentiate their hardware are positioning
themselves to maintain profitability in the SDN arena. These
vendors will invest in custom software, and OpenFlow will
run concurrently to a native operating system and comple-
ment the existing control plane. The result is a complex and
crowded ecosystem.The following subsections review the two
popular northbound APIs, the RESTful [42] and Java based
OSGi [43], interface prevalent in SDN controllers.

3.2.1. Representational State Transfer (RESTful). Represen-
tational state transfer or simply REST follows the software
architecture style developed forWorldWideWeb consortium
(W3C) encompassing all client-server communications. The
concept was originally introduced by Fielding in [42]. The
main goals of the scheme are to offer scalability, generality,
and independence and allow the inclusion of intermediate
components between clients and servers to facilitate these
necessary functionalities. Both clients and servers can be
developed independently or in tandem; there is no partic-
ular necessity to have both developed by same vendor. A
schematic diagram representing RESTful calls is shown in
Figure 5. The server component is stateless and clients keep
track of their individual states to allow scalability. Server
responses can be cached for a specified time. Every entity
or global resource can be identified with global identifiers
such as a URI and is able to respond to create, read, update,
and delete (CRUD) operations. The uniform interface for
each resource is GET (read), POST (Insert), PUT (write), and
DELETE (remove). Data types can define network compo-
nents such as controller, firewall rule, topology, configuration,
switch, port, link, and even hardware. RESTful is prevalent in
most controller architectures as the northbound interface of
choice along with Java APIs. One of the major drawbacks of
RESTful, however, is the lack of public subscription or live
feed informing the application/service of network changes.
Like HTTP, REST does not tell when a page has changed and
requires frequent refresh. Application developers, therefore,
periodically use loop calls to retrieve and subsequently post
updates to individual switches based on predefined policies.
REST support is included in almost all major SDN controllers
including Ryu [44] and OpenDaylight [45] as well as several
vendor proprietary platforms.

10 Wireless Communications and Mobile Computing

REST REST

ServiceService

Control plane

Controller

Southbound API

Network application

HTTP

item_URL
new_item_URL
edit_item_URL
items_URL

PUT
DELETE
GET
POST

RESTful API calls

Figure 5: RESTful application programming interface (API).

Native operating system

Java virtual machine

Execution env.

Modules

Lifecycle

Services

Se
cu

rit
y

Bundles

Bundle
A

Bundle
B

Service
registry

Register GET

Listen

Figure 6: Open Services Gateway initiative (OSGi).

3.2.2. Open Services Gateway Initiative (OSGi). Open Ser-
vices Gateway initiative (OSGi) is a set of specifications for
dynamic application composition using reusable Java com-
ponents called bundles [43]. Bundles publish their services
with OSGi services registry and can find/use services of other
bundles as shown in Figure 6. Bundles can be installed,
started, stopped, updated, and uninstalled using a lifecycle
API. Modules define how a bundle can import/export code.
Security layer handles security and execution environment
defines what methods and classes are available in specific
platform. A bundle can get service or it can listen for a service
to appear or disappear. Each service has properties that allow
others to select among multiple bundles offering the same
service. Services are dynamic and a bundle can decide to
withdraw its service which will cause other bundles to stop
using it. Bundles can be installed and uninstalled on the fly.
The OpenDaylight project [45] is one major example of a
SDN controller platform built using the Java based OSGi
framework. OSGi allows the starting, stopping, loading, and
unloading of Java based network (module) functionalities. In
comparison, platforms, such as Ryu [44], do not offer OSGi
support and the controller has to be stopped and restarted
with the needed modules or a custom REST method is built

with all required functionalities included to avoid controller
restarts. A few other SDNplatforms supportingOSGi include
Beacon [46], Floodlight [47], and ONOS [48].

3.2.3. Model-Driven Service Abstraction Layer (MD-SAL).
TheOSGi framework described above forms the back-end for
ODL controller [45] allowing dynamic loading and binding
of bundles (JAR files) for exchanging information. Appli-
cation containers built on top the OSGi framework, such
as Karaf [49], simplify the operational aspects of packaging
and installing of applications in ODL. To further facilitate
application development, model-driven approach to service
abstraction used in the ODL controller [50] offers developers
and network administrators an opportunity to unify the
northbound and southboundAPIs with the data structures of
multiple services and individual components of the controller
[45].Thedata structure itself is described byYetAnotherNext
Generation (YANG) language used to model the service and
data abstractions as a single system [51]. YANG (defined in
RFC6020)models semantics and data organization including
configuration or operation data as a tree. The controller
northbound API can utilize the self-describing data in, for
example, XML (YANG model), simplifying the development

Wireless Communications and Mobile Computing 11

RESTConf

Applications

Service plugin Service pluginProtocol plugin

Model-driven service abstraction layer

Network devices

ODL controller

ConfigurationDevice inventoryOpenFlow topology

Figure 7: Model-Driven Service Abstraction Layer (MD-SAL) architecture.

of additional controller-driven functionalities as well as SDN
applications. A schematic representing MD-SAL is provided
in Figure 7.

Modules providing specific network functionality can
define a schema, allowing simple interpretation of data
structures through the service abstraction layer (SAL). MD-
SAL uses APIs to connect and bind requests and services and
provides an extra layer containing all the necessary logic to
receive and delegate requests [52].The SAL architecture itself
comprises (i) top-level subsystem consisting of controller
components or applications that use the controller SAL to
communicate with other controller components and plugins
(data store, validator, etc.) and (ii) nested subsystems that
expose a set of functionality and may have multiple instances
attached to the overall system (network elements, virtual
systems, etc.). The MD-SAL approach is relatively agnostic
supporting any service model. Furthermore, the scheme
stiches together horizontal modules and allows developers to
use generic interfaces for service discovery and subsequent
utilization.

3.2.4. Intent-Based Approach. Although the SDN paradigm
allows for a high level of abstraction which may not be
available in legacy network settings, such an abstraction is
increasingly useful when the northbound interface (NBI)
allows SDN applications to dictate their intent without
necessarily having to specify the methods to achieve it. As
opposed to providing low-level rule-based configurations, a
typical intent-based approach allows a user or application
to only specify the intent such as the requirement of low
latency path between two nodes, bandwidth reservation, and
real-time monitoring for re-evaluation of selected paths. The
SDN controller in turn translates these intents into low-level
configuration commands in the data plane for subsequent
execution. The application or user, therefore, is oblivious to
the underlying infrastructure configuration providing added
flexibility and automation for application developers and
enabling agile deployment of services [53]. Intent-based NBI
represents an evolution from static to dynamic network setup
through simple application intent specification, programmed

by the controller into physical and virtual devices. An illus-
tration of an intent-based NBI is depicted in Figure 8. Intent-
based descriptorsmake a compelling case for implementation
in SDN because of a number of benefits such an approach
brings from both an operations and architecture perspective,
some of which are briefly detailed as follows [53–55]:

(i) Application scalability: an application developer does
not require prerequisite knowledge about the actual
network, focusing on developing the application
rather than worrying the workings of the application
with the infrastructure.

(ii) Greater portability: IBN allows an application devel-
oped for one SDN environment to be easily ported to
anotherwithout redesigning and is therefore, agnostic
to individual (controller) vendors.

(iii) Increased coherence: decoding low-level changes
caused by SDN applications running simultaneously
can sometimes lead to resource conflict, leaving
the controller unable to understand the user or
application intent. Intent-based directives to the SDN
controller aim to avoid control-splitting, translating
multiple application intent into cohesive device
configurations.

(iv) Contextual management: managing network res-
ources at a lower level of abstraction for multiple
services is quite difficult and prone to errors. Intent-
oriented descriptions make it possible for adminis-
trators to not only provide conflict resolution but
also define a cumulative intent of multiple application
during service initiation, allowing ease of managing
the SDN.

To permit practical deployment, intent NBI, however,
requires a language for translating user or application intent
as highlighted in [9, 54, 56, 57]. Industry vendors have
been working on developing intent-based NBI for their
proprietary controllers [58, 59].TheONOS [48] also provides
application intent at the NBI, although intent is described
in the format of a network policy, allowing applications to

12 Wireless Communications and Mobile Computing

App. 1

Intent NBI

Network
devices

SDN controller

Intent acquisition

Compilation/validation

Translation

Flow installation

Soutbound API

App. nApp. 2

Figure 8: Intent-based northbound interface illustration.

specify policies which are compiled and installed as device
flow rules. In terms of community efforts, the ONF NBI
Working Group has been working on specifying the infor-
mation and architectural model for an intent-based interface
to the SDN controller [55]. Other projects especially the ODL
Network Intent Composition (NIC) initiative also aims to aid
administrators in managing and directing network services
by describing the intent for network behaviour through a
northbound interface, facilitating abstracted policy semantics
instead of specifying data plane (flow) rules [60, 61]. The
project uses existing ODL functions and southbound plugins
and is designed to be protocol agnostic, that is, able to use
any control protocol.TheONFNBIWorking Group andNIC
initiative comprise a diverse set of projects, operators, and
vendors collaborating with the open source community to
bring intent-based approach to the SDN NBI.

3.3. Network Controllers and Switches. The SDN controller
maintains and applies network policies required by higher
application and services as well as translating and configuring
these policies in individual network devices. As mentioned
earlier, once a packet arrives at switch, in case of a table miss
(absence of flow entry), it may get forwarded to the controller
which determines the next course of action for the respective
trafficflow.Computed instructions such as adding, removing,
andmodifying flow entries are carried out in switches using a
southbound communication interface (e.g., OpenFlow). The
controller in essence centralizes the network intelligence.The
controller is assigned a configurable IP address and individual
switches communicate with the controller using a predeter-
mined port number using standard TLS or TCP connection.
The control channel between the controller and switches is
independent of the traffic forwarding framework. Applica-
tions and services requiring communication between two

endpoints may communicate these to the controller using the
northbound interface, and the controller translates these into
low-level configuration commands in individual switches.
A schematic representing generic controller architecture is
given in Figure 9. Depending on redundancy requirements,
switches may communicate with either a single or several
controllers [62]. Intercontroller communication is usually
served by an external legacy protocol such as the Border
Gateway Protocol (BGP) or the Session Initiation Protocol
(SIP) over TCP channels to exchange routing information.
Multiple controllers can improve the reliability of the system.
In case of failure of one controller or control channel, the
switch can obtain flow forwarding instructions from another
controller instance. The number of controllers and their
placement, however, greatly depends on the topology and
operational requirements of an organization. Two popular
schemes proposed include the vertical approach where mul-
tiple controllers are in effect managed by controller(s) at a
higher layer and the horizontal approach in which controllers
establish a peer-to-peer communication relationship [63–65].

Controllers are usually hosted on network attached
server. In case of multiple controllers, OpenFlow dictates that
the switches maintain a control channel with each controller.
A summary of commonly used OpenFlow compliant con-
trollers is given in Table 3, along with their development plat-
form.The two categories of controllers covered in the table are
general and special purpose controllers. NOX and POX are
examples of early stage general purpose controller platforms
during SDN evolution [66, 67]; however, POX remains rele-
vant offering OpenFlow support as well as a visual topology
manager. Ryu by NTT Corporation developed in Python
programming language has found increased applicability in
several research studies, being a complete SDN ecosystem

Wireless Communications and Mobile Computing 13

Control plane
Northbound API

Southbound API

Core SDN
Ctrl. logic

Redundancy module

Re
du

nd
an

t
co

nt
ro

lle
rs

 (s
yn

c)

Network services,
business applications

Topology, routing,
security parametersTranslation module

Network devices

Figure 9: SDN controller schematic.

supporting the OpenFlow protocol as well as the RESTful
at the northbound interface [44]. The OpenDaylight (ODL)
controller platform founded and led by several industry
giants offers Java based development and deployment of
carrier-grade SDN solutions [45]. Special purpose controllers
such as FlowVisor [68], RouteFlow [69], and Oflops [70]
serve specific tasks including transparent proxy between
switches and multiple controllers, virtualized IP routing
over OpenFlow network switches, and benchmarking switch
performance in addition to serving as network controllers.
Furthermore, platforms such as the open network operating
system (ONOS) provide an operating system resilient enough
for carrier-grade deployment of software defined networks
[48]. The ONOS GUI provides a multilayer view of the
underlying network and allows operators to peruse network
devices, links, and errors with subsequent policy implemen-
tation.

In addition to the several network controllers on offer,
presently there are several types of SDN software and hard-
ware switches available. The software switches can be used
to run SDN test simulations as well as develop protocols and
services. Open vSwitch, for example, is now part of the Linux
kernel (as of version 3.3) and facilitates both the ability to
serve as virtual gateway between physical and virtual services
as well as a testing platform to be used in tandem with SDN
topology simulation tools such as Mininet. In addition to
software switches, industry giants such as IBM, HP, and NEC
have also brought physical carrier-grade switches to market.
A summary of current OpenFlow switch implementations
are presented in Table 4, along with their brief description
and development platform (language) where available. The
networking industry has taken interest in SDN evidenced by
the availability of commercial hardware switches which are
OpenFlow enabled.

4. Simulation, Development, and
Debugging Tools

The development of SDN has seen the advent of several key
simulation and emulation test beds to carry out feasibility
studies and introduce new protocols and services. The set of
tools available for the purpose can be broadly divided into
four categories: (i) simulation and emulation platforms, (ii)
software switch implementations, (iii) white box solutions,
and (iv) debugging and troubleshooting tools. A summary

description of major utilities within each category and their
description are given in Table 5. An overview of tools is given
below.

4.1. Simulation and Development Platforms

4.1.1. Mininet. Among the emulation tools, Mininet [96] is
the most prominent. The platform allows an entire network
based on OpenFlow to be emulated over a single or a cluster
ofmachines.Thedistribution ofMininet nodes and links over
a cluster of machines utilizes the resource of each machine,
adding scalability to emulate larger networks requiring more
computation and communication bandwidth than available
on a single Mininet server. Mininet simplifies the develop-
ment and deployment of new services by providing a software
platform to create virtual machines, hosts, and network
switches connected to an in-built (ovs-reference) or user-
defined controller for testing purposes. The latest Mininet
v2.2.2 supports OpenFlow versions up to 1.3 (along with
Open vSwitch v2.3) by default and can also be customized
to use an external user space switch such as the softswitch13
[84].

4.1.2. NS-3. The network simulator has long been used by
the networking community to test and develop networking
protocols and services. The latest ns-3 simulator offers sup-
port for OpenFlow switches; however, it is limited to a very
early version of OpenFlow v0.89 [97]. While official work is
continuing on introducing newer updated versions of Open-
Flow, a specialist OpenFlow 1.3 module for ns-3, namely,
OFSwitch13, module has been designed externally [91]. The
module relies on the ofsoftswitch13 library providing a data
path (switch) implementation in the user pace and to convert
OpenFlow v1.3 messages from wire format.

4.1.3. OMNeT++. The OMNeT++ is a discrete event sim-
ulator allowing the development and testing of SDN based
models [98]. SDN oriented projects can be integrated with
OMNeT++ using an OpenFlow components and an INET
Framework.

4.2. Software Switch Implementations. Anonexhaustive sum-
mary of software switches which are also used for experi-
mentation and new service development are given in Table 5.

14 Wireless Communications and Mobile Computing

Table 3: Popular OpenFlow compliant controller implementations.

Controller Implementation Open
source Developer Description

NOX C++/Python Yes Nicira The first OpenFlow controller [66].

POX Python Yes Nicira
Controller supporting OpenFlow having a high-level
API including topology graph and virtualization
support [67].

Ryu Python Yes NTT, OSRG Network Operating System (NOS) that supports
OpenFlow [44].

OpenDaylight Java Yes Industry consortia Platform for building programmable, software defined
network applications [45].

Beacon Java Yes Stanford University Java based controller that supports both event-based
and threaded operations [46].

Floodlight Java Yes Big Switch OpenFlow controller, forked from the Beacon
controller [47].

Helios No NEC Controller providing shell environment for integrating
experiments [71].

Trema C/Ruby Yes NEC Full-stack framework for developing OpenFlow
controllers in Ruby and C [72].

Jaxon Java Yes Independent NOX-dependent Java based OpenFlow controller [73].

MUL C Yes Kulcloud
OpenFlow controller having multithreaded
infrastructure at its core and designed for performance
and reliability in mission-critical environments [74].

IRIS Java Yes IRIS Team-ETRI
OpenFlow Controller having horizontal scalability for
carrier-grade network, high availability and
multidomain support [75].

Maestro Java Yes Rice University OpenFlow operating system for orchestrating network
control applications [76].

NodeFlow JavaScript Yes Independent OpenFlow controller written in pure JavaScript [77].

NDDI - OESS C++ Yes Internet2, Indiana
University

Application to configure and control OpenFlow
enabled switches through a simple and user friendly
interface [78].

RouteFlow C++ Yes CPqD

Special purpose provides virtualized IP routing
composed of an OpenFlow controller application, an
independent server and physical network emulation
[69].

FlowVisor Java Yes Stanford
University/Nicira

Special purpose OpenFlow controller, a transparent
proxy between switches and multiple controllers [68].

SNAC C++ No Nicira Special purpose controller built on NOX uses a
web-based policy manager [79].

Resonance NOX+OpenFlow Yes Georgia Tech. Special purpose access control application built using
NOX [66] and OpenFlow [23].

Oflops C Yes Cambridge, Berlin,
Big Switch

Special purpose standalone controller used to
benchmark performance and test an OpenFlow switch
[47].

ONOS Java Yes Open source scalable control plane cluster offering GUI
and OpenFlow as well as NETCONF support [48].

ovs-controller C Yes Independent Reference controller packaged with Open vSwitch [80].

Prominent cases such as the Open vSwitch have been imple-
mented in multiple platforms including Mininet and ns-3. A
brief overview of some of the prominent software switches
available is given below.

4.2.1. Open vSwitch. The Open vSwitch is one of the most
widely deployed software switches. It employs an Open-
Flow stack that both can be used as a virtual switch in

virtualized network topologies and has also been ported to
multiple hardware/commodity switch platforms [80]. The
Open vSwitch is a part of the Linus kernel since version 3.3.

4.2.2. ofsoftswitch13. The ofsoftswitch13 running in the user
space also provides support for multiple OpenFlow versions
[84]. The soft switch supports Data Path Control (Dpctl), a
management utility to directly control the OpenFlow switch,

Wireless Communications and Mobile Computing 15

Table 4: Common OpenFlow Compliant Switches and Standalone Stacks.

Switch Implementation Category Description

Open vSwitch C/Python Software OpenFlow stack that is used both as a virtual switch and ported to
multiple hardware platforms [80].

Indigo C Software Software running on hardware switching implementations and based
on the Stanford reference [81].

OpenFlowJ Java Software OpenFlow stack written in Java [82].

OpenFaucet Python Software Python implementation of the OpenFlow 1.0 protocol [83].

ofsoftswitch13 C/C++ Software User space software switches implementation [84].

Pantou C Software OpenFlow port to the OpenWRT wireless environment [85].

Oflib-node JavaScript Software OpenFlow protocol library for Node.js converting between the
protocol messages and JavaScript objects [86].

OpenFlow Reference C Software Minimal OpenFlow reference stack that tracks the specification [22].

Pica8 C Physical and software Software platform for hardware switching chips which includes L2/L3
stack [87].

A10 Networks—AX
Series Proprietary Physical and software Physical and software appliances (AX Series), offering L4-7

programming [88].

Big Switch Networks -
Big Virtual Switch Proprietary Physical and software Data center network virtualization application built upon an

OpenFlow switches [89].

Brocade ADX Series Proprietary Physical and software Secure and scalable application service infrastructures using the
RESTful API on northbound interface [90].

NEC
ProgrammableFlow
Switch Series

Proprietary Physical and software Series offers network virtualization, multipath routing, security, and
programmability [91].

ADVA Optical - FSP
150 & 3000 Proprietary Physical FSP 150 carrier Ethernet and FSP 3000 transport layer products [92].

IBM RackSwitch
G8264 Proprietary Physical Offers low cost flexible connectivity for high-speed server and storage

devices in DC environments [93].
HP 2920, 3500, 3800,
5400 series Proprietary Physical Advanced modular switch series built on programmable ASICs

offering scalable QoS and security [94].
Juniper Junos MX,
EX, QFX Series Proprietary Physical Series supports different versions of OpenFlow varying with model

[95].

allowing the addition and deletion of flows, query switch
statistics, and modify flow table configurations. Although
ofsoftswitch13 supports a variety of OpenFlow features, it
has recently run into some compatibility issues with latest
versions of Linux (Ubuntu 14.0 and beyond) and developer
support has also stagnated.

4.2.3. Indigo. The Indigo project is an open source imple-
mentation of OpenFlow which can be run on a range of
physical switches and utilizes the hardware features of exist-
ing Ethernet switch ASICs to run OpenFlow pipeline at line
rates [81].The implementation is based on the original Open-
Flow reference implementation from Stanford and currently
supports all features required in the OpenFlow 1.0 standard.

4.2.4. Pica8 PicOS. ThePicOSbyPica8 is a network operating
system allowing network administrators to build flexible
and programmable networks using white box switches with
OpenFlow [87]. The proprietary software allows the integra-
tion of OpenFlow rules to be used in legacy layer 2/layer 3

networks, without disrupting existing network and creating a
new one from scratch.

4.2.5. Pantou. Pantou modifies a commercial wireless router
and access point to an OpenFlow enabled switch. The
OpenFlow protocol is implemented as an application on
top of OpenWRT platform [85]. The OpenWRT platform
used is based on the BackFire release (Linux v2.6.32), while
the OpenFlow module is based on the Stanford reference
implementation in user space.

4.3. White Box Switch Implementations. White box switches
allow network operators to use off-the-shelf switching hard-
ware in the SDN data plane. Being the foundation building
blocks of a network, the ability to use generic switching
hardware allows organizations to leverage the benefits of
individual components suited for specific SDN applications
as opposed to investing in relatively costly all-in-one vendor
solutions. The white box itself may have a preinstalled
operating system or consist of a bare metal device, leaving
it to the operator to select and load software which would

16 Wireless Communications and Mobile Computing

Table 5: Common Simulation Platforms and Debugging Tools.

Category Purpose Software and tools

Emulation and
simulation

Emulating network
topologies as well as
providing a reference
for network event
simulation

Mininet [107], ns-3
[108], OMNeT++ [109]

Software
switches and
platforms

A software platform
to test and validate
switch-controller
behaviour and
southbound protocol
working

Open vSwitch [80],
ofsoftswitch13 [84],
Indigo [81], Pica8 PicOS
[87], Pantou [85]

Debugging and
troubleshooting

Specialist tool set to
debug SDN behaviour
at the switch and
controller level

STS [110], Open vSwitch
[80], NICE [111], OFTest
[112], Anteater [107],
VeriFlow [108],
OFRewind [113], NDB
[109], Wireshark [114]

aid in integrating the product into a larger SDN ecosystem
to facilitate networking features. Open source Linux-based
platforms and other specialist operating systems such as
ONOS [48] aid administrators in customizing the white box
devices according to applications running above the SDN
controller [99, 100]. The OpenFlow (or other southbound
protocol) may be used to program the flow forwarding tables
in white box switches for route construction and fulfil other
application requirements. Having a flexible management
framework, white boxes can also support horizontal and
vertical integration with additional open source tools such as
OpenStack [99, 100], Puppet [101], Chef [102], and CFEngine
[103], simplifying network operations in multiple environ-
ments ranging from SDN enabled cloud infrastructures to
enterprise data centers. Increasing interest in open hardware
platforms has also resulted in collaborative networking com-
munity efforts such as the Open Compute Project (OCP)
which proposes the reimagining of network hardware to
make it more efficient, flexible, and highly scalable [104].

In addition to reducing CAPEX, the use of SDN tools
in combination with off-the-shelf hardware in data centers
allows reduction in time for provisioning new services. At
the access level, white box switches may be utilized to offer
functionalities from wireless network control to LAN traffic
forwarding, orchestrated by the SDN controller. Customiz-
able feature adoption allows administrators to utilize the
white box devices in multiple settings as dictated by the
SDN applications. White box solutions, however, require a
significant deal of expertise from administrators to accurately
configure the devices for subsequent use, sometimes without
sophisticated manufacturer after-sales support. A number
of early deployments of white box switches are therefore
seen in relatively large service providers, leveraging existing
network management experience to offer greater innova-
tion using SDN programmability with commodity hardware
[105]. Open source initiatives such as the Open Network
Install Environment (ONIE) further enables administrators
to install any network operating system on hardware devise

with a great deal of automation, essentially enabling manage-
ment of white box switches which is quite similar to servers
[106].

Branded white box switching gear without a default oper-
ating system is available from a number of manufacturers.
The software to be loaded (operating system) is available from
either relatively new start-up companies to more established
network solution providers. A nonexhaustive list of white
box hardware and operating system software is summarized
in Table 6. To differentiate from bespoke legacy solutions,
vendors have also created new product lines and distribu-
tion channels for white box/bare metal switches, specifically
meeting open network deployment requirements [115–117].
The resulting port speeds may range from the basic 1 Gbps
all the way up to 100Gbps. Although the impact of white
boxes in data centers and enterprise networks may result in
more innovation and flexibility, vendors might deemphasize
the overall influence, noting that white box solutions may
extract value only for organizations with tremendous prior
networking expertise [118]. Lack of support options, specific
features (protocols), and troubleshooting assistance from
vendorsmay deter smaller concerns from adopting white box
switching solutions despite the benefits underlined above.
Proponents of white box switching in SDN, however, argue
that integrated switch models have run their course and bare
metal solutions offer speeds equivalent to branded legacy
switches [119]. Furthermore, the use of white box switching
in SDN is also potentially significant in lowering operating
costs. Switching devices which can be run and managed as
servers allows operators to tightly integrate SDN applications
with the underlying network fabric, a step up from somewhat
expensive vendor-locked solutions.

4.4. Debugging and Troubleshooting Tools. Debugging and
troubleshooting tools serve as vital resources for development
and testing of SDN based services.The following list presents
some of the popular SDN debugging and verification tools.

4.4.1. SDN Troubleshooting System (STS). STS simulates the
network devices of your network while also allowing enough
programmatically to generate and examine various test case
deployments [110]. Users can interactively visualize the net-
work states, the real-time changes, and also automatically
determine the events that trigger deviant behaviour and
identify bugs. The implementation is based on the POX
controller platform, with feasibility to use other OpenFlow
compliant controllers supporting OpenFlow v1.0.

4.4.2. Open vSwitch Specific Tools. The Open vSwitch comes
with a comprehensive set of tools to debug the switch
and network behaviour. The utilities are comprised of the
following:

(i) ovs-vsctl: used for configuring the switch (daemon)
configuration database (known as ovs-db.).

(ii) ovs-ofctl: a command line tool for monitoring and
administering OpenFlow switches.

Wireless Communications and Mobile Computing 17

Table 6: White box switching solutions.

Manufacturer Solution Brief description
Accton/Edgecore Switch Bare metal hardware with a choice of independent open software for NOS [115]
Delta
Networks/Agema
Systems

Switch SDN capable switches supporting ONIE installer and OpenFlow [116]

Quanta
Cloud/iwNetworks Switch Top-of-Rack (ToR) or spine switches for high performance data centers, loaded

with ONIE [117]

Interface Masters Switch Niagara switch series, offering modular switch configurations conforming to open
network deployment (OCP) [120]

Alpha Networks Switch Bare metal ToR switches, with ONIE support [121]
Penguin
Computing Switch Arctica switch line, offered as an open solution, with a choice of preloaded Cumulus

Linux operating system [122]

BigSwitch OS
Switch Light NOS, Linux-based switching software for programming white box
switches and serving as an agent for applications running above SDN controller
[123]

Cumulus Networks OS Cumulus Linux provids standard networking functions such as bridging, routing,
access control, and VXLAN overlays [124]

Gigamon OS GigaVUE-OS, built on a Linux kernel, the OS is available on white box hardware
providing flow management capabilities [125]

Broadcom OS ICOS/FASTPATH runs as a Linux application with seamless integration of Linux
tools while offering server like experience [126]

Dell OS OS10 software framework that facilitates customization supporting the open
networking model specifically suited to SDN data centers [127]

IP Infusion OS OcNOS, a modular, multitasking Linux-based operating system, offering
integration with commodity network hardware [128]

(iii) ovs-dpctl: used to administer Open vSwitch data
paths (switches). In addition to Open vSwitch ovs-
dpctl, a reference dpctl comes with the OpenFlow
reference distribution and enables visibility and con-
trol over a single switch’s flow table. The syntax of
commands used by the utilities is quite different.

(iv) ovs-appctl: used for querying and controlling Open
vSwitch daemons.

4.4.3. NICE. NICE offers an automated testing tool used to
identify and check bugs in OpenFlow programs [111]. The
tool applies model checking to explore entire state of the
controller, the switches, and the hosts. To address scalability
issues, the tool uses model checking with symbolic execution
of event handlers (identifying the representative packets that
exercise code paths on the controller). NICE prototype tests
Python applications using the NOX platform.

4.4.4. OFTest. OFTest is an OpenFlow switch test framework
built-in Python and includes a collection of test cases [112].
The tool is based on unittest which is included in the standard
Python distribution. OFTest hosts the switch under test and
the OFTest code runs on the test switch. Both control plane
and data plane side of switch connections can be tested by
sending and receiving packets to the switch as well as polling
switch counters.

4.4.5. Anteater. Anteater attempts to check network invari-
ants that exist in the networking devices, such as connectivity

or consistency [107]. The main benefit of using Anteater
is that it is agnostic to protocols and will catch errors
that result from faulty firmware as well as control channel
communication.

4.4.6. VeriFlow. VeriFlow allows real-time verification and
resides between the controller and the data plane elements
(switches) [108]. The framework allows pruning of flow rules
that may result in anomalous network behaviour.

4.4.7. OFRewind. OFRewind is another tool that allows
debugging of network events in both the control and data
plane and to log these at different levels of detail to be replayed
later in examining problematic scenarios and localize trou-
bleshooting efforts [113].

4.4.8. Network Debugger (NDB). NDB implements traffic
breakpoints and packet-backtraces for an SDN environment
[109]. Similar to the popular software debugging utility gdb,
users can isolate networking events that may have led to an
error during traffic forwarding. It works using the OpenFlow
API to configure switches and generate debugging events.
NDB then acts as a proxy intercepting OpenFlow messages
between switches and the controller. The debugger relies on
OpenFaucet Python module implementing OpenFlow v1.0.

4.4.9. Wireshark. The popular network analyser Wireshark
can be deployed on the controller or Mininet host to view
OpenFlow exchange messages between the controller and
individual switches. The OpenFlow dissector is available

18 Wireless Communications and Mobile Computing

in the current Wireshark release [114]. OpenFlow control
packets can be directly filtered while capturing using the TCP
control channel traffic ports (6633 and 6653). The captured
packets provide a useful learning tool to understand switch-
controller behaviour.

5. SDN Applications

A number of networking vendors have started actively devel-
oping SDN applications with the aim of expediting adoption
to reduce the total time to market and total cost of ownership
of future IT network infrastructures. SDN applications vary
in their scope with some providing a comprehensive network
monitoring and control solution to others solely targeting
a particular aspect of load balancing, security, and traffic
optimization through SDN controllers. As per the ONF SDN
framework [1], applicationsmight act as an SDN controller in
their own right or liaise with one or more SDN controllers to
gain exclusive control of resources exposed by controllers.

Software defined networking has found a great deal of
applicability in wide range of networking avenues. Real-
time programmability through the centralized controller
has presented opportunities in data center networking and
large campus environments as well as experimental designs
focusing on enhancing end user experience and making
residential networks more manageable. Furthermore, mobile
operators have also shown keen enthusiasm in bringing the
technology to 5G/LTE mobile networks to allow simplified
yet rapid development and deployment of new services. Some
of the key applications of SDN are highlighted as follows with
a summarization given in Table 7.

5.1. Wireless Communication. Due to the real-time pro-
grammability and potential to seamlessly introduce new
services and applications to consumers, the SDN paradigm
has been ported to mobile communication networks. A pro-
grammable wireless data plane offering flexible physical and
MAC address based routing, in comparison to layer 3 logical
address based traffic forwarding, has allowed developers to
fine tune mobile communications performance [129, 130].
Using the control plane, user traffic can be segregated and
routed over different protocols such as WiMAX, 3GPP, and
advanced LTE. The applications of SDN to wireless network
environments are discussed as follows.

5.1.1.Mobile Cellular Communication. There have been grow-
ing efforts to include the SDN layers in upcoming 5G mobile
communications realm and move from a flat topology which
increasingly relies on the core to a modular framework.
Current cellular technologies are relatively inflexible coupled
by limitations in link capacities, making real-time service
provisioning difficult and prone to errors. The redesigning
of cellular networks using SDN principles adds modularity
to the existing infrastructure, with each layer encapsulat-
ing horizontally chained protocol stacks orchestrated by
a network operating system residing at the top [131]. A
cellular SDN framework (CSDN) leveraging network func-
tion virtualization (NFV) allows optimized control through
contextual analyses of user data to create intelligent traffic

forwarding policies [132]. Information from mobile edge
networks is gathered and used by the SDN control plane to
implement real-time end-to-end routing policies and enable
service innovation which greatly enhances user experience
as opposed to conventional mobile networking. Increasing
use of virtual machines (NFV) to support network services
also facilitates service chaining and efficient management of
flow using a centralized SDN controller [133]. Studies have
also shown reduction in overall latency between controller
and the managed switches using an SDN based Mobile Core
Network (MCN) in comparison with Evolved Packet Core
(EPC) [134]. SDN based cellular networks, therefore, offer
increased sustainability, lowering operational costs while also
allowing operators a global network view for sophisticated
traffic monitoring.

Energy efficiency in 5G networking using SDN tech-
nology has also resulted in effective energy utilization at
multiple levels of 5G functionalities. Within 5G networks,
efficient resource management is essential to allow maxi-
mum utilization, network slicing, and guaranteeing fairness
among several QoS classes [135]. SDN, therefore, has been
test-implemented in 5G to allow rapid application service
provisioning while adhering to stringent QoS requirements.

Furthermore, furnishing seamless mobility using an
almost permanent connection to the mobile network is a
fundamental requirement for future cellular services. Soft-
ware defined Distributed Mobility Management (S-DMM),
in this context, overcomes the limitations of legacy mobility
management protocols (such asDMM) and is independent of
the underlying technologies while offering scalable per flow
mobility [136]. Having no significant performance penalty,
S-DMM will play a critical role in 5G mobile networks
because of ubiquitous connectivity demands and better usage
of network resources [137].

With regard to service delivery in mobile cellular net-
works, information-centric approaches promise enhanced
performance, where data may be cached locally at certain
points within the 5G network and coordinated by the SDN
controller to reduce latency experienced by end users [138,
139]. Applications using the peer-to-peer (P2P) architecture
have shown to take advantage of SDN based offloading and
redirection of peering traffic, which circumvents the mobile
core. Compared to the standard P2P data transfer between
smartphone and mobile network, that travels up the cellular
hierarchy and is redirected back down to a nearby peering
device, intelligent flow forwarding by the SDN controller
results in a substantial decrease in overall latency benefiting
mobile P2P users [140].

5.1.2. Wireless Mesh Networks. In addition to the employ-
ment of fourth- and fifth-generation (4G/5G) mobile cellular
technologies, wireless mesh networks (WMNs) have also
seen increasing deployment in modern transportation and
Internet access systems [141, 142]. While WMNs offer the
flexibility of network nodes comprising devices such as
routers, laptops, and smartphones to associate and disassoci-
ate with a network, dynamic topology, and diversity of device
communication requirements make a WMN difficult to
manage [143]. Traffic engineering in a network environment

Wireless Communications and Mobile Computing 19

Table 7: Summarization of SDN application avenues.

Application Avenue Brief description Proposed initiatives

Wireless
communications

Using a programmable wireless data
plane offering flexible routing and traffic
forwarding, SDN has the potential to fine
tune mobile communication
performance and introduce new
applications and services.

(i) Introduction of a modular SDN framework in 5G cellular
communication realm for horizontal service chaining and resource
provisioning as well as analysing contextual analyses of user data to
create intelligent traffic forwarding policies.
(ii) Simplifying management and traffic engineering in wireless mesh
networks and deploying crowd-sharing models to create
opportunities for network connectivity and bandwidth sharing.
(iii) Optimizing Wi-Fi radio channel assignment and furnishing
communication between nodes to extend coverage in view of
changing user load.
(iv) Increasing scalability and routing autonomy in IoT networking
using SDN controllers to reduce management overhead and develop
energy efficient control primitives.

Data centers and
cloud environments

Operating at large scales such as data
centers requires optimal traffic
engineering and control which can be
facilitated by the SDN framework to
reduce latency, improve resource
allocation, and reduce operational costs.

(i) Reducing network latency, improving control, and introducing
intelligent resource provisioning in an automated and dynamic
fashion in data centers using SDN based traffic orchestration.
(ii) Incorporation of SDN in cloud environments to increase service
scalability and automated load balancing in multitenant shares.
(iii) Increasing energy efficiency in data center networking using the
centralized control plane to place selected devices in low power
modes during periods of underutilization.

Campus and high
speed networks

Traffic patterns in enterprise campus and
high speed backbone networks may show
great deal of variation over time,
requiring SDN based solutions for
real-time programming of the network
fabric according to prevailing traffic
conditions.

(i) Using centralized SDN controller(s) to effectively monitor
real-time traffic and accordingly load balance traffic over available
links.
(ii) Integrating heterogeneous networks using packet based optical
communication and circuit switching technologies to allow software
defined optical networking (SDON).

Residential
environments

Using the SDN framework to allow users
and service providers greater visibility
into residential and small office network
usage for generating subscription models,
managing bandwidth, capping data use,
and introducing security features.

(i) Enhancing monitoring and management of resources using SDN
enabled customer routers (data plane) from centralized service
provider controller(s).
(ii) Implementing anomaly detection systems in programmable
residential SDN environments for greater accuracy and scalability of
use.

with high device mobility and individual device commu-
nication primitives is nonetheless difficult and also prone
to security vulnerabilities. Software defined networking due
to decoupling of control and data plane provides a suitable
framework for the optimization of network resources in
WMNs. Recent work has, therefore, seen the utilization of
SDN principle for managing wireless mesh networks. The
use of OpenFlow based architectures for deployment and
management of WMNs has investigated specific areas for
improving network management in relation to user mobility,
traffic routing, and load balancing [144–146]. Detti et al.
[145], for example, proposed the integration of SDN inWMN
comprising OpenFlow switches to implement fine-grained
traffic optimization. Using the centralized controller, the
scheme used Optimized Link State Routing Protocol (OLSR)
and OpenFlow protocol to route control and data traffic. The
resulting improvements to user performancewere significant,
when the approach was tested to balance outgoing traffic
among multiple Internet gateways of a mesh network using
the SDN controller. In terms of mobility management, SDN
has been used in projects such as OpenRoads [139] and Open

SDWN [147] to provide seamless wireless network usage for
users on the move.

Crowd-shared SDN based wireless networks have also
created opportunities to share broadband bandwidth among
users, particularly in rural areas with minimal Internet
availability [148]. Using network virtualization enabled by
SDN can also allow existing rural networks to serve as
infrastructure providers for existing ISPs, enabling coop-
eration while simplifying management [149]. Centralized
control of crowd-shared WMNs using SDN may allow more
efficient bandwidth sharing in residential environments [143].
While wireless technologies such as Public Access Wi-Fi
Service (PAWS) play a significant part in bringing crowd-
shared network for benefiting the general public, it also
suffers from limited coverage and capacity constraints due
to having a single point of Internet access. In comparison,
a crowd-shared software defined wireless mesh network
(SDWMN) allows greater advantage offering multiple points
of Internet access [148]. The crowd-shared network connects
the home routers as a mesh. Having advanced knowledge
of user sharing policies, the number of flow redirections

20 Wireless Communications and Mobile Computing

from the guest user can be minimized in turn reducing
packet reordering and SDN control channel overhead. The
SDWMN consequently offers much higher utilization of
shared bandwidth as opposed to PAWS based crowd-sharing
and is able to accommodate a significantly large volume of
guest user traffic.

The incorporation of SDN in WMNs has also facili-
tated experimentation aimed at benchmarking scalability
of WMN solutions as well as understanding trade-offs
between in-band and out-of-band communication overhead
between wireless nodes and the SDN controller [150–153].
Dimogerontakis et al. [150] proposed an SDN based exten-
sion to Community-lab, a wireless community networks test
bed, allowing researchers to experiment and manage L2
topology, a feature not available in the original testing plat-
form. Salsano et al. [151] evaluated SDN controller selection
in wirelessmesh networks to improve control plane resilience
and availability. Using SDN controller to manage traffic in
WMNs also requires minimizing the control channel over-
head between individual nodes and the control plane to opti-
mize wireless spectrum usage, a limited resource. Deployed
solutions, therefore, need to consider the pros and cons of
having in-band or out-of-band communication for controller
to device (wireless node) traffic [152, 153]. The design choices
are highly dependent on operational requirements. While
out-of-band signalling requires additional infrastructure and
could be more costly, in-band control signalling leads to
contention between data and control packets sharing the
same wireless medium [143]. To alleviate contention in the
wireless medium, multiple traffic orchestration algorithms
may be used to efficiently divide the available spectrum
between control and data traffic.

5.1.3. Wi-Fi Access Networks. The increasing popularity of
Wi-Fi networks have led to growing congestion in the
nonlicensed spectrum being used for the same. Wi-Fi chan-
nel assignment in dense areas remains uncoordinated and
somewhat temporal, resulting in negative experience for
users frequenting the respective network [154]. Centralized
resource management using SDN has therefore motivated
work in optimizing radio frequency channel assignment in
view of prevailing network conditions. Additionally, novel
Wi-Fi deployments using SDN are being employed to sup-
port improved network management. Wi-Fi management
framework including Odin [155], EmPOWER [156], and
OpenSDWN [147] has contributed to efficient SSID selection
and device association. Other work has focused on using
novel contention management algorithms to optimize access
point (AP) selection, identifying the suitability of available
wireless resources which meet application requirements, in
turn saving bandwidth and increasing user satisfaction [157].
The resulting performance of the proposed architectures
significantly improves the Signal-to-Noise Ratio (SNR) for
the end users as well as the spectral efficiency at each AP in
comparison with conventional approaches [154].

The SDN framework is also being used to furnish coop-
eration between wireless nodes, extending the coverage to
end users who otherwise may not be able to access network
service. Specifically in the context of user-centric networking

(UCN) framework, SDN based traffic engineering signifi-
cantly mitigates the challenges of sharing limited Wi-Fi net-
work capacity efficiently to provide Internet connectivity to
end users [158]. Furthermore, user access management chal-
lenges in enterprise networksmay require resource allocation
policies to individual user devices according to predefined
usage policies. OpenFlow protocol has been used to offer
bandwidth slicing on commercial Wi-Fi APs, implementing
dynamic real-time bandwidth adjustments for user devices
belonging to different policy groups [159]. The OpenFlow
protocol may also be used to control connectivity to a target
service using a centralized controller, responsible for cooper-
atively configuring several wireless base stations and the L2
backhaul network [160]. Centralized resource management
reduces delay for time-critical applications such as VoIP,
showing conformance level within the IEEE 802.11e standard.
Similar to mobility management in cellular networks, SDN
could be used to offer a great deal of ubiquity to users
connecting to different wireless infrastructures belonging to
multiple providers through user device identity management
which is coordinated and proactively managed by the con-
troller [155].

5.1.4. Internet of Things. The Internet of Things (IoT) para-
digm comprises a diverse set of devices and protocols requir-
ing a great deal of integration and effective network resource
management among the underlying heterogeneous compo-
nents. Leveraging SDN along withNFV appears to be a viable
choice to introduce scalability in device management and
optimize the routing of data generated from the respective
IoT sensors [161]. Several prototype implementations have
been considered for this purpose ranging from the use of
programmable WSNs which forwards packets according to
rules installed by the SDNcontroller [162, 163], to givingmore
routing autonomy to individual sensors incorporating low-
end controller functionality [164, 165]. The pros and cons of
each scheme again depend on the deployment scenario and
the higher level IoT-specific application requirements. While
low-level controller functionality in IoT devices may serve
to reduce control channel overhead and the latency involved
in installation of traffic flows, computational capability and
power constraints maymake such a scheme impractical. Spe-
cific service requirements for IoT networks can be translated
by the controller into network requirements (minimum data
rate, delay, packet loss, etc.) to furnish optimized end-to-end
performance [166]. The centralized SDN control plane may
also be used to dynamically offer differentiated quality levels
for different types of IoT tasks.

The wireless mesh networks (WMN) detailed earlier pro-
vide a common baseline topology for IoT device communica-
tion. As such itmay be argued thatOpenFlow enabledWMNs
may serve as catalyst for incorporating SDN principles in IoT
environments. IoT devices may connect to OpenFlow based
mesh routers using the 802.11 interface, while the central
controller facilitates the installation of traffic forwarding in
routers and allocates channel assignments to avoid wireless
contention [167]. Further to traffic routing, to optimize
energy efficiency the SDN controller can also be used for
selecting sensor nodes (based on remaining power) to be put

Wireless Communications and Mobile Computing 21

in sleepmode based on calculations of neighbourhood nodes
which are awake and can continue to provide connectivity
[168]. The subsequent reduction in node broadcasts that are
inherent in a de-centralized control environment improves
the energy efficiency and lifetime of the IoT network. The
inclusion of SDN in IoT remains an open application avenue
requiring bespoke IoT controller and network architectures
to adequately address the intrinsic heterogeneity prevalent in
the IoT ecosystem.

5.2. Data Centers and Cloud Environments. Optimal traffic
engineering, network control, and policy implementation are
an absolute requirementwhen operating at large scales in data
center environments. Increased latency, faults, and prolonged
troubleshooting may result in not only negative end user
experience but also significant cost penalties for operators.
Data center (DC) SDN implementations, therefore, through
a centralized control framework monitor and manage hun-
dreds of network devices and services promising effective
resource provisioning for operators. Google, for example, has
used SDN technology to connect its geographically dispersed
data centers around the globe allowing increased resilience
and manageability [169].

Cloud computing has also seen the integration of SDN
based traffic engineering solutions to increase service scal-
ability and automated network provisioning. A prominent
example is theMicrosoft’s public cloud described in [170].The
study highlights SDN based load balancing solution Ananta,
a layer 4 load balancer employing commodity hardware to
provided multitenant cloud management. Using host agents,
packet modification is localized enabling high scalability
across the DC.The project has seen significant deployment in
the Microsoft Azure public cloud allowing high throughput
for several tenants allocated a single public IP address.
Another prominent SDN deployment in cloud environment
is NTT’s software defined edge gateway automation system
[171]. The gateway uses OpenFlow protocol for maximum
flexibility in network provisioning and evaluates possible
extension to existing OpenFlow features baselining the SDN
stack to allow robust cloud gateway deployment.

On a separate strand reducing energy consumption in
data centers has also been an area of focus for operators
to reduce operational costs. Since most DCs are overprovi-
sioned for peak traffic the energy efficiency during periods of
underutilization is minimal. SDN technologies such as Elas-
ticTree allow network-wide power management by switching
off redundant switches from the controller side during low
traffic demand [172]. SDN implementation inDCs till present
remains one of the primary beneficiaries of the framework.

5.3. Campus and High-Speed Networks. Enterprise networks
may show a great deal of variability in traffic patterns
requiring proactive management to adjust network policies
and fine tuning performance using a programmable SDN
framework. A centralized control plane may also aid in
effective monitoring and utilization of network resources
for readjustment. An additional benefit may be to eliminate
middle boxes providing services such asNAT, firewalls, access
control, service differentiation solutions, and load balancers

[173–175]. Inclusion of an SDNcontroller for optimal network
provisioning while offering simplicity also allows external
third-party network administration of the enterprise network
and increased support for virtualization.

The integration of heterogeneous networking technolo-
gies using OpenFlow enabled network elements and a cen-
tralized controller has seen a great deal of applicability in
optical networking. Using centralized real-time programma-
bility, SDN enabled hardware from multiple vendors and
optical packet based as well as circuit-switched networks
can be placed under the SDN controller. Gudla et al. [176],
for example, used NetFPGA [22] along with Wavelength
Selective Switching (WSS) facilitated by OpenFlow protocol.
High-speed optical communications require an appraisal of
the existing OpenFlow framework and possible extensions to
achieve a higher level of integration [177]. Liu et al. [178] used
virtual Ethernet based interfaces to demonstrate OpenFlow
based wavelength path controlling in optical networking. A
commodity SDN controller, such as NOX and POX, can
operate the optical light paths using OpenFlow by mapping
virtual Ethernet interfaces to physical ports of an optical
cross-connect node. The evaluation of network performance
metrics included latency of path setup and verification of
routing andwavelength assignment allocation using dynamic
node control provided promising results for future software
defined optical networking (SODN).

In comparison with typical distributed GMPLS protocol,
SDON using a unified control protocol for QoS metrics
offers greater capacity and performance optimization in
optical burst switching [179]. With increasing use of fibre
technologies in enterprise networks, the Optical Transport
Working Group (OTWG) created by the Open Network
Foundation (ONF) envisions applying southbound protocols
such as OpenFlow to improve optical network management
flexibility [180]. The application of SDN and in particular
OpenFlow based controls in high-speed and campus net-
working, therefore, continues to grow resulting in new as well
as hybrid solutions to achieve greater network programma-
bility.

5.4. Residential Networks. Software defined networking has
also been considered as an efficient means to manage resi-
dential and small office networks. One of the fundamental
requirements of such networks is operators and residential
users having a greater degree of visibility into usage through
effective monitoring using the SDN paradigm [181–183]. To
relieve the burden of network management on residential
gateways, Dillon andWinters [184] discussed creation of vir-
tual residential gateway (data plane) using software defined
networking controller at the service provider side to remotely
allow management flexibility innovative service delivery in
homes. The residential router or gateway may be controlled
and managed remotely via an SDN controller at the service
provider premises, with the latter mainly responsible for fine
tuning and troubleshooting the residential network [182, 184,
185].

Management of residential networks presents a key chal-
lenge for residential users and service providers alike, the
benchmarking of home user activities through collection of

22 Wireless Communications and Mobile Computing

traffic metrics, and the setup involved. While some proposals
discuss the implementation of custom logging platforms to
collect such usage information, it is also noted that the frame-
work presents privacy and scalability issues if external service
provider is allowed with such a detailed insight into user
activities [183].Therefore, giving residential users rather than
service providers more control while using SDN basedmoni-
toring in the residential environment to tune network policies
also needs to be considered. Using localized application
monitoring mechanism [185, 186], users in each residential
premise may acquire an enhanced view of their application
trends. A policy primitive using application priorities defined
by the end user can afterwards be employed to distribute last
mile network bandwidth between the residential router and
service provider gateway. In addition to simple application
prioritization SDN resource allocation framework may also
be used to distribute the last mile bandwidth for users in
proportion to their resource consumption. Incorporation of
the SDN framework in residential networks offers improved
scalability and privacy for network management [186].

From a security perspective it has been argued that an
anomaly detection system in a programmable residential
SDN provides more accuracy and higher scalability than
intrusion detection systems deployed at Internet service
provider side [187]. Feamster in [182] proposed completely
outsourcing residential network security harnessing pro-
grammable network switches offering flexible remote man-
agement. Employing the outsourced technical expertiseman-
agement and running of tasks such as software updates
and antivirus utilities may become more effective as the
external operator has a wider view of network activity,
although the privacy of end users as mentioned in [183] is
equally important consideration in amore realistic residential
networkmanagement framework where technical operations
are outsourced. A review on primary security challenges
in SDN is detailed in Section 6.4. The inclusion of SDN
framework in residential networking therefore remains an
active area study in academic and industry use-cases.

6. Research Challenges

Increasing application of SDN framework in several network
settings have also highlighted areas of concern ranging from
application performance to security inadequacies inherent in
the present architecture. The following subsections highlight
the primary investigations and research advancesmade in the
SDN domain. A summarization of the areas of concentration
and subsequent research initiatives is presented in Table 8.

6.1. Application and Service Performance. Traffic optimiza-
tion carried out on the basis of network application type
to a significant extent focuses on increasing specific service
performance in SDN. The concentration in this domain
has particularly seen various studies concentrating on video
and voice streaming, using the SDN architecture to clas-
sify the respective applications and dynamically define flow
forwarding policies to improve quality of service. Propo-
nents of application-aware SDN infrastructure consider the

benefits the framework brings to offer enhanced perfor-
mance isolation for specific applications. While southbound
APIs such as OpenFlow are capable of Layer-2/3/4 based
policy enforcement they lack the high level application
awareness. Qazi et al. [188] in an application-aware SDN
study discuss Atlas, a crowd sourcing approach deploying
software agent on user devices to collect the netstat logs
sent to the control plane. Using machine learning techniques
the scheme identifies approximately forty applications from
Google Play Store. The study then uses SDN framework
applying predefined policy actions to the respective flows
as well as collect flow statistics. Similarly Mekky et al.
[189] propose per application flow metering using the SDN
framework. Applications are identified in the data plane and
the relevant policies applied using application tables, limiting
the control channel overhead towards the SDN controller.
When tested and implemented using a content-aware server
selection application and multiple virtual IP pool of services
the study showed significantly good application forwarding
performance with low overhead.

Concentrating on video streaming applications Egilmez
and Tekalp [190], devise an analytical framework for traffic
optimization at the control layer enabling dynamic quality
of service (QoS). The study reported significant improve-
ment for streaming of encoded videos under several coding
configurations and congestion scenarios. Jarschel et al. [191],
focused on YouTube streaming in particular. The study used
Deep Packet Inspection (DPI) and based on information
input showed how application detection and the different
application metrics can be used to enhance the Quality
of Experience (QoE). Ruckert et al. [192] developed Rent
a Super Peer (RASP), an architecture offering streaming
P2P videos on the OpenFlow network. Another example of
video optimization is the CastFlow [193] which proposes a
prototype for IPTV, emulated and tested over Mininet utility.
Noghani and Sunay [194], consider a multiple description
coded streaming video multicast framework using SDN
framework to realize significant performance gains. Other
studies seek to substantiate the importance of underlying
test beds on the evaluated improvements to video quality.
Panwaree et al. in [195], for example, benchmark the packet
delay and latency performance of videos tested on Mininet
as well as actual physical PC clusters using Open vSwitch.
The Microsoft Lync platform [196] also offers a prominent
test case example of an application using SDN based network
abstraction to optimize real-time messaging, video and voice
communication among Lync clients. Microsoft released a
purpose built Lync northbound API for SDN that gives
administrators visibility in to voice, video and media stream
metrics deployed in enterprise environments. Lync SDNAPI,
as per Microsoft can immediately enhance the diagnostic
capability of monitoring Lync communication in SDN as well
improve QoS. The effects of Lync and other similar targeted
specific service improvement on other applications in the
enterprise network and the resulting overall experience of
end users remains to be considered.

Recent advances in virtualization technologies have seen
a range of applications being hosted on multiple servers in
cloud environments and private data centers. SDN again due

Wireless Communications and Mobile Computing 23

Table 8: Summarization of SDN research initiatives.

Area of
concentration Brief description Research initiatives

Application
performance

Improving the performance of individual
network applications and services in the
SDN framework using novel optimization
techniques in wired, wireless, and
heterogeneous settings.

(i) Increasing SDN application awareness and optimizing time-critical
application services using flow metering.
(ii) Development of SDNmonitoring tools for evaluating performance
gains in heterogeneous network environments.
(iii) Embedding network services, such as authentication, firewalls,
proxies, and so forth, in the data plane fabric.
(iv) Information-centric approaches exploiting location-based data
caching.

Controller
scalability and
placement

Controller placement in large SDN
environments offers a complexity
optimization problem affecting latency,
capacity, and fault tolerance. The design
of the control plane remains a
multifaceted topic of several research
studies.

(i) Reducing latency by solving optimal controller placement problem
(NP-hard).
(ii) Solutionsminimizing controller workload with respect to
controller placement.
(iii) Distributed control architectures offering greater reliability using
heuristic and greedy algorithms to refactor larger network into
smaller subnetworks.
(iv) Combinatorial approaches optimizing multiple network
performance metrics in relation to controller placement, providing a
trade-off between performance gains and operational requirements.

Switch and
controller design

Studies aimed at improving northbound
API standardization among multiple
application platforms, level of control
delegation appropriate for data plane
elements, and optimal hardware
architectures.

(i) Standardization of the northbound API, involving studies in
designing a vendor neutral policy abstraction language offering
vertical and horizontal integration with existing network
fabric/services.
(ii) Greater level of control delegation to network switches aimed at
reducing controller overhead and increasing fail-safe redundancy.
(iii) New architectures for controller and switch design.

Security

SDN due to centralized network control
creates potential security challenges
directed at control plane (traffic) and data
plane elements including network
appliances and middle boxes.

(i) Designing SDN security reference models and methods focusing
on securing network entities to avoid disruption and security
compromises.
(ii) Control channel and application-controller traffic monitoring and
anomaly detection in specific avenues for example, clouds.
(iii) Network/state information storage and retrieval for postevent
and forensic examination.

Interconnecting
SDN Domains

Autonomous systems managed by
independent SDN controllers (or
operators) requireing timely
intercontroller information exchange and
underlying mechanisms to support
network orchestration as well as
application delivery between disparate
SDN domains.

(i) Legacy routing protocols such as BGP and OSPF implemented with
extensions to support interdomain SDN controller communication.
(ii) SDN-specific approaches defining new network orchestration
applications and information exchange architectures.

to decoupling of control logic from forwarding elements is
seen as a key enabling technology in this domain.Monitoring
and improving the performance of hosted applications offers
development of niche tools able to monitor the application
traffic in virtual platforms and apply traffic management
policies. Liu and Wood [197] describe NetAlytics, a plat-
form for large scale performance analysis which uses NFV
technology to deploy software-based packet monitors in
the network and an SDN management overlay to direct
packets flows to these monitors.The system aims to diagnose
application performance issues and the collected statistics
offer administrators insight into application popularity.Maan
et al. [198] developed a system for monitoring network
flows at the edge, closer to the users in cloud based data
centers. The work explores enabling flow monitoring in
virtual switches in servers. EMC2 is proposed, a scalable

network monitoring utility in cloud data centers to be used
in tandem with performance evaluation of various switch
flow monitoring techniques. The evaluation recommends
NetFlow [199], giving a very good network coverage with
minimal use of resources to monitor application traffic in
virtual environments and cloud based data centers. Hwang et
al. [200] discuss NetVM, a framework allowing customizable
data plane processing services including firewalls, proxies
and routers to be embedded with virtual servers using SDN.
The authors highlight the benefits achieved in dynamically
scaling, deploying, and reprogramming of the embedded
network applications. Individual application performance
has been the typical approach to improve end user experi-
ence in both legacy and SDN environment, isolated service
improvement does not specifically consider the mix of user
application trends in a typical network environment while

24 Wireless Communications and Mobile Computing

defining network policy primitives. The end users may have
diverse application trends, and traffic forwarding constructs
optimizing a single (or subset) of applications in the SDN
framework might result in performance penalties for users
frequenting a different (subset) of applications. The profiling
of user traffic may therefore enable the extraction of user
traffic trends and utilized as ameans to aid the SDNcontroller
in balancing network resource share among several types of
users (profiles) in residential networks.

Another category of work in application performance
improvement proposes an information-centric approach to
optimized service delivery in SDN. The motivation behind
the studies is the fact that while networking and present
Internet usually exploits location-based addressing and host-
to-host communications. Addressing data by name (Named
Data Networking) and distribution over dispersed locations
may offer optimization for application content delivery to
end users. Information-centric content delivery networkmay
then be combined with SDN to allow greater deal of network
programmability and a key enabler for content distribution.
Studies including [201–206] propose the use of SDN and
OpenFlow to support customizedmatching of packet headers
for service delivery to end users from content servers.

Application delivery and service improvement to a
greater extent also depends on the architecture and suit-
ability of network elements in the data plane to imple-
ment customized traffic forwarding policies efficiently. The
present and future trends in networking highlight the fact
that heterogeneous networks ranging from wired, wireless,
cellular, ad hoc, to vehicular environments and their inter-
connection capability, together exponential growth in data
usage, [207] will play a crucial part in application delivery.
SDN, therefore, may offer operators the ability to integrate
and share capacity on different shared physical media, a
substantially challenging task with legacy networking infras-
tructure [208]. Application services in networks with hetero-
geneous characteristics such as topology, physical medium,
and stability of connections can potentially use the SDN
paradigm for routing and resource allocation. A few studies
[139, 144, 209] have, therefore, examined the scope of the
application delivery using SDN in infrastructures including
WiMAX andWi-Fi access. The OpenRoads [139] project, for
example, discusses seamless user service delivery between
multiple wireless infrastructures. Other works [144, 206]
offer enhanced application performance in wireless mesh
environments using OpenFlow.

While the above studies promise and further the net-
work performance of individual applications, they do not,
however, specifically consider the consequences of such
isolated performance boosting on other application traf-
fic traversing the SDN fabric. As highlighted earlier, the
prevalent work in traffic optimization in SDN focuses on
improving the quality of individual applications and services
such as video streaming or voice communications. Other
studies involving information-centric networking focus on
bringing the data sources closer to the network edge, to
again improve traffic conditions for the hosted application(s).
Regardless of whether the SDN is comprises of heterogeneous
or monolithic networking fabric, in realistic environments,

users may frequent a range of applications albeit in different
proportions. Optimization efforts, therefore, may need to
consider the mix of applications being used and the perfor-
mance caveats for end users as a result of individual service
improvement.

6.2. Controller Scalability and Placement. TheSDN controller
manages switches providing traffic forwarding rules which
affect the packet behaviour. In larger network environments,
however, the placement of the controller is pertinent to opti-
mize network connectivity [210]. The connections between
controller(s) and switches in the data plane require low
latency for seamless operation [211]. To address scalability,
it is, therefore, usually required having more than one con-
troller serving the data plane.Multiple controllersmay also be
used to offer a greater level of redundancy in critical network
infrastructures. Prevalent research in this area aims to deploy
the multiple controllers in several network locations and
as such determining the exact point of placement becomes
critical [210–214].

The placement problem was first identified by Heller et
al. in [211] as an NP-hard problem focusing on discussing the
determination of exact number and optimal location for SDN
controllers. The study highlighted that the best controller
placement solution should minimize the controller to switch
control traffic latency. Similarly, Sallahi and St-Hilaire [212]
considered the placement problem from an operational
perspective discussing the cost involved in deploying and
installing controllers and connecting these in the network
fabric. The studies used traversal search perusing through
the best solutions to find the optimal candidate, a time
consuming process proportional to the size of the network.
Some of the topologies took an order of magnitude greater
than 30 hours to find a satisfactory placement solution.

Yao et al. [213] focused on the controller workload and
that placement should also consider that the load is not
exceeding the controller capacity. The proposed placement
solution used 𝑘-center algorithm [215] to minimize the value
of 𝑘 (controllers) thatmeet the capacity requirements. In later
work, Yao et al. [216] discussed placing controllers at network
hotspots where switches carry most of the traffic. Switches
may utilize less overloaded controllers migrating from one to
another with changing traffic demand.

Ros and Ruiz [217] considered network reliability high-
lighting positive correlation between fault tolerance and
controller placement. The study used heuristic algorithms
to compute the placement to meet network reliability deter-
mining the maximum number of controllers which may be
deployed. Zhang et al. [210] used min-cut method discussed
in [218] to compute the maximum number of disjoint paths
which separate the network into smaller networks, each
having its own controller. Similarly Guo and Bhattacharya
[219] generated a hierarchical tree [220] of network nodes,
dividing it into 𝑘 clusters or subnetworks. Nodes with max-
imum closeness to other nodes were selected for controller
deployment. In [221] a greedy algorithmwas used to enhance
controller placement reliability in the event of network state
changes as well as single link failures in tandem with the
optimal controller placement. Hu et al. [222] used multiple

Wireless Communications and Mobile Computing 25

algorithms including l-w greedy, simulated annealing and
brute force with brute force offering the best optimal solution,
ignoring the time consumption involved.

Other notable works such as Onix [63], HyperFlow [64],
and Kandoo [65] proposed a distributed control architecture
allowing some level of scalability and reliability in large SDNs.
The schemes allow for multiple controllers to manage the
data plane. HyperFlow details a flat or horizontal scaling
of controllers, while Kandoo and Onix use a hierarchical
structure. The distributed architecture is comprised of root
and localized controllers, each level having a different view
of the underlying network. Framework such as Difane [223]
andDevoFlow [224] distributes some control functions to the
SDN switches to reduce the controller overhead. Offloading
partial workload helps in improving network scalability,
however, requires significant modifications in switching
hardware to accommodate functional requirements. SDN
controller placement, therefore, remains an active area of
research with several solutions and approaches pursued to
achieve a greater deal of scalability allowing greater network
performance.

6.3. Switch and Controller Design. Innovations and proposals
in controller and switch design seek to circumvent some
of the problems associated with policy implementation and
simultaneously address additional areas needing improve-
ment such as controller and switch scalability. Controller-
switch interaction is served by standard southbound APIs
such as OpenFlow [23], XMPP [26], or ForCES [14]; how-
ever, a similar level of standardization is not available
at application-controller northbound interface. Since the
northbound interface purely relies on the application logic,
proponents of nonstandardization of northbound API argue
that the present framework allows for greater degree of
innovation with custom northbound communication fitting
the application or service using the SDN. As previously
mentioned, there are a number of controller utilities and
platforms available using which application can interact with
each other as well as the underlying network elements for
traffic engineering.The application developer, however, needs
an in-depth knowledge of the controller implementation to
deploy application APIs.

A few proposals have highlighted the need for network
configuration language that can express the administrator
policies seamlessly on the underlying controller implementa-
tion [225–228]. Policy description language such as Procera
[225] and Frenetic [226] builds a policy layer on existing
controllers, interfacing with configuration, graphical inter-
faces, and other network monitors to translate the admin-
istrator defined policies to flow level details which can be
used by the controller. Other examples exploring network
configuration languages include FML [227] and Nettle [228].
In [225], it is proposed that network configuration and
management focusing on changing network conditions and
state using policy definitions. The northbound communi-
cation API may further allow the SDN to apply segregated
policies on same application flows based on destination
or source IP address. Monsanto et al. [229] on the other
hand use modularized policy implementation which ensures

that flow rules for one network application task do not
interfere or replace rules for other tasks. As mentioned
earlier, the chances of ONF or the industry standardizing
the northbound API look slim and operators will continue
to develop and deploy custom northbound APIs, until there
is a clear and persistent need for a universal northbound
interface.

In terms of switch design innovation, research works
resulting in schemes such as Difane [223] and DevoFlow
[224] aim to reduce the number of requests being sent from
switches to the controller and in hindsight bring a relatively
greater degree of control delegation to the data plane. Proac-
tive implementation of policies in the switches leads to a
substantial lowering of control overhead generated during
real-time operation. Luo et al. [230] discuss the replacement
of ASIC based counters for rule-matching in switches to ones
processed in the CPU. Other technologies such as FLARE
[231] allow for complete programmability of not only the data
and control planes but also the control channel between them.
A single controller may be able to handle up to 6 million
to 12 million flows per second [46, 232]. However, lower-
ing propagation latency and increasing fault tolerance and
robustness have seen development of controller architectures
using horizontal and hierarchical clusters [63–65].

Although network control and application traffic man-
agement have been the focus of much of the previous work,
new architectures for controllers and switches also remain an
active area of academic and industry research.

6.4. Security. Increasing interest in SDN in the networking
community has also initiated significant debate highlighting
the security challenges inherent in an SDN framework. The
OpenFlow switch specification [23] includes relatively basic
security incorporation in SDNs using optional transport layer
security (TLS) allowing mutual controller-switch authen-
tication without specifying the exact TLS standard. TLS,
although, has not been given much thought in several open
source controller and switch platforms which may lead to
anomalous rule insertion in flow tables [233].

Centralized control makes the scheme vulnerable to
attacks directed at the control plane which may disrupt the
entire network. The intelligence in the centralized control
plane may offer hackers the opportunity to explore security
vulnerabilities in the controller and take over the entire
network [234, 235]. On the flip side, it is argued that the
information generated from traffic analysis or anomaly detec-
tion in the network can be regularly transferred to the SDN
controller, having a global network-wide view to analyse and
correlate feedback for efficient security [236].

In addition to securing the controller, targeted attacks on
the network (e.g., DDoS) and subsequent controller failure
or exhaustion of limited flow tables in network switches
may result in substantial network service downtime until
the controller is up and running and the threat has been
mitigated. The control channel between the controller and
network devices also has to be secure enough to reject anoma-
lous injection; the same is true for application-controller
communication. Effectively establishing trust among all the

26 Wireless Communications and Mobile Computing

network devices and the applications on top are, therefore,
considered a key security concern. Vulnerability analysis,
mitigation studies and a standardized framework for SDN
security has, therefore, been the focus of multiple deliber-
ations [237–240] with a great deal of focus in the secu-
rity domain laid on controller-switch and intercontroller
communication. Shin and Gu [237], for example, undertake
vulnerability evaluation of SDN by evaluating the feasibility
of finger-printing attacks. The evaluation finger-prints the
SDN gear such as OpenFlow switches in the networks and
targets the respective elements with denial of service (DoS)
attack on the controller via control channel and the data
plane elements by exploiting flow tables. Both entities are
identified as significant areas of SDN vulnerability. Simi-
larly, Smeliansky [238] discussed communication protocol
security with consideration for infrastructure and software
services, concluding that control-data plane and control
to control plane communication requires substantial hard-
ening to mitigate security threats. Some of the solutions
in communication challenges point to replication of SDN
controllers and network applications to provide redundancy
and fail-safe operations arising due to misconfigurations and
software bugs [241]. Other investigations propose entity or
servicemobility (moving defense), to counter security threats
[233]. The controller functionality, for example, could be
continuously shifted across several network elements making
targeted attacks on the controller more challenging for those
seeking to exploit the control plane.

SDN security is also considered in several application
contexts, for the technology to gain wider acceptance in
particular avenues including wireless communications and
cloud computing [239, 240, 242]. Schehlmann et al. in [239]
discuss potential improvements in network management
costs, as well as attack detection andmitigation by using SDN
framework itself as a potential barrier to security vulnera-
bilities. SDN enables the incorporation of certain security
functionalities through decoupling of network control from
forwarding logic where traffic filtering can be achieved using
key traffic (packet) identifiers usually requiring dedicated
firewalls and intrusion detection/preventions systems in
legacy networking. Additional security layers may be added
on top of existing SDN layers as well as introduction of agents
in data plane elements to introduce more granularities for
filtering traffic specific to heterogeneous networks such as
wireless settings as investigated in [240]. Similarly, in SDN
enabled cloud computing, additional security may be intro-
duced at each SDN layer based on underlying operational
requirements to make intra- and intercloud communication
more secure [242].

In addition to specific application avenues, generally real-
time SDNmonitoring has to be robust enough to offer timely
detection of anomalous network events and containment
[187]. The monitoring information not only provides insight
into traffic but similar to legacy networking, may also be the
focus of storage to satisfy technical as well as legal require-
ments. Some work in this area, details the consideration
which should be given to monitoring storage, for subsequent
perusal in conducting and aiding forensic analysis [175].

Security approaches may focus on securing the network
itself by embedding intelligent security alarms in the network
elements such as switches and controllers or include SDN
oriented security utilities in the functional entities such
as application servers and storage clusters. Organization,
such as OpenFlowSec [243], particularly focuses on security
challenges presented by the SDN paradigm and OpenFlow
enabled devices. Development work has considered design-
ing reference implementations of security features at different
layers of theOpenFlow stack. A detailed taxonomyof security
threats in the SDN paradigm is presented in [244]. Beyond
the basic SDN architecture, the deployment of robust security
in the SDN paradigm is still very much an area requiring
further study. It is, however, a widely held belief that without
a significant increase in focus on SDN security, the paradigm
may not see adoption beyond private DC infrastructures or
autonomous organizational deployments.

6.5. Interconnecting SDN Domains. Autonomous SDN envi-
ronments spanning over several data center networks geo-
graphically dispersed customer sites as well as mobile enti-
ties require network traffic orchestration across interdo-
main/intradomain subnets of SDN controllers. Seamless
operation of applications across SDNs managed by inde-
pendent controllers (or operators) requires timely informa-
tion exchange and the underlying mechanisms to support
communication between disparate SDN domains. While
horizontal (east-west) and vertical control plane distribution
schemes highlighted earlier in Section 6.2 offer scalability
in SDN controller placement, intercontroller communica-
tion specifically requires information exchange protocols to
carry network related information among different SDN
systems. In this context, legacy protocols such as BGP
[245] and OSPF [246] have been used to interconnect SDN
domains and establish communication between respective
SDN controllers. Existing BGP message format can be cus-
tomized allowing communication of QoS policies and other
parameters including network topology, traffic conditions,
security events and network failures across independent SDN
domains [247]. The OFBGP [248] offers, such an SDN based
solution, dividing information exchange functionalities into
two modules, the BGP protocol responsible for connection
maintenance with the BGP neighbours and BGP decision for
computing respective routes. SDN applications can leverage
the resulting parallelization in computing routing decisions
and the OFBGP framework easily scales out with increase in
the number of BGP (controller) neighbours. Having a built-
in fault remedial process, OFBGP also allows restoring SDN
to a previously working (backup) state. BTSDN discussed
by Lin et al. [249] offers a framework aimed at retaining
current BGP and legacy BGP border routers to interconnect
OpenFlow based SDNs to the rest of the Internet. Chen
et al. [250] detailed a mathematical model for reducing
BGP convergence time in legacy networks using SDN. The
proposal discusses utilizing a greedy algorithm to select exist-
ing autonomous systems for incremental SDN deployment,
providing improved convergence time when tested on realis-
ticInternet topologies. You et al. [251] focused on designing

Wireless Communications and Mobile Computing 27

a novel interdomain multipath flow transfer mechanism
using SDN framework alongside BGP. A source domain
(SDN) controller analyses BGP notifications to determine
path diversity among different domains and uses interdomain
network state exchanges to improve application throughput
across networks. Caria et al. [252] implement hybrid SDN
operation across multiple autonomous systems using Open
Shortest Path First (OSPF) protocol.The scheme partitions an
OSPF domain into subdomains using SDN enabled switches
as border nodes while employing the SDN controller to tune
routing protocol updates among the subdomains. Hybrid
deployments again serve as incremental steps in updating
legacy network settings to SDN.

In addition to using legacy routing protocols, a number of
studies have also focused on designing SDN-specific interdo-
main routing mechanisms. A Multidimensional Link Vector
(MLV) network view exchange mechanism was proposed in
[253], offering interdomain routing control by exchanging
multiple fields in the IP header, a mechanism which can
be deployed as an application over SDN controllers. Wang
et al. [254] devised a new routing control plane (RCS)
enabling network function chaining across interdomain SDN
paths by abstracting and disseminating network functions
between autonomous SDNs. The proposal allows customers
to set up per application routing paths and can also be
applied incrementally to legacy interdomain networking
for achieving greater application path diversity. From a
network architecture standpoint, distributed architectures,
such as DISCO (Distributed SDN Control Plane), allow
individual controllers to manage their respective domains
and communicate with each other to provide end-to-end
network services in an open and extensible manner [255].
The communication primitive uses a lightweight control
channel among controllers to share aggregate network-
wide information relating to interdomain topology updates,
application priority, and virtual machine states. Thai and de
Oliveira [256] propose the Interdomain Management Layer
(IML), a framework utilizing horizontal network slicing and
allowing SDN networks to become autonomous peers with
other autonomous systems, while maintaining centralized,
operator-defined policy control and facilitating end-to-end
flow control across interdomain SDN boundaries. Further-
more, projects such as RouteFlow [69] provide legacy IP
routing services over OpenFlow hardware using a virtual
network resource pool that depicts the physical topology and
utilizes legacy routing engines (e.g., Quagga) [257] to imple-
ment end-to-end resource allocation policies. In addition to
inter-SDN communication studies relying solely on existing
and new protocol extensions, another approach discusses the
use of Software Defined Internet Exchange Points (SDX) to
convey routing and network related information to partici-
pating SDNs [258]. The SDX applies a representative set of
combined policies for participants (autonomous networks)
based on their full routing table advertisements, which results
in efficient conflict resolution and minimum convergence
time in response to any future configuration changes and
network updates in the respective networks.

A similar industry effort, the Cardigan project [259] by
Google, provides an Internet exchange that participants can

connect to and advertise their networks. SDN domain can
be connected to the Internet exchange allowing route adver-
tisement into the domain and offering routing of application
traffic across it and on to the exchange. The OpenDaylight
project enables interdomain SDN controller communica-
tion through a Software Defined Network Interface (SDNi)
application for the ODL controller [260]. Employing the
existing ODL-BGP plugin, the SDNi wrapper exchanges
information data (enhanced NLRI updates) through REST
APIs as well as stores this information in an SQL database.
The application allows each controller to have real-time
(controller) peer data during a session while also offering
restriction of information exchange(s) based on security
policies. Other projects, such as IETF I2RS [28], aim to allow
applications greater control in modifying routing decisions
using traditional distributed routing protocols executed on
network devices. A few industrial case studies have also
employed the Session Initiation Protocol (SIP), typically used
to establish multimedia sessions, to offer load balancing and
peering across SDNs [261, 262]. However, as discussed in
[262], the scope of SIP to exchange routing information in
inter-SDN domains is rather limited compared to protocols
such as BGP, owing the customization allowed by the latter.
Inter- and intradomain SDN communication remains an
active field of investigationwith theONFproposing the use of
existing protocols or extension of these as required to enable
routing and network state exchanges in the SDN architecture
[1, 5].

7. Conclusion

The present paper highlighted the state of the art in soft-
ware defined networking (SDN) technologies in detail. Key
components of the framework, the northbound and south-
bound control plane communication interfaces, allow several
prominent new and legacy protocols to be used in the SDN
paradigm. The influence of few APIs including OpenFlow
used for switch-controller communication and REST and
Java based OSGi on the application-controller interface has
although been profound, resulting in wider adoption of the
respective technologies in academic and industrial deploy-
ments. In addition to communication APIs, the past few
years have seen the development of several SDN controller
platforms as well as simulation and debugging technologies,
introducing substantial variety in network programmability
for academia and industry to experiment and explore. How-
ever, despite promising simplified network management and
centralized control, research and industrial test cases have
also highlighted SDN limitations which require significant
improvement. SDN deployment in avenues such as data
centers, cloud computing, and wireless communications
presents unique operational challenges ranging from appli-
cation performance and increasing SDN controller scala-
bility to optimizing switch design and securing controller-
switch control channel. To further increase SDN acceptance
and implementation in realistic networking environments,
industrial efforts and research studies, therefore, continue
to explore solutions to these challenges allowing greater

28 Wireless Communications and Mobile Computing

realization of SDN technology in existing and future IT
infrastructures.

Competing Interests

The author declares that there are no competing interests
regarding the publication of this paper.

References

[1] SDNArchitecture, Issue 1, Open Networking Foundation, 2014,
https://www.opennetworking.org/images/stories/downloads/
sdn-resources/technical-reports/TR SDN ARCH 1.0 060620-
14.pdf.

[2] I. F. Akyildiz, A. Lee, P.Wang,M. Luo, andW.Chou, “A roadmap
for traffic engineering in SDN-OpenFlow networks,” Computer
Networks, vol. 71, pp. 1–30, 2014.

[3] N. Feamster, J. Rexford, and E. Zegura, “The road to SDN:
an intellectual history of programmable networks,” ACM SIG-
COMMComputerCommunicationReview, vol. 44, no. 2, pp. 87–
98, 2014.

[4] N. McKeown, T. Anderson, H. Balakrishnan et al., “Openflow:
enabling innovation in campus networks,” ACM SIGCOMM
Computer Communication Review, vol. 38, no. 2, pp. 69–74,
2008.

[5] Open Networking Foundation (ONF), https://www.opennet-
working.org/.

[6] Open Networking Research Center (ONRC), http://onrc.stan-
ford.edu/.

[7] W. Xia, Y. Wen, C. H. Foh, D. Niyato, and H. Xie, “A survey on
software-defined networking,” IEEE Communications Surveys
& Tutorials, vol. 17, no. 1, pp. 27–51, 2015.

[8] B. A. A. Nunes, M. Mendonca, X.-N. Nguyen, K. Obraczka,
and T. Turletti, “A survey of software-defined networking:
past, present, and future of programmable networks,” IEEE
Communications Surveys & Tutorials, vol. 16, no. 3, pp. 1617–
1634, 2014.

[9] D. Kreutz, F. M. V. Ramos, P. E. Verissimo, C. E. Rothenberg,
S. Azodolmolky, and S. Uhlig, “Software-defined networking: a
comprehensive survey,” Proceedings of the IEEE, vol. 103, no. 1,
pp. 14–76, 2015.

[10] F. Hu, Q. Hao, and K. Bao, “A survey on software-defined
network and OpenFlow: from concept to implementation,”
IEEE Communications Surveys & Tutorials, vol. 16, no. 4, pp.
2181–2206, 2014.

[11] K. Greene, “TR10: Software-defined networking. MIT Tech-
nologyReview,” http://www2.technologyreview.com/article/41-
2194/tr10-software-defined-networking/.

[12] J. P. Ronayne, The Digital Network Introduction to Digital
Communications Switching, Howard W. Sams & Co., Inc.,
Indianapolis, Ind, USA, 1st edition, 1986.

[13] E. S. Raymond, The Art of Unix Programming: Origins and
History of Unix, 1969–1995, Online Book, 2013, http://www.catb
.org/esr/writings/taoup/html/index.html.

[14] ForCES, http://datatracker.ietf.org/doc/rfc3746.
[15] L. De Ghein,MPLS Fundamentals, 2006.
[16] PCE, http://datatracker.ietf.org/wg/pce/.
[17] A. T. Campbell, I. Katzela, K. Miki, and J. Vicente, “Open sig-

naling for ATM, internet and mobile networks (OPENSIG’98),”
ACMSIGCOMMComputer Communication Review, vol. 29, no.
1, pp. 97–108, 1999.

[18] A. Doria, F. Hellstrand, K. Sundell, and T. Worster, “General
Switch Management Protocol (GSMP) V3,” RFC 3292 (Pro-
posed Standard), June 2002.

[19] A. Greenberg, G. Hjalmtysson, D. A. Maltz et al., “A clean
slate 4D approach to network control and management,” ACM
SIGCOMMComputer Communication Review, vol. 35, no. 5, pp.
41–54, 2005.

[20] M. Casado, M. J. Freedman, J. Pettit, J. Luo, N. McKeown, and
S. Shenker, “Ethane: taking control of the enterprise,” ACM
SIGCOMMComputer Communication Review, vol. 37, no. 4, pp.
1–12, 2007.

[21] OpenWrt, https://openwrt.org/.
[22] Netfpga platform, http://netfpga.org.
[23] OpenFlow Specification (ONF), https://www.opennetworking

.org/images/stories/downloads/sdn-resources/onf-specifica-
tions/openflow/openflow-spec-v1.4.0.pdf.

[24] D. L. Tennenhouse and D. J. Wetherall, “Towards an active
network architecture,” in Proceedings of the DARPA Active
Networks Conference and Exposition (DANCE ’02), pp. 2–15,
Washington, DC, USA, May 2002.

[25] Devolved Control of ATMNetworks, http://www.cl.cam.ac.uk/
research/srg/netos/old-projects/dcan/#pub.

[26] P. Saint-Andre,XMPPTheDefinite Guide, Safari Book, O’Reilly,
2009.

[27] Y. Lee, G. Bernstein, D. Dhody, and T. Choi, “ALTO exten-
sion for collecting data center resource in real-time,” ALTO,
https://datatracker.ietf.org/doc/draft-lee-alto-ext-dc-resource/.

[28] I2RS, https://datatracker.ietf.org/wg/i2rs/charter/.
[29] Cisco OnePK, https://developer.cisco.com/site/onepk/.
[30] R. Enns, “NETCONF Configuration Protocol,” RFC 4741 (Pro-

posed Standard), Obsoleted by RFC 6241, December 2006.
[31] J. D. Case, M. Fedor, M. L. Schoffstall, and J. Davin, Simple

network management protocol (snmp), rfc1157, 1990.
[32] CERIAS: GeoPlex: Universal Service Platform for IP

Network-based Services—10/17/1997, 2014, http://www.cerias
.purdue.edu/.

[33] J. E. Van der Merwe, S. Rooney, I. Leslie, and S. Crosby, “The
tempest—a practical framework for network programmability,”
IEEE Network, vol. 12, no. 3, pp. 20–28, 1998.

[34] A. Bavier, N. Feamster, M. Huang, L. Peterson, and J. Rexford,
“In VINI veritas: realistic and controlled network experimenta-
tion,” ACM SIGCOMM Computer Communication Review, vol.
36, no. 4, pp. 3–14, 2006.

[35] N. Feamster, L. Gao, and J. Rexford, “How to lease the internet
in your spare time,” SIGCOMM Computer Communication
Review, vol. 37, no. 1, pp. 61–64, 2007.

[36] M.Mahalingam, D. Dutt, K. Duda et al.,VXLAN, A Framework
for Overlaying Virtualized Layer 2 Networks Over Layer 3
Networks, Internet Engineering Task Force, 2011.

[37] M. Sridharan, K.Duda, I. Ganga, A.Greenberg, G. Lin,M. Pear-
son et al., NVGRE: network virtualization using generic routing
encapsulation, Internet Engineering Task Force, September
2011.

[38] B. Davie and J. Gross, STT: A Stateless Transport Tunneling
Protocol for Network Virtualization (STT), Internet Engineering
Task Force, 2012.

[39] CiscoACI, http://www.cisco.com/c/en/us/solutions/data-center-
virtualization/application-centric-infrastructure/index.html.

https://www.opennetworking.org/images/stories/downloads/sdn-resources/technical-reports/TR_SDN_ARCH_1.0_06062014.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/technical-reports/TR_SDN_ARCH_1.0_06062014.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/technical-reports/TR_SDN_ARCH_1.0_06062014.pdf
https://www.opennetworking.org/
https://www.opennetworking.org/
http://onrc.stanford.edu/
http://onrc.stanford.edu/
http://www2.technologyreview.com/article/412194/tr10-software-defined-networking/
http://www2.technologyreview.com/article/412194/tr10-software-defined-networking/
http://www.catb.org/esr/writings/taoup/html/index.html
http://www.catb.org/esr/writings/taoup/html/index.html
http://datatracker.ietf.org/doc/rfc3746
http://datatracker.ietf.org/wg/pce/
https://openwrt.org/
http://netfpga.org
https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/openflow-spec-v1.4.0.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/openflow-spec-v1.4.0.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/openflow-spec-v1.4.0.pdf
http://www.cl.cam.ac.uk/research/srg/netos/old-projects/dcan/#pub
http://www.cl.cam.ac.uk/research/srg/netos/old-projects/dcan/#pub
https://datatracker.ietf.org/doc/draft-lee-alto-ext-dc-resource/
https://datatracker.ietf.org/wg/i2rs/charter/
https://developer.cisco.com/site/onepk/
http://www.cerias.purdue.edu/
http://www.cerias.purdue.edu/
http://www.cisco.com/c/en/us/solutions/data-center-virtualization/application-centric-infrastructure/index.html
http://www.cisco.com/c/en/us/solutions/data-center-virtualization/application-centric-infrastructure/index.html

Wireless Communications and Mobile Computing 29

[40] Q. Duan, Y. H. Yan, and A. V. Vasilakos, “A survey on service-
oriented network virtualization toward convergence of net-
working and cloud computing,” IEEE Transactions on Network
and Service Management, vol. 9, no. 4, pp. 373–392, 2012.

[41] Cisco OpFlex, http://www.cisco.com/c/en/us/solutions/colla-
teral/data-center-virtualization/application-centric-infrastruct-
ure/white-paper-c11-731302.html.

[42] R. T. Fielding, “Chapter 5: representational state transfer
(REST),” inArchitectural Styles and the Design of Network-Based
Software Architectures, University of California, Irvine, Calif,
USA, 2000.

[43] H. Cummins and T.Ward, Enterprise OSGi in Action, Manning,
1st edition, 2013.

[44] Ryu, http://osrg.github.com/ryu/.
[45] Project OpenDayLight Website, http://www.opendaylight.org/

project/technical-overview.
[46] D. Erickson, “The beacon openflow controller,” in Proceedings of

the 2nd ACM SIGCOMM Workshop on Hot Topics in Software
Defined Networking (HotSDN ’13), pp. 13–18, Hong Kong,
August 2013.

[47] Project FloodLight Website, http://www.projectfloodlight.org/
floodlight/.

[48] ONOS Project, http://onosproject.org/.
[49] A. Karaf, http://karaf.apache.org/.
[50] OpenDaylight Controller, “MD-SAL architecture,” https://wiki

.opendaylight.org/view/OpenDaylight Controller:.
[51] YANG RFC 6020, https://tools.ietf.org/html/rfc6020.
[52] R. Hirannaiah, “Overview of Model-Driven SAL and Creating

and Application based on MD-SAL,” 2016, http://events
.linuxfoundation.org/sites/events/files/slides/Radhika Hiranna-
iah MD-SAL ONS2016.pdf.

[53] C. Janz, Intent NBI—Definition and Principles, Open Network-
ing Foundation, 2015.

[54] M. Pham and D. B. Hoang, “SDN applications—the intent-
based Northbound Interface realisation for extended appli-
cations,” in Proceedings of the IEEE NetSoft Conference and
Workshops (NetSoft ’16), pp. 372–377, Seoul, South Korea, June
2016.

[55] ONFBlog: Intent, what. Not how, https://www.opennetworking
.org/?p=1633&option=com wordpress&Itemid=155.

[56] T. Zhang and F. Hu, “Controller architecture and performance
in software-defined networks,” in Network Innovation through
OpenFlow and SDN, CRC Press Taylor & Francis Group,
Boston, Mass, USA, 2014.

[57] Y. Jarraya, T.Madi, andM.Debbabi, “A survey and a layered tax-
onomy of software-defined networking,” IEEE Communications
Surveys & Tutorials, vol. 16, no. 4, pp. 1955–1980, 2014.

[58] ONFSummit, “What is the intent anyway,” 2015, https://
www.youtube.com/watch?v=QvEK CFIGik.

[59] Cisco, “Microservices Infrastructure,” 2015, https://github.com/
CiscoCloud/microservices-infrastructure.

[60] ODL, “Network Information Composition,” https://wiki
.opendaylight.org/view/Network Intent Composition:Main.

[61] ODL, Network Modelling Language (NEMO), https://wiki
.opendaylight.org/view/Network Intent Composition:NEMO
Model.

[62] B. J. van Asten, N. L. M. van Adrichem, and F. A. Kuipers,
“Scalability and resilience of software-defined networking: an
overview,” https://arxiv.org/abs/1408.6760.

[63] T. Koponen, M. Casado, N. Gude et al., “Onix: a distributed
control platform for large-scale production networks,” in Pro-
ceedings of the 9th USENIX Conference on Operating Systems
Design and Implementation (OSDI ’10), pp. 351–364, Vancouver,
Canada, October 2010.

[64] A. Tootoonchian and Y. Ganjali, “Hyperflow: a distributed
control plane for openflow,” in Proceedings of the Internet
Network Management Conference on Research on Enterprise
Networking, p. 3, 2010.

[65] S. Hassas Yeganeh and Y. Ganjali, “Kandoo: a framework for
efficient and scalable offloading of control applications,” in
Proceedings of the 1st ACM InternationalWorkshop onHot Topics
in Software Defined Networks (HotSDN ’12), pp. 19–24, August
2012.

[66] NOX Repository Website, https://github.com/noxrepo/nox.
[67] POX, https://openflow.stanford.edu/display/ONL/POX+Wiki.
[68] R. Sherwood, M. Chan, A. Covington et al., “Carving research

slices out of your production networks with openflow,” ACM
SIGCOMMComputer Communication Review, vol. 40, no. 1, pp.
129–130, 2010.

[69] M. R. Nascimento, C. E. Rothenberg, M. R. Salvador, C. N. A.
Corrêa, S. C. De Lucena, and M. F. Magalhães, “Virtual routers
as a service: the routeflow approach leveraging software-defined
networks,” in Proceedings of the 6th International Conference on
Future Internet Technologies (CFI ’11), pp. 34–37, ACM, Seoul,
Republic of Korea, June 2011.

[70] Oflops, http://archive.openflow.org/wk/index.php/Oflops.
[71] Helios by nec, http://www.nec.com/.
[72] Trema openflow controller framework, https://github.com/

trema/trema.
[73] Jaxon:java-based openflow controller, http://jaxon.onuos.org/.
[74] Mul, http://sourceforge.net/p/mul/wiki/Home/.
[75] IRIS, http://openiris.etri.re.kr/.
[76] Z. Cai, A. L. Cox, and T. S. E. Ng, “Maestro: a system for

scalable openflow control,” Tech. Rep. TR10-08, Rice University,
Houston, Tex, USA, December 2010.

[77] The nodeflow openflow controller, http://garyberger.net/?p=
537.

[78] Network development and deployment initiative, OESS,
https://github.com/globalnoc/oess.

[79] SNAC Repository, https://github.com/bigswitch/snac.
[80] Open vSwitch, http://openvswitch.org/support/.
[81] Indigo: Open source openflow switches, http://www.open-

flowhub.org/display/Indigo/.
[82] OpenFlowJ, https://github.com/floodlight/loxigen/wiki/Open-

FlowJ-Loxi.
[83] OpenFaucet, https://github.com/rlenglet/openfaucet.
[84] Of softs witch13—cpqd, https://github.com/CPqD/ofsoftswi-

tch13.
[85] Pantou: Openflow 1.0 for openwrt, http://www.openflow.org/

wk/index.php/.
[86] Node.js, http://nodejs.org/.
[87] Pica8, http://pica8.com/products/.
[88] A10 Networks, https://www.a10networks.com/products/axapp-

lication delivery controller.
[89] Big vSwitch, http://www.bigswitch.com/sites/default/files/sdn-

resources/bvsdatasheet.pdf.
[90] Brocade ADX Series, http://www.brocade.com/en/products-

services/software-networking/application-delivery-controllers
.html.

http://www.cisco.com/c/en/us/solutions/collateral/data-center-virtualization/application-centric-infrastructure/white-paper-c11-731302.html
http://www.cisco.com/c/en/us/solutions/collateral/data-center-virtualization/application-centric-infrastructure/white-paper-c11-731302.html
http://www.cisco.com/c/en/us/solutions/collateral/data-center-virtualization/application-centric-infrastructure/white-paper-c11-731302.html
http://osrg.github.com/ryu/
http://www.opendaylight.org/project/technical-overview
http://www.opendaylight.org/project/technical-overview
http://www.projectfloodlight.org/floodlight/
http://www.projectfloodlight.org/floodlight/
http://onosproject.org/
http://karaf.apache.org/
https://wiki.opendaylight.org/view/OpenDaylight_Controller:_SAL_Architecture_Overview
https://wiki.opendaylight.org/view/OpenDaylight_Controller:_SAL_Architecture_Overview
https://tools.ietf.org/html/rfc6020
http://events.linuxfoundation.org/sites/events/files/slides/Radhika_Hirannaiah_MD-SAL_ONS2016.pdf
http://events.linuxfoundation.org/sites/events/files/slides/Radhika_Hirannaiah_MD-SAL_ONS2016.pdf
http://events.linuxfoundation.org/sites/events/files/slides/Radhika_Hirannaiah_MD-SAL_ONS2016.pdf
https://www.opennetworking.org/?p=1633&option=com_wordpress&Itemid=155
https://www.opennetworking.org/?p=1633&option=com_wordpress&Itemid=155
https://www.youtube.com/watch?v=QvEK_CFIGik
https://www.youtube.com/watch?v=QvEK_CFIGik
https://github.com/CiscoCloud/microservices-infrastructure
https://github.com/CiscoCloud/microservices-infrastructure
https://wiki.opendaylight.org/view/Network_Intent_Composition:Main
https://wiki.opendaylight.org/view/Network_Intent_Composition:Main
https://wiki.opendaylight.org/view/Network_Intent_Composition:NEMO_Model
https://wiki.opendaylight.org/view/Network_Intent_Composition:NEMO_Model
https://wiki.opendaylight.org/view/Network_Intent_Composition:NEMO_Model
https://arxiv.org/abs/1408.6760
https://github.com/noxrepo/nox
https://openflow.stanford.edu/display/ONL/POX+Wiki
http://archive.openflow.org/wk/index.php/Oflops
http://www.nec.com/
https://github.com/trema/trema
https://github.com/trema/trema
http://jaxon.onuos.org/
http://sourceforge.net/p/mul/wiki/Home/
http://openiris.etri.re.kr/
http://garyberger.net/?p=537
http://garyberger.net/?p=537
https://github.com/globalnoc/oess
https://github.com/bigswitch/snac
http://openvswitch.org/support/
http://www.openflowhub.org/display/Indigo/
http://www.openflowhub.org/display/Indigo/
https://github.com/floodlight/loxigen/wiki/OpenFlowJ-Loxi
https://github.com/floodlight/loxigen/wiki/OpenFlowJ-Loxi
https://github.com/rlenglet/openfaucet
https://github.com/CPqD/ofsoftswitch13
https://github.com/CPqD/ofsoftswitch13
http://www.openflow.org/wk/index.php/
http://www.openflow.org/wk/index.php/
http://nodejs.org/
http://pica8.com/products/
https://www.a10networks.com/products/ax-application_delivery_controller
https://www.a10networks.com/products/ax-application_delivery_controller
http://www.bigswitch.com/sites/default/files/sdnresources/bvsdatasheet.pdf
http://www.bigswitch.com/sites/default/files/sdnresources/bvsdatasheet.pdf
http://www.brocade.com/en/products-services/software-networking/application-delivery-controllers.html
http://www.brocade.com/en/products-services/software-networking/application-delivery-controllers.html
http://www.brocade.com/en/products-services/software-networking/application-delivery-controllers.html

30 Wireless Communications and Mobile Computing

[91] NEC programmable switch series, https://www.necam.com/
sdn/.

[92] ADVAOptical—FSP 150 & 3000, http://www.advaoptical.com/
en/products/scalable-optical-transport/fsp-3000.aspx.

[93] IBM RackSwitch G8264, http://www.redbooks.ibm.com/
abstracts/tips0815.html.

[94] HP OpenFlow Enabled Switches, https://www.hpe.com/uk/
en/product-catalog/networking/networking-switches.html.

[95] Juniper Junos MX, EX, QFX Series, http://www.juniper.net/
techpubs/en US/junos15.1/topics/concept/virtual-chassis-ex-
qfx-series-mixed-understanding.html.

[96] Mininet, http://mininet.org/.
[97] ns-3 simulator, https://www.nsnam.org/docs/release/3.13/mod-

els/html/openflow-switch.html.
[98] OMNeT++, https://omnetpp.org/.
[99] P. L.Ventre, B. Jakovljevic,D. Schmitz et al., “GEANTSDX-SDN

based open exchange point,” in Proceedings of the 2016 IEEE
NetSoft Conference and Workshops (NetSoft ’16), pp. 345–346,
Seoul, Republic of Korea, 2016.

[100] The OpenStack Project, https://www.openstack.org/.
[101] Puppet Enterprise IT, https://puppet.com/.
[102] Chef Automated Infrastructure, https://www.chef.io/chef/.
[103] Critical Infrastructure Management with CFEngine, https://

cfengine.com/.
[104] Open Compute Project, http://www.opencompute.org/about/.
[105] Facebook 6 Pack Modular Switch, https://code.facebook.com/

posts/717010588413497/introducing-6-pack-the-first-open-
hardware-modular-switch/.

[106] Open Network Install Environment, http://onie.org/.
[107] H. Mai, A. Khurshid, R. Agarwal, M. Caesar, P. B. Godfrey,

and S. T. King, “Debugging the data plane with anteater,” in
Proceedings of the ACMSIGCOMMConference (SIGCOMM ’11),
pp. 290–301, Toronto, Canada, August 2011.

[108] A. Khurshid,W. Zhou, M. Caesar, and P. B. Godfrey, “VeriFlow:
verifying network-wide invariants in real time,” in Proceedings
of the 1st ACM InternationalWorkshop onHot Topics in Software
Defined Networks (HotSDN ’12), pp. 49–54, ACM, Helsinki,
Finland, August 2012.

[109] N. Handigol, B. Heller, V. Jeyakumar, D. Maziéres, and N.
McKeown, “Where is the debugger for my software-defined
network?” in Proceedings of the 1st ACM InternationalWorkshop
on Hot Topics in Software Defined Networks (HotSDN ’12), pp.
55–60, ACM, Helsinki, Finland, August 2012.

[110] Sdn troubleshooting simulator, http://ucb-sts.github.com/sts/.
[111] NICE, https://code.google.com/archive/p/nice-of/.
[112] OFTest, http://archive.openflow.org/wk/index.php/OFTestTut-

orial.
[113] A. Wundsam, D. Levin, S. Seetharaman, and A. Feldmann,

“OFRewind: enabling record and replay troubleshooting for
networks,” in Proceedings of the USENIXConference onUSENIX
Annual Technical Conference (USENIXATC ’11), p. 29, USENIX
Association, Portland, Ore, USA, June 2011.

[114] Wireshark, https://www.wireshark.org/.
[115] Edge Core Systems, http://www.edge-core.com/productsKind

.php?cls=1.
[116] Agema System, http://www.agemasystems.com/products.php?

ctid=20.
[117] iwNetworks, http://www.iwnetworks.com/main/products/net-

work-switches/bare-metal.

[118] Whitebox, Understanding the basics, http://searchsdn.tech-
target.com/tip/White-box-switches-Understanding-the-basics.

[119] Whiteboxes ready for prime-time. Online Articile,
http://www.networkworld.com/article/3100927/network-
switch/white-boxes-are-now-ready-for-prime-time.html.

[120] Interface Masters, http://www.interfacemasters.com/products/
switches1g-10g-40g/290.

[121] Alpha Networks, http://www.alphanetworks.com/en/product
detail/ef0be540e4c8723f.

[122] PenguinComputing, http://www.penguincomputing.com/pro-
ducts/network-switches/.

[123] BigSwitch, http://www.bigswitch.com/products/switch-light.
[124] Cumulus Linux, https://cumulusnetworks.com/cumulus-linux/

overview/.
[125] O. S. Gigamon, https://www.gigamon.com/products/gigavue-

os.
[126] Broadcom, https://www.broadcom.com/products/ethernet-co-

mmunication-and-switching/switching/fastpath.
[127] Dell Open Networking Article, http://www.dell.com/learn/us/

en/ph/press-releases/2016-01-20-dell-raises-the-bar-for-open-
networking.

[128] IPFusion Products, http://www.ipinfusion.com/products/oc-
nos.

[129] M. Bansal, J. Mehlman, S. Katti, and P. Levis, “OpenRadio:
a programmable wireless dataplane,” in Proceedings of the 1st
ACM International Workshop on Hot Topics in Software Defined
Networks (HotSDN ’12), pp. 109–114, Helsinki, Finland, August
2012.

[130] L. E. Li, Z. M. Mao, and J. Rexford, “Toward software-defined
cellular networks,” in Proceedings of the 1st European Workshop
on Software Defined Networks (EWSDN ’12), pp. 7–12, Darm-
stadt, Germany, October 2012.

[131] X. Mi, Z. Tian, X. Xu, M. Zhao, and J. Wang, “NO stack: a SDN-
based framework for future cellular networks,” in Proceedings of
the International Symposium on Wireless Personal Multimedia
Communications (WPMC ’14), pp. 497–502, Sydney, Australia,
September 2014.

[132] A. Bradai, K. Singh, T. Ahmed, and T. Rasheed, “Cellular soft-
ware defined networking: a framework,” IEEE Communications
Magazine, vol. 53, no. 6, pp. 36–43, 2015.

[133] R. H. Gau and P. K. Tsai, “SDN-based optimal traffic engineer-
ing for cellular networks with service chaining,” in Proceedings
of the 2016 IEEE Wireless Communications and Networking
Conference, pp. 1–6, Doha, Qatar, April 2016.

[134] C. C. Marquezan, X. An, Z. Despotovic, R. Khalili, and A.
Hecker, “Identifying latency factors in SDN-based Mobile Core
Networks,” in Proceedings of the IEEE Symposium on Computers
and Communication (ISCC ’16), pp. 484–491, Messina, Italy,
June 2016.

[135] R. Trivisonno, R. Guerzoni, I. Vaishnavi, and A. Frimpong,
“Network resource management and QoS in SDN-enabled 5G
systems,” in Proceedings of the IEEE Global Communications
Conference (GLOBECOM ’15), pp. 1–7, San Diego, Calif, USA,
2015.

[136] T. T. Nguyen, C. Bonnet, and J. Harri, “SDN-based distributed
mobility management for 5G networks,” in Proceedings of the
IEEE Wireless Communications and Networking Conference
(WCNC ’16), pp. 1–7, Doha, Qatar, April 2016.

[137] L. M. Contreras, L. Cominardi, and H. Qian, “Mobile Networks
and Applications,” Mobile Networks and Applications, pp. 21–
226, 2016.

https://www.necam.com/sdn/
https://www.necam.com/sdn/
http://www.advaoptical.com/en/products/scalable-optical-transport/fsp-3000.aspx
http://www.advaoptical.com/en/products/scalable-optical-transport/fsp-3000.aspx
http://www.redbooks.ibm.com/abstracts/tips0815.html
http://www.redbooks.ibm.com/abstracts/tips0815.html
https://www.hpe.com/uk/en/product-catalog/networking/networking-switches.html
https://www.hpe.com/uk/en/product-catalog/networking/networking-switches.html
http://www.juniper.net/techpubs/en_US/junos15.1/topics/concept/virtual-chassis-ex-qfx-series-mixed-understanding.html
http://www.juniper.net/techpubs/en_US/junos15.1/topics/concept/virtual-chassis-ex-qfx-series-mixed-understanding.html
http://www.juniper.net/techpubs/en_US/junos15.1/topics/concept/virtual-chassis-ex-qfx-series-mixed-understanding.html
http://mininet.org/
https://www.nsnam.org/docs/release/3.13/models/html/openflow-switch.html
https://www.nsnam.org/docs/release/3.13/models/html/openflow-switch.html
https://omnetpp.org/
https://www.openstack.org/
https://puppet.com/
https://www.chef.io/chef/
https://cfengine.com/
https://cfengine.com/
http://www.opencompute.org/about/
https://code.facebook.com/posts/717010588413497/introducing-6-pack-the-first-open-hardware-modular-switch/
https://code.facebook.com/posts/717010588413497/introducing-6-pack-the-first-open-hardware-modular-switch/
https://code.facebook.com/posts/717010588413497/introducing-6-pack-the-first-open-hardware-modular-switch/
http://onie.org/
http://ucb-sts.github.com/sts/
https://code.google.com/archive/p/nice-of/
http://archive.openflow.org/wk/index.php/OFTestTutorial
http://archive.openflow.org/wk/index.php/OFTestTutorial
https://www.wireshark.org/
http://www.edge-core.com/productsKind.php?cls=1
http://www.edge-core.com/productsKind.php?cls=1
http://www.agemasystems.com/products.php?ctid=20
http://www.agemasystems.com/products.php?ctid=20
http://www.iwnetworks.com/main/products/network-switches/bare-metal
http://www.iwnetworks.com/main/products/network-switches/bare-metal
http://searchsdn.techtarget.com/tip/White-box-switches-Understanding-the-basics
http://searchsdn.techtarget.com/tip/White-box-switches-Understanding-the-basics
http://www.networkworld.com/article/3100927/network-switch/white-boxes-are-now-ready-for-prime-time.html
http://www.networkworld.com/article/3100927/network-switch/white-boxes-are-now-ready-for-prime-time.html
http://www.interfacemasters.com/products/switches1g-10g-40g/290
http://www.interfacemasters.com/products/switches1g-10g-40g/290
http://www.alphanetworks.com/en/product_detail/ef0be540e4c8723f
http://www.alphanetworks.com/en/product_detail/ef0be540e4c8723f
http://www.penguincomputing.com/products/network-switches/
http://www.penguincomputing.com/products/network-switches/
http://www.bigswitch.com/products/switch-light
https://cumulusnetworks.com/cumulus-linux/overview/
https://cumulusnetworks.com/cumulus-linux/overview/
https://www.gigamon.com/products/gigavue-os
https://www.gigamon.com/products/gigavue-os
https://www.broadcom.com/products/ethernet-communication-and-switching/switching/fastpath
https://www.broadcom.com/products/ethernet-communication-and-switching/switching/fastpath
http://www.dell.com/learn/us/en/ph/press-releases/2016-01-20-dell-raises-the-bar-for-open-networking
http://www.dell.com/learn/us/en/ph/press-releases/2016-01-20-dell-raises-the-bar-for-open-networking
http://www.dell.com/learn/us/en/ph/press-releases/2016-01-20-dell-raises-the-bar-for-open-networking
http://www.ipinfusion.com/products/ocnos
http://www.ipinfusion.com/products/ocnos

Wireless Communications and Mobile Computing 31

[138] K.-K. Yap, R. Sherwood, M. Kobayashi et al., “Blueprint for
introducing innovation into wireless mobile networks,” in Pro-
ceedings of the 2nd ACM SIGCOMM Workshop on Virtualized
Infrastructure Systems and Architectures, pp. 25–32, New Delhi,
India, September 2010.

[139] K. K. Yap, M. Kobayashi, R. Sherwood et al., “Openroads:
empowering research in mobile networks,” ACM SIGCOMM
Computer Communication Review, vol. 40, no. 1, pp. 125–126,
2010.

[140] R. Saunders, J. Cho,A. Banerjee, F. Rocha, and J. VanderMerwe,
“P2P offloading in mobile networks using SDN,” in Proceedings
of the Symposium on SDN Research (SOSR ’16), 7 pages, Santa
Clara, Calif, USA, March 2016.

[141] FON, http://corp.fon.com/.
[142] Freifunk, http://freifunk.net/.
[143] H. Huang, P. Li, S. Guo, and W. Zhuang, “Software-defined

wireless mesh networks: architecture and traffic orchestration,”
IEEE Network, vol. 29, no. 4, pp. 24–30, 2015.

[144] P. Dely, A. Kassler, and N. Bayer, “OpenFlow for wireless mesh
networks,” inProceedings of the 20th International Conference on
Computer Communications and Networks (ICCCN ’11), pp. 1–6,
IEEE, August 2011.

[145] A. Detti, C. Pisa, S. Salsano, and N. Blefari-Melazzi, “Wireless
mesh software defined networks (wmSDN),” in Proceedings of
the IEEE 9th International Conference on Wireless and Mobile
Computing, Networking and Communications (WiMob ’13), pp.
89–95, Lyon, France, October 2013.

[146] F. Yang, V. Gondi, J. O. Hallstrom, K.-C. Wang, and G. Eidson,
“OpenFlow-based load balancing for wireless mesh infrastruc-
ture,” in Proceedings of the IEEE 11th Consumer Communications
and Networking Conference (CCNC ’14), pp. 444–449, IEEE, Las
Vegas, Nev, USA, January 2014.

[147] J. Schulz-Zander, C. Mayer, B. Ciobotaru, S. Schmid, and A.
Feldmann, “OpenSDWN: programmatic control over home
and enterprise WiFi,” in Proceedings of the the 1st ACM SIG-
COMM Symposium on Software Defined Networking Research
(SOSR ’15), pp. 1–12, Santa Clara, Calif, USA, June 2015.

[148] A. Abujoda, D. Dietrich, P. Papadimitriou, and A. Sathiaseelan,
“Software-defined wireless mesh networks for internet access
sharing,” Computer Networks, vol. 93, pp. 359–372, 2015.

[149] S. Hasan, Y. Ben-David, C. Scott, E. Brewer, and S. Shenker,
“Enhancing rural connectivity with software defined networks,”
inProceedings of the 3rdACMAnnual SymposiumonComputing
for Development (DEV ’13), ACM, Bangalore, India, January
2013.

[150] E. Dimogerontakis, I. Vilata, and L. Navarro, “Software defined
networking for community network testbeds,” in Proceedings of
the IEEE 9th International Conference on Wireless and Mobile
Computing, Networking and Communications (WiMob ’13), pp.
111–118, Lyon, France, October 2013.

[151] S. Salsano, G. Siracusano, A. Detti, C. Pisa, P. L. Ventre,
and N. Blefari-Melazzi, “Controller selection in a Wireless
Mesh SDN under network partitioning andmerging scenarios,”
https://arxiv.org/abs/1406.2470.

[152] F. Yang, V. Gondi, J. O. Hallstrom, K.-C. Wang, and G. Eidson,
“OpenFlow-based load balancing for wireless mesh infrastruc-
ture,” in Proceedings of the IEEE 11th Consumer Communications
and Networking Conference (CCNC ’14), pp. 444–449, January
2014.

[153] J. Chung, G. Gonzalez, I. Armuelles, T. Robles, R. Alcarria, and
A. Morales, “Experiences and challenges in deploying Open-
Flow over real wireless mesh networks,” IEEE Latin America
Transactions, vol. 11, no. 3, pp. 955–961, 2013.

[154] M. Seyedebrahimi, F. Bouhafs, A. Raschellà, M. Mackay, and
Q. Shi, “SDN-based channel assignment algorithm for inter-
ference management in dense Wi-Fi networks,” in Proceedings
of the European Conference on Networks and Communications
(EuCNC ’16), pp. 128–132, Athens, Greece, June 2016.

[155] L. Suresh, J. Schulz-Zander, R.Merz,A. Feldmann, andT.Vazao,
“Towards programmable enterprise WLANS with Odin,” in
Proceedings of the 1st ACM InternationalWorkshop onHot Topics
in Software Defined Networks (HotSDN ’12), pp. 115–120, ACM,
Helsinki, Finland, August 2012.

[156] R. Riggio, T. Rasheed, and F. Granelli, “EmPOWER: a testbed
for network function virtualization research and experimen-
tation,” in Proceedings of the Workshop on Software Defined
Networks for Future Networks and Services (SDN4FNS ’13),
Trento, Italy, November 2013.

[157] A. Raschellà, F. Bouhafs, M. Seyedebrahimi, M. Mackay, and Q.
Shi, “A centralized framework for smart access point selection
based on the Fittingness Factor,” in Proceedings of the 23rd
International Conference on Telecommunications (ICT ’16), pp.
1–5, Thessaloniki, Greece, May 2016.

[158] B. A. A. Nunes, M. A. S. Santos, B. T. de OliveirA, C. B. Margi,
K. Obraczka, and T. Turletti, “Software-defined-networking-
enabled capacity sharing in user-centric networks,” IEEE Com-
munications Magazine, vol. 52, no. 9, pp. 28–36, 2014.

[159] K. L. Huang, C. L. Liu, C. H. Gan,M. L.Wang, and C. T. Huang,
“SDN-based wireless bandwidth slicing,” in Proceedings of the
International Conference on Software Intelligence Technologies
and Applications & International Conference on Frontiers of
Internet of Things, pp. 77–81, Hsinchu, Taiwan, 2014.

[160] K. Nakauchi and Y. Shoji, “WiFi network virtualization to
control the connectivity of a target service,” IEEE Transactions
on Network and Service Management, vol. 12, no. 2, pp. 308–319,
2015.

[161] N. Bizanis and F. A. Kuipers, “SDN and virtualization solutions
for the internet of things: a survey,” IEEEAccess, vol. 4, pp. 5591–
5606, 2016.

[162] A. De Gante, M. Aslan, and A. Matrawy, “Smart wireless sensor
network management based on software-defined networking,”
in Proceedings of the 27th Biennial Symposium on Communica-
tions (QBSC ’14), pp. 71–75, Kingston, Canada, June 2014.

[163] T. Luo, H.-P. Tan, and T. Q. S. Quek, “Sensor OpenFlow:
enabling software-defined wireless sensor networks,” IEEE
Communications Letters, vol. 16, no. 11, pp. 1896–1899, 2012.

[164] C. Orfanidis and C. Jacobsson, “Using software-de ned net-
working principles for wireless sensor networks,” in Proceedings
of the 11th Swedish National Computer Networking Workshop
(SNCNW ’15), Karlstad, Sweden, May 2015.

[165] L. Galluccio, S. Milardo, G. Morabito, and S. Palazzo, “SDN-
WISE: design, prototyping and experimentation of a stateful
SDN solution for wireless sensor networks,” in Proceedings of
the IEEEConference on Computer Communications (INFOCOM
’15), pp. 513–521, IEEE, Hong Kong, May 2015.

[166] Z. Qin, G. Denker, C. Giannelli, P. Bellavista, and N. Venkata-
subramanian, “A software defined networking architecture for
the internet-of-things,” in Proceedings of the IEEE Network
Operations and Management Symposium (NOMS ’14), pp. 1–9,
IEEE, Kraków, Poland, May 2014.

http://corp.fon.com/
http://freifunk.net/
https://arxiv.org/abs/1406.2470

32 Wireless Communications and Mobile Computing

[167] P. Dely, A. Kassler, and N. Bayer, “OpenFlow for wireless mesh
networks,” inProceedings of the 20th International Conference on
Computer Communications and Networks (ICCCN ’11), pp. 1–6,
August 2011.

[168] Y.Wang, H. Chen, X.Wu, and L. Shu, “An energy-efficient SDN
based sleep scheduling algorithm forWSNs,” Journal of Network
and Computer Applications, vol. 59, pp. 39–45, 2016.

[169] A. Kumar, S. Jain, U. Naik et al., “BwE: flexible, hierarchical
bandwidth allocation for WAN distributed computing,” in
Proceedings of the ACM Conference on Special Interest Group on
Data Communication (SIGCOMM ’15), pp. 1–14, London, UK,
August 2015.

[170] P. Patel, D. Bansal, L. Yuan et al., “Ananta: cloud scale load
balancing,” inProceedings of theACMSIGCOMMConference on
Applications, Technologies, Architectures, and Protocols for Com-
puter Communication (SIGCOMM ’13), pp. 207–218, August
2013.

[171] S. Natarajan, A. Ramaiah, and M. Mathen, “A software defined
cloudgateway automation system using OpenFlow,” in Pro-
ceedings of the IEEE 2nd International Conference on Cloud
Networking (CloudNet ’13), pp. 219–226, San Francisco, Calif,
USA, November 2013.

[172] B. Heller, S. Seetharaman, P. Mahadevan et al., “Elastictree:
saving energy in data center networks,” in Proceedings of the
7th USENIX Conference on Networked Systems Design and
Implementation, p. 17, USENIX Associatio, 2010.

[173] N. Beheshti and Y. Zhang, “Fast failover for control traffic in
software-defined networks,” in Proceedings of the IEEE Global
Communications Conference (Globecom ’12), pp. 2689–2694,
Ericsson Research, Anaheim, Calif, USA, 2012.

[174] J. Metzler, “Understanding software-defined networks,”
InformationWeek Reports, 2012, http://reports.information
week.com/abstract/6/9044/Data-Center/research-understand-
ing-software-defined-networks.html.

[175] C. D. Marsan, “IAB Panel Debates Management Benefits,
Security Challenges of Software-Defined Networking,” IETF
Journal, October 2012.

[176] V. Gudla, S. Das, A. Shastri et al., “Experimental demonstration
of openflow control of packet and circuit switches,” in Pro-
ceedings of the Optical Fiber Communication Conference (OFC
’11), Collocated National Fiber Optic Engineers Conference, 2010
Conference on (OFC/NFOEC ’10), vol. 45, pp. 1–3, IEEE, Los
Angeles, Calif, USA, 2011.

[177] D. Simeonidou, R. Nejabati, and M. P. Channegowda, “Soft-
ware defined optical networks technology and infrastructure:
enabling software-defined optical network operations,” in Pro-
ceedings of the Optical Fiber Communication Conference (OFC
’13), Optical Society of America, March 2013.

[178] L. Liu, T. Tsuritani, I. Morita, H. Guo, and J. Wu, “OpenFlow-
based wavelength path control in transparent optical networks:
a proof-of-concept demonstration,” in Proceedings of the 37th
European Conference on Optical Communication and Exhibition
(ECOC ’11), pp. 1–3, September 2011.

[179] A. N. Patel, P. N. Ji, and T. Wang, “Qos-aware optical burst
switching in openflow based software-defined optical net-
works,” in Proceedings of the 17th International Conference on
Optical NetworkDesign andModeling (ONDM ’13), pp. 275–280,
Brest, France, April 2013.

[180] “Optical transport working group otwg. In Open Networking
Foundation ONF,” 2013.

[181] K. L. Calvert, W. K. Edwards, N. Feamster, R. E. Grinter, Y.
Deng, and X. Zhou, “Instrumenting home networks,” ACM

SIGCOMMComputer Communication Review, vol. 41, no. 1, pp.
84–89, 2011.

[182] N. Feamster, “Outsourcing home network security,” in Pro-
ceedings of the ACM SIGCOMM Workshop on Home Networks
(HomeNets ’10), pp. 37–42, New Delhi, India, September 2010.

[183] R. Mortier, T. Rodden, T. Lodge et al., “Control and under-
standing: owning your home network,” in Proceedings of the
4th International Conference on Communication Systems and
Networks (COMSNETS ’12), pp. 1–10, IEEE, Bangalore, India,
January 2012.

[184] M. Dillon and T. Winters, “Virtualization of home network
gateways,” Computer, vol. 47, no. 11, Article ID 6965269, pp. 62–
65, 2014.

[185] J. Jo, S. Lee, and J. W. Kim, “Software-defined home networking
devices for multi-home visual sharing,” IEEE Transactions on
Consumer Electronics, vol. 60, no. 3, pp. 534–539, 2014.

[186] A. Takacs, E. Bellagamba, and J. A. Wilke, “Software-defined
networking: the service provider perspective,” Ericsson Review,
February 2013.

[187] S. Mehdi, J. Khalid, and S. Khayam, “Revisiting traffic
anomaly detection using software defined networking,” in
Recent Advances in Intrusion Detection, pp. 161–180, Springer,
Berlin, Germany, 2011.

[188] Z. Qazi, J. Lee, T. Jin, G. Bellala, M. Arndt, and G. Noubir,
“Application awareness in SDN,” SIGCOMM Computer Com-
munication Review, vol. 43, no. 4, pp. 487–488, 2013.

[189] H. Mekky, F. Hao, S. Mukherjee, Z.-L. Zhang, and T. V.
Lakshman, “Application-aware data plane processing in SDN,”
in Proceedings of the 3rd Workshop on Hot Topics in Software
Defined Networking (HotSDN ’14), pp. 13–18, ACM, New York,
NY, USA, 2014.

[190] H. E. Egilmez and A. M. Tekalp, “Distributed QoS architectures
for multimedia streaming over software defined networks,”
IEEE Transactions on Multimedia, vol. 16, no. 6, pp. 1597–1609,
2014.

[191] M. Jarschel, F. Wamser, T. Hohn, T. Zinner, and P. Tran-Gia,
“SDN-based application-aware networking on the example of
youtube video streaming,” in Proceedings of the 2nd European
Workshop on Software Defined Networks (EWSDN ’13), pp. 87–
92, Berlin, Germany, October 2013.

[192] J. Ruckert, J. Blendin, andD.Hausheer, “RASP: usingOpenFlow
to push overlay streams into the Underlay,” in Proceedings of the
13th IEEE International Conference on Peer-to-Peer Computing
(P2P ’13), Trento, Italy, September 2013.

[193] C. A. C. Marcondes, T. P. C. Santos, A. P. Godoy, C. C.
Viel, and C. A. C. Teixeira, “CastFlow: clean-slate multicast
approach using in-advance path processing in programmable
networks,” in Proceedings of the 17th IEEE Symposium on
Computers and Communication (ISCC ’12), pp. 000094–000101,
IEEE, Cappadocia, Turkey, July 2012.

[194] K. A. Noghani and M. O. Sunay, “Streaming multicast video
over software-defined networks,” in Proceedings of the 11th IEEE
International Conference on Mobile Ad Hoc and Sensor Systems
(MASS ’14), pp. 551–556, Philadelphia, Pa, USA, October 2014.

[195] P. Panwaree, K. Jongwon, and C. Aswakul, “Packet delay and
loss performance of streaming video over emulated and real
openflow networks,” in Proceedings of the 29th International
Technical Conference on Circuit/Systems Computers and Com-
munications (ITC-CSCC ’14), At Phuket, Thailand, 2014.

[196] Microsoft Lync SDN API, https://msdn.microsoft.com/en-us/
library/office/dn387069.aspx.

http://reports.informationweek.com/abstract/6/9044/Data-Center/research-understanding-software-defined-networks.html
http://reports.informationweek.com/abstract/6/9044/Data-Center/research-understanding-software-defined-networks.html
http://reports.informationweek.com/abstract/6/9044/Data-Center/research-understanding-software-defined-networks.html
https://msdn.microsoft.com/en-us/library/office/dn387069.aspx
https://msdn.microsoft.com/en-us/library/office/dn387069.aspx

Wireless Communications and Mobile Computing 33

[197] G. Liu and T. Wood, “Cloud-scale application performance
monitoring with SDN and NFV,” in Proceedings of the IEEE
International Conference on Cloud Engineering (IC2E ’15), pp.
440–445, March 2015.

[198] V. Mann, A. Vishnoi, and S. Bidkar, “Living on the edge:
monitoring network flows at the edge in cloud data centers,”
in Proceedings of the 5th International Conference on Commu-
nication Systems and Networks (COMSNETS ’13), pp. 1–9, IEEE,
Bangalore, India, January 2013.

[199] NetFlow, http://www.cisco.com/c/en/us/products/ios-nx-os-soft-
ware/ios-netflow/index.html.

[200] J. Hwang, K. K. Ramakrishnan, and T. Wood, “NetVM: high
performance and flexible networking using virtualization on
commodity platforms,” IEEE Transactions on Network and
Service Management, vol. 12, no. 1, pp. 34–47, 2015.

[201] X. N. Nguyen, D. Saucez, and T. Turletti, “Efficient caching
in content-centric networks using openflow,” in Proceedings of
the IEEE Conference on Computer Communications Workshops
(INFOCOM ’13), pp. 67–68, Rome, Italy, April 2013.

[202] L. Veltri, G. Morabito, S. Salsano, N. Blefari-Melazzi, and A.
Detti, “Supporting information-centric functionality in soft-
ware defined networks,” in Proceedings of the IEEE ICC Work-
shop on Software Defined Networks, June 2012.

[203] N. B. Melazzi, A. Detti, G. Mazza, G. Morabito, S. Salsano, and
L. Veltri, “An OpenFlow-based testbed for information centric
networking,” in Proceedings of the 21st Future Network &Mobile
Summit (FutureNetw ’12), pp. 1–9, IEEE, Berlin, Germany, July
2012.

[204] J. Suh, H. Jung, T. Kwon, and Y. Choi, “C-flow: content-
oriented networking over openflow,” in Proceedings of the Open
Networking Summit (ONS ’12), Santa Clara, Calif, USA, April
2012.

[205] D. Syrivelis, G. Parisis, D. Trossen et al., “Pursuing a software
defined information-centric network,” in Proceedings of the 1st
European Workshop on Software Defined Networks (EWSDN
’12), pp. 103–108, October 2012.

[206] X. N. Nguyen, Software defined networking in wireless mesh net-
work [M.S. thesis], INRIA, University of Nice Sophia Antipolis,
Nice, France, 2012.

[207] “Cisco visual networking index: global mobile data traffic
forecast update, 2011–2016,” Tech. Rep., Cisco, 2012.

[208] R. N. B. Rais, M. Mendonca, T. Turletti, and K. Obraczka, “To-
wards truly heterogeneous internets: bridging infrastructure-
based and infrastructure-less networks,” in Proceedings of the
3rd International Conference on Communication Systems and
Networks (COMSNETS ’11), pp. 1–10, Bangalore, India, January
2011.

[209] A. Coyle and H. Nguyen, “A frequency control algorithm
for a mobile adhoc network,” in Proceedings of the Military
Communications and Information Systems Conference (MilCIS
’10), Canberra, Australia, November 2010.

[210] Y. Zhang, N. Beheshti, and M. Tatipamula, “On resilience of
split-architecture networks,” in Proceedings of the IEEE Global
Telecommunications Conference (GLOBECOM ’11), pp. 1–6, 2011.

[211] B. Heller, R. Sherwood, andN.Mckeown, “The controller place-
ment problem,” 420 Acm Sigcomm Computer Communication
Review, vol. 42, no. 4, pp. 7–12, 2012.

[212] A. Sallahi and M. St-Hilaire, “Optimal model for the controller
placement problem in software defined networks,” IEEE Com-
munications Letters, vol. 19, no. 1, pp. 30–33, 2015.

[213] G. Yao, J. Bi, Y. Li, and L. Guo, “On the capacitated controller
placement problem in software defined networks,” IEEE Com-
munications Letters, vol. 18, no. 8, pp. 1339–1342, 2014.

[214] M. F. Bari, A. R. Roy, S. R. Chowdhury et al., “Dynamic
controller provisioning in software defined networks,” in Pro-
ceedings of the 9th International Conference on Network and Ser-
vice Management (CNSM ’13), pp. 18–25, Zürich, Switzerland,
October 2013.

[215] F. A. Özsoy and M. Ç. Pınar, “An exact algorithm for the
capacitated vertex p-center problem,” Computers & Operations
Research, vol. 33, no. 5, pp. 1420–1436, 2006.

[216] L. Yao, P. Hong, W. Zhang, J. Li, and D. Ni, “Controller place-
ment and flow based dynamic management problem towards
SDN,” in Proceedings of the IEEE International Conference on
Communication Workshop (ICCW ’15), pp. 363–368, IEEE,
London, UK, June 2015.

[217] F. J. Ros and P. M. Ruiz, “On reliable controller placements in
Software-Defined Networks,” Computer Communications, vol.
77, pp. 41–51, 2016.

[218] T. Erlebach, A. Hall, L. Moonen, A. Panconesi, F. Spieksma,
and D. Vukadinovi, “Robustness of the internet at the topology
and routing level,”Access and Download Statistics, vol. 4028, pp.
260–274, 2006.

[219] M. Guo and P. Bhattacharya, “Controller placement for improv-
ing resilience of software-defined networks,” in Proceedings
of the 4th IEEE International Conference on Networking and
Distributed Computing (ICNDC ’13), pp. 23–27, IEEE, Los
Angeles, Calif, USA, December 2013.

[220] A. Clauset, M. E. Newman, and C.Moore, “Finding community
structure in very large networks,” Physical Review E Statistical
Nonlinear and Soft Matter Physics, vol. 70, no. 6, pp. 264–277,
2004.

[221] S. Guo, S. Yang, Q. Li, and Y. Jiang, “Towards controller
placement for robust software-defined networks,” in Proceed-
ings of the IEEE 34th International Performance Computing
and Communications Conference (IPCCC ’15), pp. 1–8, Nanjing,
China, December 2015.

[222] Y. Hu, W. Wang, X. Gong, X. Que, and S. Cheng, “Reliability-
aware controller placement for software-defined networks,”
Wireless Communication Over Zigbee for Automotive Inclination
Measurement ChinaCommunications, vol. 11, no. 2, pp. 672–675,
2013.

[223] M. Yu, J. Rexford, M. J. Freedman, and J. Wang, “Scalable flow-
based networking with DIFANE,” in Proceedings of the ACM
SIGCOMM 2010 conference (SIGCOMM ’10), pp. 351–362, New
Delhi, India, September 2010.

[224] A. R. Curtis, J. C. Mogul, J. Tourrilhes, P. Yalagandula, P.
Sharma, and S. Banerjee, “DevoFlow: scaling flowmanagement
for high-performance networks,” ACM SIGCOMM Computer
Communication Review, vol. 41, no. 4, pp. 254–265, 2011.

[225] A. Voellmy, H. Kim, and N. Feamster, “Procera: a language for
high-level reactive network control,” in Proceedings of the 1st
Workshop on Hot Topics in Software Defined Networks (HotSDN
’12), pp. 43–48, ACM, Helsinki, Finland, August 2012.

[226] N. Foster, R. Harrison, M. J. Freedman et al., “Frenetic: a net-
work programming language,” in Proceedings of the 16th ACM
SIGPLAN International Conference on Functional Programming
(ICFP ’11), pp. 279–291, ACM, Tokyo, Japan, September 2011.

[227] T. L. Hinrichs, N. S. Gude, M. Casado, J. C. Mitchell, and
S. Shenker, “Practical declarative network management,” in
Proceedings of the 1st ACMWorkshop on Research on Enterprise
Networking (WREN ’09), pp. 1–10, New York, NY, USA, 2009.

http://www.cisco.com/c/en/us/products/ios-nx-os-software/ios-netflow/index.html
http://www.cisco.com/c/en/us/products/ios-nx-os-software/ios-netflow/index.html

34 Wireless Communications and Mobile Computing

[228] A. Voellmy and P. Hudak, “Nettle: taking the sting out of
programming network routers,” in Practical Aspects of Declar-
ative Languages: 13th International Symposium, PADL 2011,
Austin, TX, USA, January 24-25, 2011. Proceedings, vol. 6539
of Lecture Notes in Computer Science, pp. 235–249, Springer,
Berlin, Germany, 2011.

[229] C. Monsanto, J. Reich, N. Foster, J. Rexford, and D. Walker,
“Composing software-defined networks,” in Proceedings 10th
USENIX Symposium on Networked Systems Design and Imple-
mentation (NSDI ’13), Lombard, Ill, USA, 2013.

[230] Y. Luo, P. Cascon, E.Murray, and J. Ortega, “Accelerating Open-
Flow switching with network processors,” in Proceedings of
the 5th ACM/IEEE Symposium on Architectures for Networking
and Communications Systems (ANCS ’09), pp. 70–71, ACM,
Princeton, NJ, USA, October 2009.

[231] A. Nakao, “Flare: open deeply programmable network
node architecture,” http://netseminar.stanford.edu/seminars/
10 18 12.pdf.

[232] Controller performance comparisons, http://www.openflow
.org/wk/index.php/.

[233] K. Benton, L. J. Camp, and C. Small, “OpenFlow vulnerability
assessment,” in Proceedings of the 2nd ACM SIGCOMM Work-
shop on Hot Topics in Software Defined Networking (HotSDN
’13), pp. 151–152, Hong Kong, August 2013.

[234] D. Levin, A. Wundsam, B. Heller, N. Handigol, and A. Feld-
mann, “Logically centralized?: state distribution trade-offs in
software defined networks,” in Proceedings of the 1st ACM Inter-
national Workshop on Hot Topics in Software Defined Networks
(HotSDN ’12), pp. 1–6, ACM, Helsinki, Finland, August 2012.

[235] J. Metzler, “Understanding Software-Defined Networks,” Infor-
mationWeek Reports, pp.1–25, October 2012, http://reports
.informationweek.com/abstract/6/9044/Data-Center/research-
understanding-software-defined-networks.html.

[236] S. Scott-Hayward, S. Natarajan, and S. Sezer, “A survey of
security in software defined networks,” IEEE Communications
Surveys & Tutorials, vol. 18, no. 1, pp. 623–654, 2016.

[237] S. Shin and G. Gu, “Attacking software-defined networks: a
first feasibility study,” in Proceedings of the 2nd ACM SIG-
COMMWorkshop onHot Topics in SoftwareDefinedNetworking
(HotSDN ’13), pp. 165–166, August 2013.

[238] R. Smeliansky, “SDN for network security,” in Proceedings of
the International Science and Technology Conference (Modern
Networking Technologies) (MoNeTeC ’14), pp. 1–5, Moscow,
Russia, October 2014.

[239] L. Schehlmann, S. Abt, and H. Baier, “Blessing or curse?
Revisiting security aspects of software-defined networking,” in
Proceedings of the 10th International Conference on Network and
Service Management (CNSM ’14), pp. 382–387, Rio de Janeiro,
Brazil, November 2014.

[240] A. Y. Ding, J. Crowcroft, S. Tarkoma, and H. Flinck, “Soft-
ware defined networking for security enhancement in wireless
mobile networks,”Computer Networks, vol. 66, pp. 94–101, 2014.

[241] D. Kreutz, F. M. V. Ramos, and P. Verissimo, “Towards secure
and dependable software-defined networks,” in Proceedings of
the 2nd ACM SIGCOMM Workshop on Hot Topics in Software
Defined Networking (HotSDN ’13), pp. 55–60, Hong Kong,
August 2013.

[242] M. Tsugawa, A. Matsunaga, and J. A. Fortes, “Cloud computing
security: what changes with software-defined networking?” in
Secure Cloud Computing, pp. 77–93, Springer, New York, NY,
USA, 2014.

[243] OpenFlowSec, http://www.openflowsec.org/.
[244] J. Hizver, “Taxonomic modeling of security threats in software

defined networking,” in Proceedings of the BlackHat Conference,
August 2015.

[245] Border Gateway Protocol (BGP), https://tools.ietf.org/html/
rfc4271.

[246] Open Shortest Path First (OSPF), https://tools.ietf.org/html/
rfc2328.

[247] A. Gämperli, V. Kotronis, and X. Dimitropoulos, “Evaluating
the effect of centralization on routing convergence on a hybrid
BGP-SDN emulation framework,” ACM SIGCOMM Computer
Communication Review, vol. 44, no. 4, pp. 369–370, 2014.

[248] W. Duan, L. Xiao, D. Li et al., “OFBGP: a scalable, highly
available BGP architecture for SDN,” in Proceedings of the 11th
IEEE International Conference on Mobile Ad Hoc and Sensor
Systems (MASS ’14), pp. 557–562, IEEE, Philadelphia, Pa, USA,
October 2014.

[249] P. Lin, J. Bi, and H. Hu, “BTSDN: BGP-based transition
for the existing networks to SDN,” in Proceedings of the 6th
International Conference on Ubiquitous and Future Networks
(ICUFN ’14), pp. 419–424, Shanghai, China, July 2014.

[250] C. Chen, B. Li, and D. Lin, “Software-defined inter-domain
routing revisited,” in Proceedings of the IEEE International Con-
ference on Communications (ICC ’16), pp. 1–6, Kuala Lumpur,
Malaysia, May 2016.

[251] L. You, L. Wei, L. Junzhou, J. Jian, and X. Nu, “An inter-domain
multi-path flow transfer mechanism based on SDN and multi-
domain collaboration,” in Proceedings of the 14th IFIP/IEEE
International Symposium on Integrated Network Management
(IM ’15), pp. 758–761, Ottawa, Canada, May 2015.

[252] M. Caria, T. Das, A. Jukan, and M. Hoffmann, “Divide and
conquer: partitioningOSPFnetworkswith SDN,” inProceedings
of the 14th IFIP/IEEE International Symposium on Integrated
Network Management (IM ’15), pp. 467–474, Ottawa, Canada,
May 2015.

[253] Z. Chen, J. Bi, Y. Fu, Y. Wang, and A. Xu, “MLV: a multi-
dimension routing information exchange mechanism for inter-
domain SDN,” in Proceedings of the IEEE 23rd International
Conference on Network Protocols (ICNP ’15), pp. 438–445, San
Francisco, Calif, USA, November 2015.

[254] Y. Wang, J. Bi, K. Zhang, and Y. Wu, “A framework for fine-
grained inter-domain routing diversity via SDN,” in Proceedings
of the 8th International Conference on Ubiquitous and Future
Networks (ICUFN ’16), pp. 751–756, Vienna, Austria, July 2016.

[255] K. Phemius, M. Bouet, and J. Leguay, “DISCO: distributed SDN
controllers in a multi-domain environment,” in Proceedings
of the IEEE Network Operations and Management Symposium
(NOMS ’14), pp. 1–2, IEEE, Kraków, Poland, May 2014.

[256] P. Thai and J. C. de Oliveira, “Decoupling policy from routing
with software defined interdomain management: interdomain
routing for SDN-based networks,” in Proceedings of the IEEE
22nd International Conference on Computer Communication
and Networks (ICCCN ’13), pp. 1–6, Nassau, Bahamas, August
2013.

[257] Quagga Routing Suite, http://www.nongnu.org/quagga/.
[258] A. Gupta, L. Vanbever, M. Shahbaz et al., “SDX, a software

defined internet exchange,” in Proceedings of the ACM SIG-
COMM Computer Communication Review, vol. 44, no. 4, pp.
551–562, ACM, Chicago, Ill, USA, August 2014.

http://netseminar.stanford.edu/seminars/10_18_12.pdf
http://netseminar.stanford.edu/seminars/10_18_12.pdf
http://www.openflow.org/wk/index.php/
http://www.openflow.org/wk/index.php/
http://reports.informationweek.com/abstract/6/9044/Data-Center/research-understanding-software-defined-networks.html
http://reports.informationweek.com/abstract/6/9044/Data-Center/research-understanding-software-defined-networks.html
http://reports.informationweek.com/abstract/6/9044/Data-Center/research-understanding-software-defined-networks.html
http://www.openflowsec.org/
https://tools.ietf.org/html/rfc4271
https://tools.ietf.org/html/rfc4271
https://tools.ietf.org/html/rfc2328
https://tools.ietf.org/html/rfc2328
http://www.nongnu.org/quagga/

Wireless Communications and Mobile Computing 35

[259] S. Whyte, Project CARDIGAN. An SDN Controlled Exchange
Fabric, 2012, https://www.nanog.org/meetings/nanog57/pres-
entations/Wednesday/wed.lightning3.whyte.sdn.controlled.ex-
change.fabric.pdf.

[260] “OpenDay Light Software-Defined Network Interfac Applica-
tion (SDNi),” https://wiki.opendaylight.org/view/ODL-SDNi
App:Main.

[261] “SDN-Enabled Virtual SBC/Virtual IMS,” http://h20195.www2
.hpe.com/V2/GetPDF.aspx/4AA6-3418ENW.pdf.

[262] Inter-SDN controller communication, http://www.tcs.com/
SiteCollectionDocuments/White%20Papers/Inter-SDN-Cont-
roller-Communication-Border-Gateway-Protocol-0314-1.pdf.

https://www.nanog.org/meetings/nanog57/presentations/Wednesday/wed.lightning3.whyte.sdn.controlled.exchange.fabric.pdf
https://www.nanog.org/meetings/nanog57/presentations/Wednesday/wed.lightning3.whyte.sdn.controlled.exchange.fabric.pdf
https://www.nanog.org/meetings/nanog57/presentations/Wednesday/wed.lightning3.whyte.sdn.controlled.exchange.fabric.pdf
https://wiki.opendaylight.org/view/ODL-SDNi_App:Main
https://wiki.opendaylight.org/view/ODL-SDNi_App:Main
http://h20195.www2.hpe.com/V2/GetPDF.aspx/4AA6-3418ENW.pdf
http://h20195.www2.hpe.com/V2/GetPDF.aspx/4AA6-3418ENW.pdf
http://www.tcs.com/SiteCollectionDocuments/White%20Papers/Inter-SDN-Controller-Communication-Border-Gateway-Protocol-0314-1.pdf
http://www.tcs.com/SiteCollectionDocuments/White%20Papers/Inter-SDN-Controller-Communication-Border-Gateway-Protocol-0314-1.pdf
http://www.tcs.com/SiteCollectionDocuments/White%20Papers/Inter-SDN-Controller-Communication-Border-Gateway-Protocol-0314-1.pdf

International Journal of

Aerospace
Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Active and Passive
Electronic Components

Control Science
and Engineering

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 International Journal of

 Rotating
Machinery

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com

 Journal ofEngineering
Volume 2014

Submit your manuscripts at
https://www.hindawi.com

VLSI Design

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Shock and Vibration

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Civil Engineering
Advances in

Acoustics and Vibration
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Advances in
OptoElectronics

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Sensors
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Chemical Engineering
International Journal of Antennas and

Propagation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Navigation and
 Observation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
Sensor Networks

International Journal of

