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With the advances of new-generation wireless and mobile communication systems such as the fifth-generation (5G) mobile
networks and Internet of Things (IoT) networks, demanding applications such as Ultra-High-Definition video applications is
becoming ever popular. These applications require real-time monitoring and processing to meet the mission-critical quality of
service requirements and are expected to be supported by the emerging fog or edge computing paradigms. This paper presents
NFVMon, a novel monitoring architecture to enable flow monitoring capabilities of network traffic in a 5G multioperator mobile
edge computing environment. The proposed NFVMon is integrated with the management plane of the Cloud Computing. NFVMon
has been prototyped and a reference implementation is presented. It provides novel capabilities to provide disaggregated metrics
related to the different 5G mobile operators sharing infrastructures and also about the different 5G subscribers of each of such mobile
operators. Extensive experiments for evaluating the performance of the system have been conducted on a mid-sized infrastructure

testbed.

1. Introduction

Advent of fog and edge computing platforms is remarkably
shifting the existing communication paradigm by introduc-
ing considerable computational, storage and/or networking
powers to the edge of the network, especially by leveraging
localised Cloud Computing. This trend has become evi-
dent particularly in the next-generation mobile networks
5G, where mobile edge computing and cloud radio access
networks have been initially standardized recently. More-
over, in 5G, the rapid adoption of hardware virtualization
and network encapsulation to provide multitenancy, i.e., to
enable multiple 5G operators to share the same physical
infrastructure for reducing both capital and operational
costs, by virtualizing mobile edge computing infrastructure.
This trend in cloudification and softwarization in terms
of Network Function Virtualization (NFV) and Software-
Defined Networking (SDN), although reducing costs, also
brings about the complexity of managing the network. The
exploitation of these technologies is indeed reshaping and

redefining a significant number of network management
concepts that network operators have assumed as valid for
years within traditional physical infrastructures and thus
pose new challenges to them [I]. Moreover, smart net-
worked systems such as eHealth and smart city applications
demand advanced mobile edge computing and networking
technologies to provide services to meet challenging quality
of service (QoS) requirements such as ultra-low latency and
ultra-high reliability for the application traffic flows, among
others [2]. In this context, this research work is focused on
a fundamental networking capability: monitoring 5G traffic
flow metrics in mobile edge computing infrastructures to
enable QoS-aware, -informed, or -oriented applications for
smart networked systems operating over a 5G mobile edge
computing architecture shared by multiple operators for cost-
efficiency.

Nowadays, administrative networking perimeters are
diluted in multioperator virtual infrastructures that share
physical resources. However, traditional hardware moni-
toring technologies such as sFlow [3], NetFlow [4], IPFix


http://orcid.org/0000-0001-6363-7859
http://orcid.org/0000-0002-2654-7595
http://orcid.org/0000-0002-7764-9858
https://doi.org/10.1155/2018/2860452

[5], and OpenFlow Stats [6] are not suitable in this new
networking paradigm where the metrics that are collected
over a given network interface should be disaggregated for the
different operators that share the physical interface. Mean-
while, the software implementation of these technologies,
usually supported in the software switches used to enforce
operator isolation, does not allow gathering disaggregated
metrics. The scenario becomes even more challenging for a
5G mobile network operator, which needs to support user
mobility across the different radio access points. It imposes
the additional challenge that the level of disaggregated of flow
metrics at operator level may not be enough to understand the
profile of each of the 5G subscribers of this operator to pro-
vide customized QoS-aware services. The solution to resolve
these challenges is beyond the state-of-the-art network flow
monitoring tools, which has been the main motivation of this
research work. It is noted that it is of paramount importance
to provide new flow monitoring capabilities at the edge of
the network to be able to extract QoS information from
multioperator 5G traffic flows in a timely fashion to support
delay-sensitive smart system applications and allow better
understanding the workload of such 5G infrastructures for
operators to manage the network.

The following list summarizes the specific challenges
associated with the multioperator virtualized 5G mobile edge
infrastructures:

(i) Network traffic generated from virtual machines
(VMs) can be seen as disaggregated of the network
traffic generated by the network port of the physical
machine hosting these VMs. Current flow monitoring
tools are not able to provide such disaggregated
information, hampering operators to manage the
workload of the virtualized infrastructures.

(ii) The life-cycle of VMs introduces new challenges in
the monitoring of flow metrics. VMs are created
and destroyed dynamically, and the reuse of their IP
addresses in other VM occurs in a matter of seconds.
Current network flow monitoring tools are not able
to detect such reusage, causing inconsistencies in the
information gathered about VMs.

(iii) Current network flow monitoring tools do not pro-
vide disaggregation of flow metrics at 5G subscriber
level with the aim of allowing 5G mobile network
operator to gather the profile of each subscriber.

(iv) It is a challenge to achieve timely collection of
network metrics without compromising the perfor-
mance of the data plane. A flow monitoring tool
should not impose a noticeable delay in the data
path, where user traffic is delivered. Existing flow
monitoring tools are typically placed in the middle of
the data plane, performing packet classification and
metric calculation. This process can cause significant
degradation of data plane performance if not imple-
mented in hardware.

This research work has been motivated by the above
challenges. The following list provides the main scientific
contributions to address these challenges, respectively:
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(i) The proposed architecture enables operators to per-
form the disaggregation by carrying out a cus-
tomized packet classification that enables inspecting
the different network layer encapsulations applied in
the infrastructure to allow multioperator isolation
through protocols such as VXLAN and GRE.

(ii) The proposed architecture enables detecting the
dynamic reusage of IP addresses by integration with
the management plane of the mobile edge computing
infrastructure.

(iii) The proposed architecture enables them to perform
such disaggregation by conducting a customized
packet classification of the different network layer
encapsulation employed in the infrastructure to han-
dle user mobility through tunneling protocols such as
GTP.

(iv) The proposed architecture is based on a monitoring
approach where the delay in the data path is not
degraded. This is achieved by providing mirroring of
a fixed small number of bytes of the packet headers to
a tool to undertake such packet header classification
and metric calculation tasks.

To the best of our knowledge, this is the first network
flow monitoring tool with multioperator capabilities working
in a mobile edge computing platform in a 5G network to
allow the analyses of the traffic behaviour of each operator
and their subscribers in a shared physical infrastructure.
The proposed system has been designed, implemented, and
deployed using a high-performance approach based on mir-
roring packets with snap length deployed in OpenVSwitch.
Each OpenVSwitch deployed in the architecture has both
packet mirroring and snap length enabled. Snap length allows
trimming packets to a given length to control the overhead
related to monitoring and also to reduce processing times.
By doing so, it enables the system to scale at high bitrates
while protecting privacy of each user since the payload has
been trimmed. From each packet, only the first 140 bytes,
mainly the headers of a packet traversing the 5G mobile
network infrastructure, are kept instead of the original 1500
bytes defined as the maximum transmission unit (MTU) of
the network. This approach reduces up to 90% overhead.
An empirical validation using the well-known OpenStack
Cloud Computing stack with OpenVSwicth [7], an SDN-
enabled software switch used in conjunction with Neutron,
the networking services of OpenStack [8], has been carried
out. The VNFs used to provide a deployment of an LTE
infrastructure with some 5G capabilities are the well-known
OpenAirInterface [9].

The rest of the paper is organized as follows. Section 2
describes the state-of-the-art network flow monitoring tools.
Section 3 provides a description of the proposed NFVMon
architecture. Section 4 describes the NFVMon application
and its integration with the management plane of the network
and provides implementation details about the monitoring
tool. Section 5 describes the testbed and experiments carried
out to validate the prototype. Finally, Section 6 concludes the
paper with a discussion and remarks on future work.
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TaBLE 1: Comparison of the different monitoring approaches taken in the literature analyzed.

. . . Monitoring
G ID Architect
roup Agent Output Packet Classification rchitecture Collection Protocol
First Group Packet Metrics In-Agent Distributed Traditional
Protocol
i P SDN
Second Group Packet Metrics In-Agent Distributed
Protocol
Third Group Packet Raw Data In-Controller Distributed Traditional
Protocol
- SDN
Forth Group Packet Raw Data In-Controller Distributed
Protocol
2. Related Work based on QoS in edge computing [17]. Authors classified

Despite the recent research interest in mobile edge computing
and 5G networks, network flow monitoring tools to fit in
these infrastructures are still very scarce. Existing research
work on this topic can be grouped by the different approaches
taken to achieve flow monitoring. A high-level comparison
between the different monitoring approaches analyzed in this
section is shown in Table 1.

The first group is composed of the traditional flow
monitoring implemented using sFlow [3], NetFlow [4], and
IPFIX [5]. They are implemented with a packet classifier to
measure metrics about the traditional 5-tuple definition of
1P flow (Source IP, Destination IP, Source Port, Destination
Port, and Transport Protocol) and report them periodically.
This information is received by a Flow Collector for analytical
purposes. Mann et al. [10] compared sFlow and NetFlow
in terms of sampling rate, CPU consumption, and network
overhead. The work developed an EMC2 (Edge Monitoring
and Collection for Cloud) system that collects and stores met-
rics from NetFlow and sFlow. Brattstrom et al. [11] propose
a scalable agentless monitoring tool for Cloud Computing
using SNMP protocol. This proposal deploys a Raspberry Pi
device to pull all the monitored devices via SNMP protocol
sending the information to a database. Lin et al. [12] propose
a monitoring and analytics tool to monitor software-defined
network infrastructures. The proposed tools do not provide
network administrators with the work load profiles of the
infrastructure per mobile operator only counting packets.
OmniDisco, proposed by Douitsis et al. [13], is a distributed
architecture based on SNMP protocol to monitoring all the
devices deployed in the cloud [14]. The paper [15] proposes
CloudSuft, a platform-as-a-service solution to monitor net-
works allocated in different public clouds. To achieve so,
different sensors are deployed along the datapath of the
different cloud providers. These sensors are used to offer
an API that exposes real-time monitoring metrics about
the performance of the cloud network. Sminesh et al. [16]
propose a flow monitoring scheme to reduce the congestion
and packet loss in Software-Defined Networks. The proposal
monitors link congestion along the complete path of the flow
and then proposes a rerouting of the flow path in order to
avoid congested links. Authors directly make use of metrics
which imply that packet classification is carried out in the
agent. Li et al. propose a method of resource estimation

and matched traffic using a weighted Euclidean distance
similarity. The data comes from the monitoring equipment
allocated in both data center and edges. Then, monitoring
data is sent to the edge servers to analyze the QoS of requested
service for end users.

The second group is composed of the flow monitoring
tools that follows an SDN controller architecture. This is
the natural evolution of the traditional flow monitoring, i.e.,
first group of tools, by the replacement of the previously
mentioned Flow Collector by the SDN Controller. In this
context, OpenFlow Statistics extension protocol [18] defined
the communication protocols for the sharing of flow metrics
between SDN agents and controller. Under this group, it is
worth mentioning that OpenNetMon [19], a passive-active
flow monitoring tool, implemented for POX SDN controller,
allows gathering flow metrics such as throughput, delay, and
packet loss. The application polls information about switches
at the edge of the network at an adaptive rate to calculate
throughput and packet loss. It inserts control packets in
the network to measure delay. PayLess [20] is another SDN
application for the popular Floodlight SDN [21] controller
gathering metrics based on the usage of OpenFlow statistics.
In that case, when a FlowRemoved packet does not arrive in
a time period, a FlowStatisticsRequest is sent to the switch,
adapting the rate of the next polling interval depending on the
variation of the statistics. PayLess can be accessed by a REST-
ful API. Yoon et al. [22] propose a scalable flow sampling
using a centralized approach based on Software-Defined
Networks (SDN). This work uses a fixed packet sampling
period to capture data packets at switches when an intrusion
is detected using an intrusion detection system (IDS). Packet
classification and metric calculation are done directly on
the switch and metrics are then sent to the traffic analyzer
application running in the SDN controller. Yan et al. [23]
propose multilayer network analytics architecture based on
SDN-based to carry out monitoring of metrics related to the
physical layer. These metrics are sent to the SND controller
in order to control link impairments, link performance, and
latency. An et al. [24] propose a new scheme based on
the analysis of the network status in the edge by gathering
metrics to extract characteristics and security information
of the fog computing infrastructure using Semisupervised
Extreme Learning Machines (SS-ELM) algorithm. Hang et
al. [25] proposed a solution called Overwatch that provided



a solution to Distributed Denial of Services (DDoS) attacks.
Authors developed a collaborative DDoS attack detection
mechanism, which consists in a flow monitoring algorithm
on the data plane processing the coarse-grained flows and a
fine-grained machine learning classification algorithm on the
control plane.

The first and second groups of research work have been
proved to be effective in physical infrastructures but the fact
of using a fix and limited packet classifier hampers users to
provide support for the network encapsulation imposed by
the usage of multioperator shared infrastructures and the
mobility of 5G subscribers across the edges of the network
as envisioned in our infrastructure. In fact, it is worthy
remarking that the work by Mekky et al. [26] provided a
good attempt to extend the packets classifier to analyze more
information within packets. They insert logic in the switch by
means of app tables allowing gathering metrics using specific
application fields.

The third group is composed of the flow monitoring
tools that do not perform the packet classification and
metric calculation in the same place where the packet is
being monitored along the data path between sender and
receiver. In this group, Plank [27] used port mirroring to
send a copy of the packets to flow collectors. The number
of packets sent to the collector is limited by the speed of
the connection and the buffer size of that port. The collector
calculates the link utilization and flow rates and provides
this information to the infrastructure provider. Sharma et al.
[28] provide a solution based on hardware switches to allow
mobile operators to monitor infrastructures using flexible
match+action. This solution is the probably the most optimal
in terms of performance but also the most expensive in terms
of both operational and capital costs. Our proposed archi-
tecture follows a similar approach but is fully implemented
in software. Nguyen [29] proposed an analytical method for
estimating uncertainty in distribution loads. This method
has direct applications to network monitoring and optimal
meter placement. The model that author proposes evaluate
the impact of aggregated consumption from customers of
different types, in order to determine the mean and variance
of loading profile in each distribution transformer in the
network. Our proposal is looking at the oppose angle where
metrics are disgregated in order to achieve fine grain mon-
itoring. Peresini et al. [30] propose a dynamic fine-grained
data plane monitoring with Monocle. The probes match the
traffic with a specific flow rule in the flow table and push
the results to the Software-Defined Networks controller. This
architecture is focused on selective monitoring and thus is not
suitable to get a global overview of the work load behaviour
in the infrastructure.

The fourth group is the natural evolution of the third
group by using the SDN controller as the application that
performs packet classification, metric calculation, and inter-
face reports. In this group, it is worth highlighting the work
by OpenSample [31]. The project uses sFlow([32] algorithm to
calculate near real-time metrics of network load and individ-
ual flows by using the packets received from the OpenFlow
interface, ie., Packet_In messages. FlowSense [33] uses a
similar approach where all the Packet_In and FlowRemoved
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messages defined in the OpenFlow [6] specification are
analyzed; they are associated with flows arrival and flow
expiration events. Ze Yang et al. [34] use an SDN network flow
monitoring tool to detect “lonely flow first” (LFF). They are
flows that only pass by one switch. Our proposal also takes
care about this particular use case but using a different name
to define such type of traffic, i.e., external traffic. Authors
remark that their proposal is highly scalable; however, the
real challenge in 5G mobile edge computing is to achieve
a monitoring solution to deal with any type of work load.
Nguyen-Ngoc et al. [35] propose a solution to perform selec-
tive flows monitor (SFM) using ONOS SDN Controller [36].
This SDN application allows classification of flows according
to the network administrator requirements. This approach is
aligned to our proposed architecture; however, it requires to
send the complete packet to the controller and thus suffers of
scalability concerns. Lee et al. [37] proposed Duo an intrusion
tolerant system SDN, which can reduce exposure time. The
solution proposed has two types of servers: long exposure
and short exposure time. Then, it classifies the traffic into two
different groups, benign and suspicious, that allow dynamical
forwarding.

The third and fourth groups provide much more flex-
ibility in the classification of the packet and thus be more
flexible to fit in multioperator 5G infrastructures. However,
all the research works so far assume that the whole packet
is sent to the SDN controller, and thus they tend to double
the amount of traffic in the data path. The need of sending a
full copy of the packet to the SDN controller obviously raises
the concern of scalability issues related to the fact that they
will need to deal with the classification of all the packets in
every segment of the network being controlled. It is noted
that the work by Oliveira et al. [38] defined a network flow
monitoring tools to capture and process packets to detect
network traffic deviations to guarantee the Service Level
Agreement (SLA) for each of the operators of a multioperator
infrastructure. The work is focused on the description of
the overall architecture, although no details are given on the
capturing and filtering of packets, the number of tenants or
the number of VMs launched in the experiments.

Our proposed architecture was originally enclosed in the
fourth group where we created an application for the SDN
controller FloodLight to achieve the contributions indicated
in this paper. However, we then realized that the current
OpenFlow protocol does not allow yet configuring a snap
length in order to pass to the controller only a portion of
the packet rather than the whole packet to enhances the
scalability of the approach and it was a significant effort
to implement such capability, which is out of the scope of
this research. Thus, it has been decided to provide a design
following the approach of the third group, which can be easily
ported to the fourth group when such capability becomes
available, mainly to deal with scalability by performing
packet snapping. It should be noted that this approach is
much more optimized to minimize delay in the data path
communication between 5G users than the first and second
approaches since packet classification and metric calculation
are performed outside of the data path. However, the level
of responsiveness of the monitoring framework, i.e., the time
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FIGURE I: Simplified architecture of NFVMon.

elapsed between the moment when the packet is intercepted
and when the monitoring framework shows the metrics in
screen, will be worse since the framework now needs to deal
with packet classification and metric calculation. In terms of
scalability and extensibility, our approach also provides better
scalability and extensibility architectural principles since it
allows scaling up the monitoring framework outside of the
real data path and dealing with scalability using an out-of-
band approach where the first and second approaches need
to consume resources of the machines involved in the data
path communications and thus these alternative approaches
can lead to performance degradation when addressing high
scalability.

3. Proposed NFVMon Architecture

Figure 1 shows an overview of the different components avail-
able in the proposed NFVMon flow monitoring architecture.

The architecture is deployed over mobile edge computing
infrastructure, where there is a core data center location and
several edge locations representing different geographically
distributed zones. All locations are managed by the same
Cloud Computing infrastructure provider which is in charge
of allowing the sharing of physical resources among the
different operators involved. To achieve this purpose, the
infrastructure provider employs software switches to connect
Virtual Machines with the physical network ports while
isolating traffic among VMs belonging to different opera-
tors. Traffic isolation between different operators is typically
achieved by using either tagging (VLAN) or encapsulation
protocols (VXLAN, GRE, Geneva). OpenStack supports
different types of encapsulation to allow tenant isolation:
no encapsulation, VLAN, VXLAN, GRE, etc. VLAN isolates
tenants network segments but it does not allow tenants to
deploy any networks they need (Software-Defined Networks)
on top of the physical network, mainly due to the fact that
VLAN relay on the existing MAC addresses of the physical



machines. In contrast, GRE and VXLAN not only provide
tenant isolation but also allow any network topology within
each of the tenants. This is why these two encapsulation
protocols are currently the preferred options for SDN deploy-
ments. Moreover, in terms of scalability, GRE and VXLAN
provide better scalability when compared with VLAN.
VLAN only supports 4096 tenants (12 bits tags), whereas
VXLAN and GRE support around 16.7 million of tenants
(24 bits tags).

The execution of a software service in an isolated virtu-
alized infrastructure is usually through a Virtual Network
Function (VNF). Figure 1 shows two 5G CU (Centralized
Unit) VNFs allocated in each edge of the network and two
5G UPF (User Plane Forwarding) VNFs and two AMF (Core
Access and Mobility Management Function) allocated in the
core of the network. This scenario represents two different
5G mobile operators sharing the same physical infrastruc-
ture. Each operator has an isolated virtualized infrastructure
where the 5G VNFs are deployed. CU, UPE, and AMF are
architectural elements of the novel 5G network representing
the control of the radio access network and the control of
the user data path and the control of user mobility and
authorization, respectively. It is worth noting that the way
user mobility is handled in mobile infrastructures is by using
an encapsulation protocol to deal with handovers between
antennas at the edge of the network, e.g.,, GTP. A detailed
explanation of the whole 5G architecture can be found in Kim
et al. [39].

The proposed network flow monitoring architecture is
based on mirroring packets passing through the software
switches using many-to-one port mirroring with snap length.
When packets pass through the software switch, packets are
mirrored and snapped at a specific packet length. Traffic
snapping is a technique where only the first few bytes of the
packet are being mirrored in order to reduce the overhead
of the monitoring task. The traffic of an isolated 5G mobile
operator running within a shared physical infrastructure in
the edge-to-core 5G network segment shows at least a nested
encapsulation. The first encapsulation is to achieve tenant
isolation (VXLAN/GRE) and the second one is to deal with
user mobility within the 5G network (GTP). Thus, the packet
headers involved should be the same as or similar to the
following header stack: MAC — IP — UDP — VXLAN —
MAC — IP — UDP — GTP — IP — UDP/TCP — User
Payload. The analysis of these headers allows us to determine
the size of the packet header to inform the snapping of
network traffic. To be concrete, it is proposed to cut packet
header at 140 bytes which is the minimal length of the packets
in this network segment. This technique reduces significantly
the amount of data mirrored when it is compared with
the original packet size. This packet size reduction allows
the system to mirror more packets without saturating the
monitoring plane, thus fostering scalability. The mirroring
enables performing the monitoring tasks outside the user
data plane and thus reduces the monitoring overhead in
the data path to negligible delay. This approach is very
aligned with the strict delay requirements imposed by the
5G infrastructures. Mirroring packet headers allow also the
proposed approach to monitor the infrastructure without
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compromising data privacy of the 5G users due to the fact
that any confidential data available in the payload has been
removed in the snapping process. In terms of scalability,
traffic snapping allows the system to scale up since it only
requires around 8-10% of the throughput of the data path (140
bytes out of 1500 bytes).

Regarding the monitoring architectures based on port
mirroring outside of the data plane, two main different
approaches can be taken. There is no optimal solution and
it is a trade-off between accuracy and scalability. Thus, the
network administrator according to the use case addressed
should choose selective packet monitoring or complete
packet monitoring. On the one hand, selective packet mon-
itoring only mirrors key network flows that are defined by
the network administrator or any other network management
tool. This is used in scenarios where the whole payload
needs to be processed and where only a partial status of
the network is required, for example, to implement honey
nets or other security-related solutions where the complete
packet payload should be present in order to be inspected and
where only suspicious flows are of interest. Thus, scalability
is addressed by mean of the selection of flows. On the other
hand, for network monitoring tools whose main aim is to
allow network administrator to better understand workloads
and to provide a global overview of the network, the complete
set of network packets should be handled. This latter use
case is in fact the main motivation of this paper. However,
it brings significant challenges due to the fact that all the
network traffic needs to be processed. Thus, in order to
deal with scalability, traffic snapping is proposed to allow
the system to reduce traffic in the monitoring plane and
processing time in the controller thanks to the fact that
it is processing packets of smaller size and as an added
value it respects user privacy since packet payload has been
trimmed.

This traffic snapping approach allows the architecture to
achieve timely network metrics without compromising the
performance of the data plane. Moreover, the support of
the classifier for the processing of the double encapsulations
allows the disaggregation of the flow metrics not only at
operator level but also at the 5G subscriber level.

The proposed approach is less scalable than the alter-
native approach where the packet classification is carried
out in its own data path. However, the proposed approach
is more optimized for minimizing the delay introduced
in the data path due to the classification task carried out
therein, specially due to the double encapsulation in 5G
multitenanted network. Thus, there is a trade-off between
optimization for minimal delay and for maximum scalability.
For the mobile edge applications scenario, delay constraint is
prioritized.

Snapped traffic is then sent to NFVMon. This network
Flow Collector receives the snapped traffic, performs packet
classification, calculates the interesting metrics, and stores
them in a database. In principle, the architecture is flexible
enough to provide an extensible set of metrics to be calculated
over the snapped traffic. As a mere example, # bytes and
# packets per second are traditional metrics that can now
be disaggregated at operator level and at the 5G subscriber
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level. NFVMon exposes an API that allows other modules
to interrogate the different metrics to visualize them. The
classification makes use of the VXLAN/GRE tunnel ID to
allow the disaggregation of metrics associated with the same
operator and the IP addresses of the inner encapsulation of
the GTP traffic in order to allow the disaggregation of metrics
associated with the same 5G subscriber.

There are still issues that need to be addressed in order
to achieve a flow monitoring architecture that fits into 5G
mobile edge computing architectures. The usage of virtual-
ization imposes a new requirement for operators, i.e., the
management of the new life-cycle of virtualized resources,
which are different from the traditional physical resources.
Now virtual resources can be created and destroyed in a mat-
ter of seconds. If the monitoring collector is not aware of these
constant topological changes, it will not be able to show to the
network administrator the root cause of the current values
being reported. To address this issue, a new architectural
component has been deployed, i.e., CloudEventNotifier.

This component is integrated into the Cloud Computing
infrastructure in order to report any topological change
happening in the virtual infrastructure. CloudEventNotifier
parses all the JSON messages passing through the OpenStack
message bus. This change is now received by NFVMon, the
proposed network Flow Collector, in order to update the
metrics of such affected resources, accordingly. On the other
hand, a 5G infrastructure implies mobility of 5G subscribers
at the edge of the network. This change is now received into
NFVMon, our network Flow Collector in order to update the
metrics of such affected resources, accordingly. On the other
hand, a 5G infrastructure implies mobility of 5G subscribers
at the edge of the network.

As a result of this integrated architecture, the infras-
tructure provider can monitor the quality of the network
traffic belonging to different operators that are sharing the
infrastructure, and also each of the operators can monitor the
traffic flow metrics of their own 5G subscribers.

To explain how the architecture has been integrated,
Figure 2 shows a sequence diagram of the orchestration
of the different components that compose the NFVMon
architecture. Thus, CloudEventNotifier is registered in the
management plane of the infrastructure provider to be
informed of any topological change. In this case, a new VM
has been notified. When the topological change occurs, the
CloudEventNotifier interacts with the NFVMon Northbound
API in order to allow the proper management of the life-cycle
of VMs. Meanwhile, there is always a continuous monitoring
loop where the snapped traffic is sent to the NFVMon
Southbound interface. This traffic is then sent to the packet
classifier in order to allow the disaggregation of metrics. Once
the packet is classified, it is sent to the NFVMon Metrics
module in charge of the calculation of the metrics and their
persistence. Finally, when the infrastructure provider needs
to have an overview of the behaviour of all the operators,
it requests such information via NFVMon Northbound API
using the NFVMon GUI. These steps are analogous to those
to allow each of the operators to view the profile of their 5G
subscribers.

4. NFVMon Implementation

The integration between the management plane of the infras-
tructure provider and the data plane of the infrastructure
enables NFVMon classifying the traffic intercepted in the data
plane with a novel categorization of traffic:

(i) Management traffic: traffic exchanged between VMs
and Cloud Controller services to obtain IP addresses,
metadata information, etc.

(ii) Internal traffic: traffic exchanged among VMs within
the infrastructure, all the VMs are created by Open-
Stack, regardless of the geographical locations where
they are located.

(iii) External traffic: traffic generated between a VM and
a machine that is outside the infrastructure, i.e., the
Internet.

Figure 3 depicts an overview of the different aspects
of the implementations prototyped. The network traffic is
passing through the data plane of the infrastructure. The data
plane has OpenVSwitches along the communication among
users. Each of the OpenVSwitches is configured to mirror
all the packets passing by and trim them with a length of
140 Bytes. When the NFVMon controller receives a new
packet, it triggers the packet handler, which stores it directly
into a Blocking Queue that contains the trimmed packet
with the 5G headers. It is noted that this design allows the
packet handler to be really fast and thus minimize packet
loss since the processing of the packet is being conducted
in separate threads. Then, several classification threads are
dequeuing packets from the Blocking Queue in order to
perform the packet classification and thus extract the 5G
header structure and perform the metric calculation. The
headers are used to identify the flow uniquely and as key
of two different HashMap concurrent structures. Then the
classification threads recalculate the new metrics for the
associated flow and perform an update of the values into the
global and partial HashMap.

NFVMon keeps updating two main concurrent HashMap
data structures: a global structure that keeps statistics along
the time and a time-windowed structure that keeps the data
produced in a time interval. The time-windowed structure
is used to analyze current workload of the infrastruc-
ture, whereas the former is more convenient for statistical
purposes and predictions. This information is stored in a
database for windowed-time visualizations purposes. Each
concurrent HashMap structure maintains disaggregated met-
rics per operator and per 5G subscriber network. Packets
in/out and bytes in/out are grouped by different VMs, by
different types of traffic (management, internal, and external),
by different destination, by source ports, different operators,
and by different 5G subscriber. It enables a very detailed
monitoring and understanding of the traffic flowing through
the infrastructure.

Every N seconds, the updating thread performs the
dumping of the content of the HashMap structures into
another Blocking Queue, which allows the writing into the
database to be conducted in a separate thread and thus does
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FIGURE 2: Sequence diagram of the different architectural components available in the proposed architecture.
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FIGURE 3: Implementation figure.

not keep locking the HashMap structures to compromise
performance. Finally, the Blocking Queue is being consumed
by another DB Writing thread that updates the database. The
updating thread also cleans the partial HashMap when the
information is queued in the Blocking Queue allowing mon-
itoring a time-windowed state of the network. The NFVMon
APT accesses the HashMap structures when requested by the

GUI The CloudEventNotifier sends changes in the Open-
Stack topology by using the same NFVMon APL. When these
changes are received, this information about the tenant and
its resources is updated according to the state of the resource
reported in the notifications (e.g., terminate VM, remove
tenant) and also all the monitoring information stored in the
HashMap is updated according to such information.
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" Operatorl ": {
"tenantId":"Operatorl",
"VMInUse":25, "VMCreate":25, "VMDelete":0

"globalTraffic": {
"protocolCounter": {
nwqyn. {
"protocol":"UDP",
"idProtocol":17,
"pktIn":111650,
"pktOut":111768,
"appBytesIn":76048464,
"appBytesOut":76051318,
"12BytesIn":80746086,
"12BytesOut":81206950},
L .
}
}’

"managementTraffic": {
"03ac4bc8-9158-42e2": {
"ip":"10.10.0.246",

"mac":"FA:16:3E:77:CB:1F",

I|aname n B llSGwll ,
"destroyDate":0,
"packetsIn":2991,
"packetsOut":1825,
"proto": {
nq7n. {
llprotoll R IIUDPII .
"id":17,

"localPort": {
"56075": {
"FA:16:3E:E9:64:FF": {
"ip":"10.10.0.25",
"mac":"FA:16:3E:E9:64:FF",
"packetsIn":4,
"packetsOut":4,

.
"FA:13:3E:39:64:FF": {
-
}7
1
}
}
"internalTraffic":{....},
"externalTraffic": {....},

}

L1sTING 1: Example of the JSON data format.

Listing 1 shows a significantly simplified version of the
JSON used to store flow metrics in a data structure to allow
the reader to understand the disaggregation carried out at
different levels. Both global and windowed structures are
serialized in JSON format and have a similar structure.

For the use case where an operator needs to delete a
VM, the CloudEventNotifier receives the messages involved
in orchestration and notifies the CloudEventNotifier of the
information related to the deletion of such VMs. Then, this
module renames the associated information to the IP address
from both global and time-windowed structures to achieve an
efficient handling of the reusage of IP addresses. It will enable
differentiating between two different VMs reusing the same
IP address.

In terms of implementation details, all the modules
developed in this work have been implemented using Java
8. The module CloudEventNotifier has been connected to the
OpenStack Pike release using OpenVSwitch v2.6 as software
switch with a deployment using RabbitMQ as message bus
to gather all the messages of the management plane. There
is a virtual switch per physical machine where all the VMs
allocated to the physical machine are connected.

On the reception of snapped traffic, NFVMon has been
detached from the processing of packets from the main
thread to deal with scalability, by processing the packets in a
highly multithread execution context. Thus, the processing of
packets in terms of classification and metric calculation does
not interrupt the arrival of new packets.

5. Experimental Results

5.1. Validation Testbed. The physical deployment carried out
to validate the proposed architecture is based on Open-
Stack Pike release with Neutron configured with VXLAN
tunneling. The infrastructure uses OpenVSwitch ML2 plug-
in for Neutron. It enables the use of OpenVSwitches v2.6
deployed in the infrastructure. The testbed has been deployed
in four physical machines with similar specifications: 32
GB RAM, 2 Intel XEON CPU E5-2630 v3 @ 2.40GHz,
with 8 cores with hyperthreading, 2 TB Hard Disk, and
10Gb/s network interface cards (NICs). All the physical
nodes (machines) have Ubuntu 16.04 Server installed. The
architecture deployed is the same as depicted in Figure 1
with the only difference that only one compute has been
deployed in the data centre location and such a compute node
has also all the components of the OpenStack Controller,
including the CloudEventNotifier. The compute nodes and
the monitoring node have an additional network interface
for the monitoring plane where the snapped traffic is sent.
The physical switch used to connect all the computers is a
Dell PowerConnect 2824 GbE with three different VLANSs
in order to isolate the Management, Data Path, and Mirrored
networks.

Mobile operators are configured as tenants of the cloud
infrastructure, as envisioned in 5G. Each of these operators
has deployed four different VNFs. These VNFs correspond
to the different architectural elements of the LTE-based
5G networks versus those in the NextGen Core based 5G
networks, both of which have been envisioned by 3GPP,
which is responsible for standardizing 5G. Specifically, the
eNodeB to control radio access in LTE-based 5G is anal-
ogous to the DU/CU combination in the NextGen Core
based 5G, Mobility Management Entity (MME) analogous to
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AME, Serving and Packet Data Network Gateway (S/PGW)
analogous to UPE, and Home Subscriber Service (HSS)
analogous to UDM (User Data Management). It is noticed
that there is not yet any reference implementation of a
NextGen Core based 5G infrastructure ready to deploy the
proposed architecture. Therefore, the prototyping of the
proposed system has employed the LTE-based 5G network
infrastructure based on an advanced open source release of
OpenAirlnterface [9].

5.2. Validation Results. The effectiveness of the proposed
architecture has been validated. To achieve this validation,
a testbed has been designed to deploy 12 different mobile
operators sharing the same physical infrastructure, each one
with a set four VNFS: eNodeB, S/PGW, MME, and HSS. The
intention is to deploy always 48 VNFs. Consequently, various
scenarios are arranged ranging the number of operators from
1, 2, 4, 8, and 12 and the number of VNFs associated per
operators 48, 24, 12, 6, and 4, respectively.

32 User Equipment (UE) nodes are connected to each of
the mobile operators. The idea is to fix the number of UE
nodes so that they are equally shared between the numbers
of eNodeB available in each of the scenarios analyzed.

JMeter has been used to generate HT TP traffic in the UE,
VLC to generated RSTP traffic and HTTP Video traffic, and
MariaDB to generate database traffic. Each UE only commu-
nicates with one remote server for simplicity. The allocation
of the VNF for the eNodeB and the S/PGW has been tweaked
to make sure they are never allocated in the same physical
machine. This deployment forces all the communications to
flow between edge and core network segment, thereby avoid-
ing any artificial speedup in the results presented introduced
by using loopback interfaces. It is noted that the global traffic
generated by the different scenarios is always constant in all
the different scenarios analyzed. By arranging so, the amount
of traffic generated by each operator is proportional to the
number of operators available in each scenario. It means
that without any capability of disaggregation of metrics at
the operator level, all the scenarios analyzed would show
exactly the same workload in traditional flow monitoring
tools and no difference between them. However, the proposed
architecture allows the infrastructure administrator to have a
deep, comprehensive, and complete view of the behaviour of
each operator, and the behaviour of the new ongoing network
workloads available in the infrastructure. The validation of
this new capability is depicted in Figures 4(a) and 4(b).

Figures 4(a) and 4(b) show how the scenarios are com-
pletely different despite the fact that they generated exactly
the same workloads. The figure shows completely different
profiles of each of the operators sharing the infrastructure
by using the disaggregated metrics, making a significant
differentiating point with respect to the state of the art. It
also shows how the numbers of operators causes the sharing
of the network traffic among them and the infrastructure
administrator is able to understand the traffic behaviour in
the infrastructure.

The architecture has been designed to show efficiently and
in near real-time flow metrics grouped by operators. All the
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scenarios have been executed sequentially without shutting
down or resetting the proposed architecture. In traditional
monitoring tools, without the integration with the man-
agement plane of the infrastructure, the metrics associated
with the same IP address will be reassigned to another 5G
infrastructure during the execution of the next experiment
when such infrastructure takes an IP address previously used.
This might lead to metrics incorrectly associated with the
wrong operator. With our architecture, the testbed is able
to deal with the new life-cycle of VMs and thus deleting
its associated metrics and dealing with the multioperator
scenario thus mitigating these problems.

Figure 5 shows more fine-grained information where the
profile of the “Operator 1” shown in Figures 4(a) and 4(b) has
been disaggregated in order to allow monitoring the profiling
of each of the 32 5G subscribers that are connected in each
operator. It is noted that there are 32 different profiles shown
in the figure, 16 of which have been configured as clients and
another 16 as servers, and this is why there are more or less the
same number of bars with the same colour. This behaviour
has been concluded due to the disaggregation capabilities
provided by the monitoring architecture proposed.

External traffic is not used in any of the experiments
for the sake of simplicity. However, the scalability and
responsiveness of the prototype will not depend on the type
of traffic but on the throughput being processed. And thus,
similar results would be expected for any other type of traffic
under the similar throughput.

5.3. Performance Results

5.3.1. Delay Results. In order to analyze the overhead of the
proposed monitoring system against different workloads, the
average delay time between eNodeB and SGW running in
a given mobile operator has been measured without our
monitoring solution, i.e., no mirror with snapped traffic in
the OpenVSwitch and shown in Figure 6. Figure 7 depicts
the same scenario but now with our monitoring solutions
providing monitoring capabilities and thus the mirrored
snapped traffic being enforced in the data path. Comparing
both Figures 6 and 7, it can be observed how the activation
of the mirrored snapped traffic changes the behaviour in
the delay between client and destination in the data path.
With mirroring enabled, the delay is much less dependent
on the throughput between client and sender and it depends
significantly on the packet size. This behaviour is different
when compared with the scenario with no mirroring enabled,
where both small packet size and higher throughput both
contribute to the increase of the delay. In average for all the
different traffic workloads analyzed, the overhead delay in
the data path by enabling our monitoring solution is 356
microsecond, i.e., 0.356 ms. A closer analysis unveils that this
average overhead does not differ significantly between the
smallest packet size and the biggest one showing on average
453 and 211 + 445 microsecond, respectively. The worst
case scenario is the less stressed scenario (at 1Gb/s) at the
smallest packet size where the data path without mirroring
achieved an end-to-end delay of 240 microsecond against
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FIGURE 4: Screen shot of the graphical interface for 12 operators, 4 VNFs created.

779 microsecond achieved in the scenario with mirroring
(overhead 539 microsecond).

It is noted that even in the worst conditions, usually when
a Distributed Denial of Service (DDoS) attack is in place
or there is a significant under-provisioning planning in the
infrastructure, it can be seen how our proposed network
monitoring tool provides a minimal overhead lower than 1
ms; especially when the solution is purely implemented in

software, this delay is lower than a millisecond that is the
5G PPP KPI requirement for extremely low latency services.
The maximum delay allowed in 5G infrastructures is 10
milliseconds for normal services. Therefore, our proposed
solution is 5G compliant [40]. These results presented indi-
cate that NFVMon is able to monitor a 5G infrastructure
in almost real-time. These results are very reasonable taking
into account the fact that all the processing is conducted in
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FIGURE 5: Screen shot of the graphical interface for 48 UEs created for operator 1.
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FIGURE 6: Delay between client and server data path without mirror.

software. There is not any hardware-based acceleration based
on FPGA or similar approaches applied in this research,
and the application performs deep packet inspection in the
payload to be able to extract the information required to carry
out the experiments. This architecture is capable of processing
all the spectrum with different frame sizes and bandwidth in
software. To achieve this high rate, the controller has been
optimized to gradually gain efficiency in terms of processing
time dedicated to each packet, including multithreading of
the NFVMon, smart queuing, and adjustment of buffer sizes,
among other optimizations.

5.3.2. Scalability Results. Figure 8 depicts the scalability test
of the NFVMon architecture. It shows how much traffic
between client and server (y axis) can be simultaneously

monitored by NFVMon before starting to lose any packet for
a comprehensive range of packet sizes in the communication
between client and server (x axis). Packet loss metric can be
considered to define the limit of the scalability of the archi-
tecture. The different plots available in Figure 9 represent the
throughput achieved in the mirrored network (with snapped
traffic) before starting to lose packets in the communication
to the monitoring VM. As the reader can see, at 400 bytes of
packet size onwards, there is a common behaviour for all the
scenarios analyzed. In the best case scenario where the packet
size is 1418 bytes, NFVMon is able to monitor 70Gb/s of traffic
between client and server using a 10 Gb/s interface with no
packet loss. For 400 bytes of packet size between client and
server, the maximum performance to be monitored is around
20 Gb/s. Smaller than this packet size between client and
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FIGURE 8: Scalability analysis of NFVMon architecture proposed
measured in the data path between client and monitoring VM.

server, the behaviour is different for the different scenarios
but it is due to the fact that the scenario started to resemble
a DDoS attack rather than legitimate traffic. All the results
presented herein are using a packet snapping length of 200
bytes rather than the originally suggested value of 140 bytes.
The reason of this increase is the instrumentation required to
carry out the gathering of these results presented herein. It
is noted that the measurements require packet sequencing,
timestampting, and other instrumentation and it has an
impact on the overhead of the packet size. In the production
stage, the packet snapping length can be 140 bytes, which
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FIGURE 9: Analysis of response time of the flow monitoring tool
(delay between client and monitoring tool).

will make these results a bit better in terms of scalability.
Therefore, they can be considered as a pessimistic measure-
ment of the scalability of NFVMon architecture presented.
These results show a significant scalability performance of the
proposed solution which mitigates the problems associated
with this type of approaches by using a smart traffic snapping
technique.

5.3.3. Packet Loss Results. Figure 9 shows the packet loss
of the mirrored network according to the stress of this
interface. The figure allows the reader to better understand
the behaviour of the packet loss for the different key packet
sizes analyzed when a snap length of 200 bytes was applied. At
both 400 bytes and 1418 bytes of packet size, there is no packet
loss happening in the data path of the mirrored network.
Then, for the worst case scenario at 200 bytes of packet size,
the packet loss started at 5Gb/s reaching up to 45% for 10Gb/s
throughput. This scenario is a really stressed scenario that
does not represent in somehow real traffic patterns and will
be clearly associated with a DDoS attack.

5.3.4. Responsiveness Results. Figure 10 shows an analysis of
the responsiveness of the system. It provides the response
time when a packet is passing by the data path and it is
shown in the GUI interface of the monitoring component.
This analysis has considered three main scenarios. The best
case is when the packet size is the largest one. In this case, the
response time is around 1 ms following a very linear constant
trend regardless of the throughput. The worst case scenario,
usually under a DDoS attack, is when all the packets are very
small. In such a scenario, the response time is 2ms. However,
it is worth noting that there is around 40% of packet loss
under this circumstance, and the delay is the measurement of
the received packets. Then, it has been decided to plot the case
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FIGURE 10: Analysis of response time of the flow monitoring tool.

with 400 bytes of packet size since it is the smallest packet size
without packet loss in order to see the response time under
this condition. Both cases show a very similar behaviour and
all the values follow a linear trend close to 2ms of response
time. These values clearly show the resistance and reliability of
the proposed system even in very disadvantaged conditions
where a DDoS attack is happening in the network.

6. Conclusion and Discussion

The NFVMon architecture presented performs efficient and
transparent network flow monitoring and analytics of user
application traffic at the mobile edge to benefit both QoS-
aware smart system applications and multiple 5G operators
sharing the same physical infrastructure. The proposed archi-
tecture employs a careful integration with the management
plane of cloudified infrastructure and SDN/NFV softwariza-
tion and visualization technologies. The proposed system has
been implemented and validated in a testbed with real 5G
cloud infrastructure.

NFVMon enables mobile operators to perform a detailed
analysis of network flow monitoring in the cloud-based,
SDN/NFV-enabled infrastructure as expected for the emerg-
ing 5G infrastructure, and service providers to develop
QoS-aware applications for smart networked systems. The
proposed system allows analyzing how each VM and each
operator is using the infrastructure at a given time and
especially how an operator behaves within the cloud infras-
tructure along the time. Existing solutions for traffic analysis
do not classify the traffic per operator or achieve the efficient
management of IP reusage due to the lack of integration with
the control plane of the cloud infrastructure. The proposed
architecture has been intensively tested at 10 Gb/s networks
against scalability, overhead delay introduced in the data
path, and response time of the monitoring solution. In all
the case, the results have demonstrated that this approach
can bring a more reliable classification of packets allowing
disaggregation of metrics, whereas it can deal also with the
scalability problem traditionally associated with this kind of
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approaches, mainly by the usage of the packet snapping tech-
niques. Results are providing 1-2 ms of response time of the
monitoring solution while providing very decent scalability
by allowing the monitoring of 20-70 Gb/s in the data path per
each of the interfaces being used into the mirrored network.
These results are very promising specially when the solution
provided is a pure software-based implementation with no
hardware-acceleration capabilities.

Future work is expected to explore the usage of the
tenant-aware information and network classification as the
foundation to explore the provisioning of tenant-aware QoS
within modern mobile edge computing infrastructures for
5G communications. It is also envisioned to explore future
testbed with higher bitrates such as 100 Gb/s and 400 Gb/s in
order to determine the suitability of this approach under such
conditions.
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