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With the rapid development of the network and the informatization of society, how to improve the accuracy of information is an
urgent problem to be solved.The existing method is to use an intelligent robot to carry sensors to collect data and transmit the data
to the server in real time. Many intelligent robots have emerged in life; the UAV (unmanned aerial vehicle) is one of them.With the
popularization of UAV applications, the security of UAV has also been exposed. In addition to some human factors, there is a major
factor in the UAV’s endurance. UAVs will face a problem of short battery life when performing flying missions. In order to solve
this problem, the existing method is to plan the path of UAV flight. In order to find the optimal path for a UAV flight, we propose
three cost functions: path security cost, length cost, and smoothness cost. The path security cost is used to determine whether the
path is feasible; the length cost and smoothness cost of the path directly affect the cost of the energy consumption of the UAV flight.
We proposed a heuristic evolutionary algorithm that designed several evolutionary operations: substitution operations, crossover
operations, mutation operations, length operations, and smoothness operations. Through these operations to enhance our build
path effect. Under the analysis of experimental results, we proved that our solution is feasible.

1. Introduction

With the rapid development of the network and the informa-
tization of society, how to improve the accuracy of informa-
tion is an urgent problem to be solved. The existing method
is to use an intelligent robot to carry sensors to collect data
and transmit the data to the server in real time [1]. Many
intelligent robots have emerged in life; the UAV (unmanned
aerial vehicle) is one of them. UAV is the unmanned aircraft
operated by radio remote control devices and self-contained
program; it is operated entirely or intermittently by on-
board computers. Compared to the manned aircraft, it has
many advantages, such as small size, low cost, easy to use,
and portable camera or other sensors. UAVs are used in
various tasks in industries such as commerce, agriculture, and
military applications, including environmental monitoring,
target identification, border patrols, and search and rescue
assistance. However, UAVs also exposed a lot of problems,
the most important issue is the endurance of UAVs. Energy
scheduling problemhas always been a thorny issue inwireless

network applications [2–4]; UAVs are the same. Due to the
limited payload of UAVs, it is not possible to add more
batteries to the UAVs. Only when the UAVs perform their
tasks, can they fly as effective paths as possible. So path
planning is the primary issue we want to solve when we study
UAVs.

UAV path planning refers to the optimal path planning
problem of UAVs. The main purpose of the optimization
path is to find a safe flight path with minimum energy
consumption on the premise of completing the UAVmission.
That is to say, the essence of path planning is to find one
in the workspace according to one or some optimization
criteria (e.g., minimum working cost, shortest walking path,
and shortest walking time). To find the optimal path for
UAV, recently, a lot of work has been proposed [5, 6].
These proposed algorithms mainly are divided into two
categories in terms of the algorithm form, including opti-
mal algorithm and the heuristic algorithm. The optimal
algorithms mainly include mathematical programming algo-
rithm, parameter optimization algorithm and exhaustion
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method,while the heuristic algorithms includeA∗ algorithm,
ant colony algorithm, genetic algorithm, and simulated
annealing algorithm. There are many differences between
two kinds of algorithms. First, the optimal algorithm will
have high computational complexity when the scale is large,
while the heuristic algorithm will have certain advantages
in efficiency. Second, the heuristic algorithm exists in a
random probability, while the optimal algorithm can solve
this problem. Moreover, algorithms can be divided into cov-
erage paths and optimal path planning algorithms according
to the tasks performed by UAVs. Coverage path planning
is mainly used in environmental monitoring and regional
surveys. The main algorithms designed for environmental
monitoring and regional surveys are raster scanning [7] and
regional segmentation [8–13]. The purpose of the optimal
path planning algorithm is to find the minimum flight
cost path; it means that UAV fly in the effective path
within the effective time. Both of these algorithms is aimed
at minimizing the cost of UAV flight. Although existing
algorithms have made some achievements on the UAV path
planning, these methods only take the UAV’s flight length
or the number of turns of UAV flight paths (the number
of UAV’s corners) into consideration when referring to
the UAV’s flight cost. The classical evolutionary algorithm
extends from one point to the surrounding adjacent points
while traversing the path and cannot skip over the adjacent
points.

In this paper, there are two contributions. (1) The first
one is analysis of UAV flight energy consumption factors and
feasibility of flight paths. We propose three cost functions:
path security cost, path length cost, and path smoothness
cost. The path security cost is used to determine whether
the path is feasible; the length cost and smoothness cost of
the path directly affect the cost of the energy consumption
of the UAV’s flight. (2) A heuristic evolutionary algorithm is
proposed and several evolutionary operations are designed:
substitution operation, cross operation, mutation operation,
length operation, and smoothness operation, through these
operations to enhance our build path effect.

The structure of this paper is as follows. In the sec-
ond section, the current research status of intelligent robot
path planning algorithms is introduced. Section 3 mainly
introduces the construction of cost functions. Section 4
mainly introduces the design of path planning algorithms.
Section 5 mainly introduces the experimental results. It
mainly introduces some conclusions and further discus-
sion.

2. Related Work

The core of path planning is the design of algorithms. Cur-
rently, path planning algorithms have attracted widespread
attention. Whether they are global path planning or local
path planning, the essence of the algorithm is to solve the
travelling salesman problem [15]; the algorithms can be
roughly classified into the following categories: traditional
algorithms, heuristic algorithms, and intelligent bionic algo-
rithms.

2.1. Traditional Path Planning Algorithms. The traditional
path planning algorithms mainly include the visibility graph,
artificial potential field, simulate anneal arithmetic method,
and fuzzy logic algorithm.

Visibility Graph. The viability graph is to regard the robot
as a point and connect the vertices of the robot, the target
point, and the polygonal obstacle. These lines cannot cross
the obstacle. So a visibility graph is formed [16]. Since the
vertices of any two lines are visible, for the robot, all paths
from the starting point along these lines to the target point are
collision-free paths. Taking advantage of an optimized search
algorithm to search for the visibility graph, a shortest path can
eventually be found. The advantage is that the shortest path
can be found.The disadvantage is the lack of flexibility. Once
the starting point and target change, the visibility graph can
be reconstructed.

Artificial Potential Field. The artificial potential field is a
virtual force method proposed by Khatib [17]. The basic idea
of this method is to consider the movement of robot in the
environment as a movement of the robot in a virtual force
field, where the obstacle generates a repulsive force on the
robot and the target point generates a gravitational force on
the robot. The combined force of gravity and repulsion acts
as the robot control force to control the robot to avoid the
obstacles and reach the target point. The advantage of the
artificial potential field method is that it has good real-time
performance and is convenient for robot bottom control.
Nevertheless, the traditional artificial potential field method
has the following disadvantages: local minimum points and
target inaccessibility [18].

Simulate Anneal Arithmetic. Simulate anneal arithmetic is an
effective approximation algorithm that is suitable for large-
scale combinatorial optimization problems. It imitates the
annealing process of solid materials. By setting the initial
temperature, initial state, and cooling rate, the temperature
is controlled to continuously decrease. Combining the prob-
abilistic jump characteristics, make use of the domain of
solution space for random search to avoid falling into a
local optimum. It has the advantage of simple and efficient
operation, etc. However, there are shortcomings such as slow
convergence and randomness.The setting of its parameters is
a key part to the realization of the algorithm [19].

Fuzzy Logic Algorithm. The fuzzy logic algorithm simulates
the driver’s driving experience and combines the physio-
logical perception and action. According to the real-time
sensor information of the system, the data elements are con-
verted into fuzzy sets, and the output results are determined
according to the membership function, and then the table
information is obtained from the table [20]. The advantage
of fuzzy logic algorithm is its robustness, which does not
require the establishment of complex mathematical models,
and avoids the disadvantages of mobile robots in other
algorithms that are strongly dependent on the environment.
The disadvantage is that it is more difficult to establish fuzzy
rules [21].
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2.2. Heuristic Algorithms. The heuristic algorithm has a
strong path search capability and can be used in a discrete
path topology. Common heuristic search algorithms include
the A∗ algorithm, the Dijkstra algorithm and the Floyd
algorithm.

(1) A∗ Algorithm. By setting appropriate heuristic functions,
the A∗ algorithm comprehensively evaluates the value of
each extended node and expands by comparing the nodes of
each extended node to select the lowest cost node until the
target point is found. The advantage of the A∗ algorithm is
that there are few extension nodes and it has good real-time
performance. The disadvantage is that the size of the robot
itself is ignored in the actual motion process.

(2) Dijkstra’s Algorithm. Dijkstra’s algorithm is a typical
shortest path algorithm. It extends from the starting point to
the center layer until it reaches the end point and then obtains
the shortest path by comparing the nodes’ forward traversal
[22].The advantage is that the shortest path has a high success
rate and good robustness. The disadvantage is that all nodes
need to be traversed to obtain the shortest path. Compared to
the A∗ algorithm, the efficiency is poor, and it is less effective
for complex topological networks. In addition, the algorithm
cannot handle the problem with negative edges.

(3) Floyd Algorithm. Floyd algorithm is an algorithm for
finding the shortest path between vertices in a given weighted
path topology network. It first converts the path network
into a weight matrix and then finds the shortest distance
between any two points in the weight matrix [23]. It has
higher efficiency than Dijkstra’s algorithm, but it also has
disadvantages such as high time complexity and unsuitable
for big data calculation.

2.3. Intelligent Bionic Path Planning Algorithms. Intelligent
bionic algorithm is an algorithm discovered by people
through bionics research in a series of natural phenomena,
including ant colony optimization, particle swarm opti-
mization algorithm, genetic algorithm, and neural network
algorithm.

(1) Ant Colony Optimization. The ant colony optimization
is an algorithm inspired by the phenomenon in which ants
search for food. Each ant leaves a certain concentration of
pheromone from the starting point to the foraging road.
The pheromone will slowly evaporate with the passage of
time, and the ants will use the pheromone concentration
as the basis for path selection. The higher the pheromone
concentration, the greater the probability that the path will
be selected. As time goes on, the higher the concentration
of pheromone left by the shorter path due to more ants’
traversing, the higher the probability of ant selection on the
higher concentration path and the more pheromones would
be left. The shortest path will be discovered quickly after
repeated iterations, which achieves the goal of path planning.
Ant colony algorithm is essentially a parallel algorithm that
is easy to implement by computers and has good global
optimization ability. However, as the environment expands,

the computational volume will increase exponentially, and it
is easy to fall into the local optimum [24–26].

(2) Particle Swarm Optimization. Particle Swarm Optimiza-
tion (PSO) is also an iterative algorithm. It simulates bird’s
flight predation behavior and makes use of the sharing of
information among individuals in a group to make the
movement of the entire population produce an evolutionary
process from disorder to order in the problem solving space,
thereby obtaining an optimal solution. The system is initial-
ized as a set of random solutions. The individual updates
the position through the individual historical best solution
and the global history optimal solution makes it follow
the optimal particle and iteratively searches for the optimal
value. Compared with genetic algorithms, PSO does not have
many parameters that need to be adjusted. The algorithm
has the advantages of simplicity, easy implementation, good
robustness, and fast convergence, but it is easy to fall into the
local optimal solution [27].

(3) Genetic Algorithm. Genetic algorithm is a computational
model that simulates the natural selection of Darwin’s bio-
logical evolution theory and the genetic evolution process
of genetic mechanisms. Starting from a population that may
have potential solution set, the population is first coded,
and the adaptive value of each individual is calculated.
According to the principle of survivability of the fittest,
selection, crossover, and mutation are performed, the poorer
individuals are eliminated, and the remaining individuals are
repeatedly iterated again until the best individual is produced.
The greatest advantage of the genetic algorithm is that it is
easy to combine with other algorithms and give full play
to its own iterative advantages. The disadvantage is that
because there is no feedback information, the computational
efficiency will be greatly reduced after the later period [28].

(4) Neural Network Algorithm. Artificial neural network
system appeared after the 1940s. It is made up of a number
of connective weights with adjustable neurons. It has features
such as large-scale parallel processing, distributed informa-
tion storage, and good self-organizing self-learning capa-
bilities [29]. The neural network algorithm is used in path
planning as follows: the neural network is used to describe the
environmental constraints and the collision energy function
is calculated. The sum of the collision energy function and
the distance function is used as the optimization objective
function, and the point set is determined by optimizing the
extreme value of the objective function. The equation of
motion ultimately makes the iterative path point set tend to
be the optimal planning path. Although neural network has
excellent learning ability, its poor generalization ability is its
fatal weakness, but because of its strong learning ability and
good robustness, its combination with other algorithms has
become a research hotspot in the field of path planning [30].

3. The Cost Function

In some classical optimization algorithms, the length of
the path represents the energy consumption of UAV flight.
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Table 1: The meaning of the parameters in this paper.

Parameter
𝐶𝑜𝑠𝑡
𝑠

the security cost of the path
𝐶𝑜𝑠𝑡𝑙 the length cost of the path
𝐶𝑜𝑠𝑡𝑎 the smoothness cost of the path
Cost the effective cost of the path
𝑙𝑖 the length of the i th obstacle covering the path
𝐿 the total length of the path
m the number of obstacles on the path
n the number of points traversed by the path
(𝑥𝑛, 𝑦𝑛) the coordinate of the nth traversal point
𝜃𝑛 the rotation angle of the path at the nth traversal point
𝑊𝑙 the energy consumption of UAV flying in a straight line
𝑊𝑎 the energy consumption of drones flying at corners
𝜔1,𝜔2 two weights

Thinking about the problem of energy consumption and the
feasibility of the path of UAV flight, this paper proposes
three costs. The cost of path security is to determine whether
the path is feasible. The length cost of the path and the
smoothness cost of the path represent the energy cost of the
path flight of the UAV. Table 1 shows the meaning of the
parameters in our paper.

3.1. Path Security. During the flight of aUAV, themost impor-
tant thing is not to collide with obstacles in the environment.
The purpose of the security of the route is to avoid obstacles
on the route. Therefore, the number of obstacles on a path
is the primary determinant of the feasibility of the path. We
define the degree of security of the path to be calculated by
the occupancy of obstacles that have passed through the UAV
flight path. Equation (1) shows the calculation of the path
security𝐶𝑜𝑠𝑡𝑠.

𝐶𝑜𝑠𝑡𝑠 =
𝑚

∑
𝑖=1

𝑙𝑖
𝐿 (1)

𝐶𝑜𝑠𝑡𝑠 indicates the security cost above the path, m is the
number of obstacles on the path, and 𝑙𝑖 is the length of the ith
obstacle covering the path. L is the total length of the path.

We ultimately find that the theoretical number of path
obstructions should be 0. This cost is used as a factor to
determine the feasibility of the path.

3.2. The Length of the Path. The length of the path refers
to the path from the starting point to the end point of the
UAV.The length of the path directly relates to the UAV flight
time, which directly affects the energy consumption of the
UAV. Therefore, the shorter the UAV’s flight path means less
energy consumed by UAV flight. In mathematics, we mainly
calculate the Euclidean metric distance of the flight path of
each UAV.The length cost of the path is shown in

𝐶𝑜𝑠𝑡𝑙 =
𝑛−1

∑
𝑛=1

√(𝑥𝑛+1 − 𝑥𝑛)2 + (𝑦𝑛+1 − 𝑦𝑛)2 (2)

𝐶𝑜𝑠𝑡𝑙 is the length of the path of which UAV go through
the threat area and 𝐶𝑜𝑠𝑡𝑙 represents the length cost of the
path, which is the most important factor affecting the flight
energy consumption of the UAV. We can calculate 𝐶𝑜𝑠𝑡𝑙 by
point coordinates on the UAV’s flight path. n is the number
of points traversed by the flight path and (𝑥𝑛, 𝑦𝑛) is the
coordinate of the nth traversal point.

3.3. The Smoothness of the Path. The principle of the corner
of a multirotor UAV is to obtain a body rotation force
by changing the speed of the adjacent motor by a UAV.
Therefore, the angle of rotation is also a factor that determines
energy consumption. Considering this situation, we define a
cost function for path smoothness. Equation (3) shows the
smoothness cost 𝐶𝑜𝑠𝑡𝑎.

𝐶𝑜𝑠𝑡𝑎 =
{{{
{{{
{

0, n ≤ 2
𝑛−1

∑
𝑛=2

𝜃𝑛, 𝑛 > 2
(3)

𝐶𝑜𝑠𝑡𝑎 represents the smoothness cost of theUAV’s flight path.
At a fixed angular speed, 𝐶𝑜𝑠𝑡𝑎 also affects the UAV’s flight
energy consumption, which is the angle number of the UAV’s
path rotation. 𝜃𝑛 is the rotation angle of the path at the nth
traversal point, which can be calculated by the law of cosines.

3.4. Effective Cost Function. When searching for the best
flight path of UAV, we must consider the three cost functions
above. Since the three cost function units and the meaning
of inclusion are different, the sum of the three costs cannot
be calculated directly. Therefore, we set the weight based on
the weight of each cost function. Since both the length of the
path and the smoothness of the path can affect the energy
consumption of the UAV flight, we can determine the weight
by the energy loss value of the UAV between the length of the
path and the smoothness. Jalil Modares et al. [31] verified that
the energy consumption of UAV and the path distance and
number of angles are approximately linear. We use them to
establish the energy model to determine the weight values of
the length cost and the angle cost. Energy equation (4) shows
the relationship between UAV energy𝑊𝑙 and flight distance:

𝑊𝑙 = 𝜔1𝐶𝑜𝑠𝑡𝑙 (4)

Equation (5) shows the relationship between the UAV energy
𝑊𝑎 and the angle of rotation:

𝑊𝑎 = 𝜔2𝐶𝑜𝑠𝑡𝑎 (5)

The energy cost of the flight path is shown in

Cost = 𝜔1𝐶𝑜𝑠𝑡𝑙 + 𝜔2𝐶𝑜𝑠𝑡𝑎 (6)

where Cost represents an effective cost that directly affect the
energy consumption of the UAV and is directly used as an
important factor in determining the fitness function of the
path in the algorithm and the value method of 𝜔1 and 𝜔2 is
shown in experiment.
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4. Algorithm Design

Similar to evolutionary algorithms, the methods our pro-
posed include initializing the population, calculating the
individual’s cost fitness, evolving operations, and jumping
out of the loop. The optimization mode proposed by this
paper is different from the classical optimization algorithm.
Our method is to minimize the energy consumption of the
path and proposes several evolutionary operations: replac-
ing operation, crossover operation, length operation, and
smoothness operation. Our method retains the infeasible
path, which improves the diversity of paths, so that it is
possible to jump out of the local optimization. The classi-
cal evolutionary algorithm extends from one point to the
surrounding adjacent points while traversing the path and
cannot skip over the adjacent points.When traversing a path,
our method can skip some adjacent traversal points, which
can effectively reduce the length and smoothness of the path.
The algorithm flow is shown in Figure 1.

Algorithm 1 is the pseudocode of this algorithm. Step
1 is initialization population; we randomly generate a set
of solutions. Steps 2-4 are a replacement operation. During
the initialization and evolution of classical optimization
algorithms, the solution generated by our method may be
an infeasible solution. Therefore, we propose a replacement
operation. The replacement operation is mainly to turn the
infeasible solutions into feasible solutions. Steps 6-13 are to
find the optimal solution by the evolutionary operations.The
paper describes in detail the evolutionary operation in the
later. Our termination condition is the number of iterations.

4.1. Replacing Operation. During the initialization and evolu-
tion of classical optimization algorithms, their paths are fea-
sible paths. Such operations easily fall into local optimization.
In ourmethod, the infeasible path is retained,which improves
the diversity of paths, so that it is possible to jump out of
the local optimization. A replacing operation is proposed to
deal with an infeasible path in our method. The replacement
operation is mainly to turn the infeasible path into a feasible
path and determine the feasibility of the path through the
path security cost𝐶𝑜𝑠𝑡𝑠 (see (1)).When the path security cost
is 0, the path is feasible; otherwise the path is not feasible.
When the path is not feasible, finding a new feasible path
replaces the infeasible path. The specific steps are as follows:
First, the collision path segmentation is determined. Then
the distance of the obstacle vertex to the segmented path is
calculated, respectively. The point of the maximum distance
between the two sides of the piecewise path is taken as the
candidate for in terms of passing the obstacle and connecting
the endpoints of the segmentation path and the candidate
points, respectively, to generate two new paths. Calculating
the effective cost Cost (see (5)) of the two paths, the path
with small energy consumption cost is selected to replace the
original collision. As shown in Figure 2, when the segmented
path SE is infeasible, the two points P, Q are found that are
farthest from the obstacle vertex on both sides of the collision
path SE to the segmented path. The infeasible path SE is
replaced by two feasible paths SPE and SQE, and then the
effective costs of SPE and SQE are calculated, respectively.

1 Initialization population
2 Calculating the security cost of each individual 𝐶𝑜𝑠𝑡𝑠
3 If 𝐶𝑜𝑠𝑡𝑠 ̸= 0
4 Replacing operation
5 Updating population, go to step 2
6 If 𝐶𝑜𝑠𝑡

𝑠 = 0
7 Calculating effective cost of each individual 𝐶𝑜𝑠𝑡
8 If has not terminated
9 Evolutionary operations
10 Updating population, go to step 2
11 If termination
12 Output optimal path
13 End

Algorithm 1

Last, the minimum energy cost path SPE is chosen to take
the replace of the path SE.

4.2. Crossover Operation. The crossover operation is to gen-
erate a new path through cross replacement. When there are
two or more cross points in two paths, two cross points are
randomly selected, and the path between the two selected
cross points is exchanged to generate new paths.The effective
cost of four paths is calculated, and the optimal effective
cost path is chosen. Figure 3 is the result of the crossover
operation. As shown in Figure 3(a), when the initial split
path L1 and L2 have more than two intersections, Figure 3(b)
shows that the crossover produces two new paths L3 and L4.

4.3.MutationOperation. Mutation refers to replacing certain
gene values in individual code strings with other gene
values based on the probability of mutation to form a new
individual. In this paper, the feasibility of the path will change
whenever the coordinate node of the path mutates. In order
to solve this problem, two different probability mutation
operations are proposed to deal with the feasible path and
the infeasible path respectively. When the path is feasible, the
coordinates of the path node are mutated in a small range
with a small probability, and the variation path is still feasible;
when the path is not feasible, the coordinates of the path node
are mutated in a large range with a large probability. And
ensure better individual costs after the mutation. When the
path is not feasible, we change the path to a feasible path by
replacing the operation.

4.4. Length Operation. The purpose of the path length oper-
ation is to reduce the distance of the drone flight path. When
the path is feasible, some paths usually contain additional
path segments. Considering the length cost of the path and
the feasibility of the path, if the path is still feasible after
randomly deleting one ormore path nodes, the path is deleted
from the original path node and a new path is generated.
Figure 4 shows an example of a path length operation. As
shown in Figure 4(a), ABCD is the initial path. As shown in
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Figure 1: Flowchart of our method.
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Figure 2: An example of an infeasible path replacing operation.

Figure 4(b), if the point B is randomly deleted in the path and
the path is still feasible, a new path ACD is generated.

4.5. Smoothness Operation. The purpose of the path smooth-
ness operation is to reduce the number of turns of the UAV
and randomly select two adjacent straight-line paths, which
are used as input. And then the angle between them is
changed. In two adjacent straight paths, the midpoint of a
straight path is randomly selected to replace the intersection
of the two straight paths, and a newpath is generated. Figure 5
shows an example of path smoothness operation. ABC is an
adjacent straight-line path, and ADC is a new path through
path smoothing.

5. Experiment

5.1. Experimental Model. In the experiment, according to the
wireless network data acquisition model proposed by Zheng
et al. [32], we built a system platform, as shown in Figure 6.
The system platform includes the UAV, on-board computers
manifold, ground station, and power sensors. Table 2 shows
the specific parameters of the system platform equipment.
Themain use of UAV in this system platform isDJI GOM100,
because DJI GO M100 supports secondary development,
which is conducive to the monitoring of data. The use of on-
board computer in this system platform is DJI GO manifold.
The system of manifold is Linux; the system has Mobile
SDK and on-board SDK development interfaces. The system
platform uses manifold and data acquisition sensors to build

Table 2: Specific parameters of the system platform equipment.

Equipment
UAV DJI GOM100
Onboard computer DJI GOManifold
Ground station Iphone7 plus+ LenovoThinkPad x260
Power sensors ADS1115 IC

a detection module. The system platform uses the manifold
to send the detected data to the ground station. Through our
system platform, the UAV’s own data and other inspection
data can be transmitted to the ground station in real time,
and the flight status of the UAV can be effectively observed in
real time.

5.2. Setting of Weights. In this experiment, we analyzed the
relationship between flight path distance and rotation angle
with the energy consumption of UAV based on the energy
model proposed by Jalil Modares et al. [31].We determine the
value of 𝜔1 and 𝜔2 by analyzing their relationship. Note that
the values 𝜔1 and 𝜔2 detected by different UAVs are different.
The UAV used in this experiment is the DJI GOM100.

In this experiment, through analyzing the relationship
between path distance and energy consumption, the fly
speed of UAV is set as 10m/s to conduct 20 times flights
in the line distance of 50m, 100m, and 150m, respectively.
To study the relations between rotation angle and energy
consumption, the UAV is allowed to fly 20 times in the
following four situations: (1) straight flight distance 100m,
(2) straight distance 50m, 45 degree angle, and straight flight
50m, (3) straight distance 50m, 90 degree rotation, and 50m
Straight flight, (4) straight distance 50m, degree angle 45, and
straight flight 50m. To analyze the relationship between the
angle number and the energy consumption, the measured
value is subtracted from the average test value of the line
distance. Figure 7 shows the relationship between the drone
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Figure 3: An example of a crossover operation.
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Figure 4: An example of a path length calculation.
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Figure 5: An example of a path length calculation.

Figure 6: System model.

energy loss and the length of the flight path; Figure 8 shows
the relationship between energy loss and rotational angle of
the UAV.Through the experiment, we get the value of 𝜔1 and
𝜔2, 𝜔1 = 0.1072 and 𝜔2 = 0.0104.

5.3. Experimental Results. This section mainly discusses the
effect of our proposed method. The result of our method
is compared with other algorithms. To assess the feasibility
of our program, we use matlab2014a for simulation exper-
iments. The implementation platform of us is Windows 7
server with Core CPU 2.85GHz.

The method proposed in this paper is based on an
evolutionary algorithm of genetic algorithm, so we choose
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Figure 7: Relationship between energy and distance.

several classical evolutionary algorithms as the compari-
son algorithm. We have done some work comparisons in
our previous works [33]. In this paper, we make different
comparisons between the efficiency of the algorithm and
the results generated by the algorithm. We make different
comparisons between the efficiency of the algorithm and the
results generated by the algorithm.Weuse the samemodeling
environment for comparison experiments. I set the lower left
corner as the starting point and the upper right corner as the
end point to generate an optimal path; the grid ratio is 1:10; the
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Table 3: Comparison of algorithms.

Algorithm Time (s) Path length (10m) Angle (degree) Theoretical Cost (KJ) Actual Cost (KJ)
GA[14] 137.76 13.899 - 14.900 19.910
PSO 201.46 13.899 - 14900 19.816
Our method 181.25 13.291 71.565 14.992 16.071

Table 4: The result of using the path length as a cost function.

Algorithm Time (s) Path length (10m) Theoretical Cost (KJ) Actual Cost (KJ)
GA 137.76 13.899 14.900 19.910
Our method 120.25 13.291 14.248 16.071

Table 5: The result of using our proposed cost as a cost function.

Algorithm Time (s) Path length (10m) Angle (degree) Theoretical Cost (KJ) Actual Cost (KJ)
GA 210.46 13.899 135 16.304 18.673
Our method 181.25 13.291 71.565 14.992 16.071

Relationship between Energy and Angle
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Figure 8: Relationship between energy and angle.

number of iterations is set to 500 times. Figure 9(a) shows the
path generated by the classical GA [14]. Figure 9(b) shows the
path effect generated by PSO. Figure 9(c) is the result of the
algorithm generation path proposed by this paper.

In Table 3, GA and PSO methods use the path length
as a cost function. Our method uses the path security,
smoothness, and length as cost functions. Time represents
the time of each method run. The path length is the length
of the path generated by each method. The angle is the angle
of the path generated by each method. The theoretical cost
of our method is given by (6). The theoretical costs of GA
and PSO are given by (4). The actual cost is to measure
energy consumption through our system platform of the path
generated by each method. Because GA and PSO methods
use the path length as a cost function, we only discuss their
run time and the length of the path. According to the data in
Table 3, the running time of GA is better than that of PSO.
This conclusion has been verified by Roberge V et al. [34].
In aspect of the running time of the algorithm, because our
method needs to calculate the path smoothness cost, the time

cost of our method is larger. However, the time overhead
of our method is better than PSO in this case. According
to the data in Table 3, our method is superior to PSO in
other aspects. Compared with GA, although our method has
a large time cost, the path length generated by our method is
dominant.

Because the two methods use different cost functions,
we cannot judge whether the two schemes are good or
bad. So we set up two sets of comparative experiments.
One set of experiments used the length of the path as a
cost function, and the other set used our proposed cost
as a cost function. Figure 10 shows the result of using the
path length as a cost function. Figure 10(a) shows the path
generated by the classical GA. Figure 10(b) is the result of the
algorithm generation path proposed by this paper. Table 4
shows the parameters of the results in Figure 10. Figure 11
shows the result of using our proposed cost as a cost function.
Figure 11(a) shows the path generated by the classical GA.
Figure 11(b) is the result of the algorithm generation path
proposed by this paper. Table 5 shows the parameters of the
results in Figure 11.

In Table 4, the theoretical cost is the effective cost (see (4))
of the path generated by each method. According to the data
in Table 4, twomethods use the path length as a cost function.
In aspect of the running time of the algorithm, our method is
better thanGA. In aspect of path length ourmethod is shorter
than GA. In Table 5, the theoretical cost is the effective cost
(see (6)) of the path generated by each method. According to
the data in Table 5, two methods used our proposed cost as a
cost function. In aspect of the running time of the algorithm,
our method is better than GA. In aspect of path length our
method is shorter than GA. According to the data in Tables 4
and 5, we can know that our method is better than GA in the
case of using the same cost function.

The theoretical cost is the effective cost (see (6)) of
the path generated by each method. We designed a set of
experiments. From the above experiments, we can know that
the path effects generated by our method using different cost
functions are the same in our envisaged environment. Note
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Figure 9: Three algorithms running path results.
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Figure 10: The result of using the path length as a cost function.

that the path effects generated by our method using different
cost functions are the different in same environment. The
experimental results of our experiments are the same because
our environment is simple. We use the path generated by our
method to actually fly 20 times. Record the energy consump-
tion of each flight. Figure 12 is the result of our experiment.
In Figure 12, the x-axis is the number of experiments and the
y-axis is the energy consumption of the drone. Each point is
the actual energy consumption of each flight. The red line is
the average of the actual energy consumption. The blue line
is the theoretical value that uses our cost function to calculate
energy consumption. The green line is the theoretical energy
consumption calculated using length as a function of cost.
From the data in Figure 12, we can see that our cost function
is close to the actual value. The reason for the deviation of
our cost function may be that wind and other factors affect
the energy consumption of the drone in the actual flight

environment. In future work, we can continue to study other
factors that affect the energy consumption of drones, we
continue to refine the design of the cost function.

6. Conclusion and Future Work

This paper analyzes the factors affecting the flight path
of UAVs and proposes three cost functions: path security
cost, length cost, and smoothness cost. The path security
cost is used to determine whether the path is feasible;
the length cost and smoothness cost of the path directly
affect the cost of the energy consumption of the UAV’s
flight. Because of the weighting of the two costs, we set
the weights for the two costs through real experimental
data. In order to improve the effect of generating effective
paths, we propose a heuristic evolutionary algorithm that
sets several evolutionary operations: substitution operation,
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Figure 11: The result of using our proposed cost as a cost function.
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Figure 12: The actual energy consumption of the path.

cross operation, mutation operation, length operation, and
smoothness operation. Through our combination of real
experiments and simulation experiments, we verified that
our proposed method is feasible; compared with classical
algorithms, our method is better at generating the optimal
path.

The three cost functions proposed in this paper influ-
ence each other. We must find the best of the three cost
functions, that is, a multiobjective optimization problem.The
solution proposed in this paper is to convert multiobjective
optimization into single-objective optimization by setting
weights. Our next workwill use amultiobjective optimization
algorithm to solve this problem.
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