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The Industry 4.0 (I4.0) adoption comprises the change of traditional factories into smart using the ICTs. The goal is to monitor
processes, objects, machinery, and workers in order to have real-time knowledge about what is going on in the factory and for
achieving an efficient data collection, management, and decision-making that help improve the businesses in terms of product
quality, productivity, and efficiency. Internet of Things (IoT) will have an important role in the I4.0 adoption because future smart
factories are expected to rely on IoT infrastructures composed of constellations of hundreds or thousands of sensor devices spread
all over the industrial facilities. However, some problems could arise in the massive IoT deployment in a medium-high factory:
thousands of IoT devices to cope from different technologies and vendors could mean dozens of vendor tools and user interfaces
to manage them. Moreover, the heterogeneity of IoT devices could entail different communication protocols, languages, and data
formats, which can result in lack of interoperability. On the other hand, conventional IT networks and industrial machinery are
expected to be managed together with the IoT infrastructure, maybe using a tool or a set of tools, for orchestrating the whole smart
factory. This work meets these challenges presenting an open-source software architecture solution based on OpenDaylight (ODL),
a Software Defined Network (SDN) controller, for orchestrating an industrial IoT scenario. This work is addressed by shedding
light on critical aspects from the SDN controller architectural choices, to specific IoT interfaces and the difficulties for covering the
wide range of communication protocols, popular in industrial contexts. Such a global view of the process gives light to practical
difficulties appearing in introducing SDN in industrial contexts, providing an open-source architecture solution that guarantees
devices and networks interoperability and scalability, breaking the vendor lock-in barriers and providing a vendor-agnostic solution
for orchestrating all actor of an 14.0 smart factory.

computing, big data and cybersecurity, among others [1]. In
this new technological scenario many strategic points (prod-

The European Union (EU) is moving towards what is already
considered the fourth industrial revolution, the Industry 4.0
(14.0). The aim of 14.0 is to transform the conventional
factories into smart factories using the Information and
Communication Technologies (ICTs). These add flexibility
in manufacturing, mass customization, improve the quality
of products and processes, and increase the productivity.
A subset of ICTs, the Key Enabling Technologies (KET),
have been proposed as drivers to carry on this change:
the use of sensors, actuators, wireless communications, next
generation networks, robots, additive manufacturing, cloud

ucts, processes, workplaces, workers, etc.) will be monitored
by using different technologies and devices. These will be
wired or wireless connected to the factory local network
or to the Internet. One or more software tools will be in
charge of collecting, storing, filtering, and managing the
enterprise data. This scenario will be carried out by setting
an Internet of Things (IoT) infrastructure [2, 3]. Hundreds or
thousands IoT devices will be spread in the factory collecting
data at real-time about industrial processes, machinery, and
workers performance. The goal is to achieve an eficient
factory management and decision-making to improve the
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FIGURE 1: Three layered-based Software Defined Network architecture.

business in terms of product quality, productivity, and
efficiency.

The 14.0 adoption in the above scenario entails different
problems for a medium-high factory:

(i) Thousands of IoT devices to cope, from different
vendors and with different technologies, could mean
dozens of vendor tools and user interfaces to manage
them.

(ii) The heterogeneity of IoT devices could entail dif-
ferent communication protocols, languages and data
formats, among others, which can result in lack of
interoperability.

(iii) Conventional IT networks and industrial machinery
will coexist with the new IoT infrastructures, and all
will be “connected” to achieve the full 14.0 adoption.

(iv) The data traffic in the industrial network infrastruc-
ture deployed could significantly increase, deriving
in undesirable packet delays and network congestion.
The data traffic should be routed efficiently to avoid it.

The two former could be managed by using a local or
cloud-based IoT platform [4, 5] but the two latter would
remain partially or totally unsolved. Some works in the recent
scientific literature have proposed some software solutions to
deal with these problems (see Section 2). However, they do
not deal with heterogeneous scenarios where noncompliant
IoT devices or industrial machinery are operating. This
work tackles these challenges, by proposing a single open-
source software architecture solution based on a layered-
based Software Defined Network (SDN) architecture (see
Figure 1).

SDN was firstly designed to orchestrate IT networks, but
nowadays some SDN controllers include plugins to connect
in the southbound with IoT devices and networks. The
proposed software uses OpenDaylight (ODL (https://www
.opendaylight.org/)), a SDN controller with a dedicated IoT
plugin called IoTDM that manages and stores data generated
by IoT based devices according to oneM2M (http://www
.onem2m.org) standard. This is required to provide a
standardized interface to manage and interact with user-
applications. Since IoTDM by default only understands native
JSON/XML data formats, this work breaks the lack of interop-
erability with noncompliant industrial devices by providing a
software architecture solution that guarantees interoperabil-
ity among these devices/technologies and the IoTDM plugin
in the southbound. Finally, ODL has to transfer the data
from the southbound to the northbound and vice versa. Here
another software entity is needed because in the southbound
IoTDM manages data with a native JSON/XML format, and
applications in the northbound could work with a generic
JSON/XML format. This work proposes the use of a system
of plugins based on oneM2M standard. This ensures agile
management, collection, and presentation to the final user
applications.

The software architecture proposed in this work gives
light to the practical difficulties of adopting 14.0 to medium-
high factories, proposing a modular architecture solution
based on pre-existing open-source software. Its modularity
allows anyone to develop new plugins for those technologies
involved in any industrial scenario not considered in this
work. The solution is also vendor-agnostic, breaking the
vendor lock-in barriers, and it is scalable in terms of amount
of devices to manage and technologies to support, because
ODL permits to create a cluster of controllers running as
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a single entity to allow fast scaling, high availability, data
persistence, and fault tolerance.

Finally, the solution also exploits some of the SDN
benefits:

(i) The management of tasks is automated and isolated
from the complexity of the physical infrastructure
through easy-to-use interfaces.

(ii) New services and applications could be provided in
short time; in addition the IT administrators have the
possibility of programming network functionalities
and services as required, eliminating dependence on
hardware manufacturers.

(iii) The network routing policies can be configured and
managed for the whole network, using the same
software solution, monitoring the network reliability,
safety, and efficiency.

(iv) The user experience improves because the applica-
tions can exploit the centralized information about
the state of the network and data collected, making
it possible to react in real time and to carry out mod-
ifications that can improve the network performance.

(v) The operating costs of the industrial network manage-
ment could be significantly reduced.

An Industrial IoT (IIoT) pilot scenario has been deployed
to test the software architecture proposed. An application
in the northbound has been implemented for testing some
management tasks: add, remove, configure, and manage
different IIoT devices, commonly used in industrial context.
The scenario has been deployed with a single instance of
ODL controller, giving the possibility of setting up a second
ODL controller as backup to address risk situations such as
high network latency, bottleneck, cybersecurity attacks, or
faults.

Note that this work gives light to the practical difficulties
appearing in introducing SDN in industrial contexts. It
provides light to critical aspects from the controller archi-
tectural choices, to specific IoT interfaces and the difficulties
for covering different communication protocols popular in
industrial contexts. To do this, the paper is organized as
follows: Section 2 reviews the related work. Section 3 sum-
marizes the current IoT platforms and explains the reasons
to use ODL and IoTDM in industrial scenarios. Section 4
reviews the most extended technologies and communication
protocols in industrial facilities, remarking those that need
a parser to be compatible with ODL and IoTDM. Section 5
presents the software architecture solution and Section 6
describes an IIoT pilot scenario testing the proposal. Finally
Section 7 concludes.

2. Related Work

As we stated, it seems clear that the IIoT adoption is an
unstoppable fact within the 14.0 framework. In a medium-
high factory, it entails different problems that could be solved
by using software solutions based on SDN, permitting the
orchestration of IT, IoT, and IIoT networks. It seems right to

focus the effort on the development of software services that
allow (i) unifying the management of those heterogeneous
networks given in an industrial scenario with a single and
common modular software entity and (ii) providing inter-
operability in terms of technologies and devices popular in
industrial contexts. Finally, (iii) the use of open standards
should be mandatory, permitting to break the vendor lock-
in problems and to create vendor-agnostic solutions.

Although the management of IoT and IIoT has received
a lot of attention from the research community, to the best
of the authors’ knowledge there are only a few proposals
where SDN is used to orchestrate these networks in an
14.0 scenario, but they do not provide all the features
enumerated above. Some works solve the orchestration of
IToT networks without SDN, like in [6 ], where an IoT network
is orchestrated by a network of fog nodes, which manage
all layers of an IoT ecosystem to integrate different service
modules into a complex topology. In [7] two architectures
for an [oT networks orchestration are presented, using OSGi
(https://www.osgi.org) and REST (https://restfulapinet/),
paying attention only to higher layers, not to physical con-
nection. Moreover, universal standards for IoT like oneM2M
are not taken into account, missing interoperability. Both
proposals lack any single tool (industrial application and/or
SDN orchestrator) to have a complete network knowledge
and management. The same scenario is set in [8] where the
main concepts involved in an IoT orchestrated network are
explained, but without the use of SDN.

Other works present solutions based on SDN, but they
do not look into to understand if they fulfil the requirements
and solve the problem that I4.0 adoption entails in a medium-
high factory. Some examples are in [9-17]. In [9] the authors
analyse the IoT challenges that the network and IT infras-
tructures face, showing the Network Functions Virtualization
(NFV) and SDN benefits from a network operator point of
view. Work in [10] is focused on the fifth generation (5G) of
mobile networks technology (5G) [11], applying SDN, NFV
and IoT technologies. Works addressed in [12, 13] show an
IoT architecture based on SDN, and [14] is a use case of [13]
focused on 5G. As in the previous works, they do not provide
a single solution where the IoT operations are managed on
the SDN platform. In [15] the theory behind the use of SDN
to manage an industrial network is explained, as well as in
[16, 17], where the use of SDN for wireless networks (also
called SDWN) and IoT is study in depth, highlighting some of
the future research directions and open research issues based
on the limitations of the existing SDN-based technologies.

At the time of writing this work, only a few works [18-20]
provide a vendor agnostic IoT and SDN software architecture
solution. However, they do not deal with heterogeneous
scenarios where noncompliant IoT devices or industrial
machinery are operating, and their solutions do not take into
account oneM2M standard. In [18] a novel framework of IToT
with SDN and Edge Computation (EC) is proposed to address
an optimal adaptive transmission routing mechanism. Open
Mul (http://www.openmul.org/) is used as SDN controller.
The authors do not look into how the architecture is designed,
because the goal of the work is focused on the management
of the network at upper layers. In [19] a SDN solution for


http://www.openmul.org/

Wireless Communications and Mobile Computing

Corporations o Kaa
= * Eclipse IoT

Cloud » ThingSpeak « FIWARE
e Amazon Web Services o Xively 0

! § e OpenloT
o Microsoft Azure « Sensor Cloud o TRaim
; ‘i}o(:gleglo:u.l Platform * Sofia2 o LIoTA
n Elis(‘r}’h'en 1;1‘: ¢ Device Hive
. P.l SE ung\orx » Sofia2
Device Centric
e Intel IoT
e ARM mbed

FIGURE 2: Leading IoT platforms.

IoT built with Open Network Operating System (ONOS
(https://onosproject.org/)) as SDN orchestrator is proposed.
The architecture is suitable for orchestrating end-to-end
service chains deployed across heterogeneous SDN/NFV
domains and define a related high-level and vendor-agnostic
intent-based northbound interface (NBI). They propose a
network management architecture based on the use of a
dedicated controller for each type of network. In [20], the
authors analyse the deployment of SDN in the Industry
4.0 paradigm, pointing out the three main problems and
future issues to address for a fast and success implementation
in industrial scenarios: data safety and system reliability,
technology standardization and practical implementation.
The authors suggest a solution to the above problems the
development of a hybrid node device capable of handling
with IT and IoT networks.

As a conclusion of this review, there are some works
focused on explaining and developing SDN scenarios for
conventional IT or IoT networks, but most of them are
missing the interoperability of popular protocols and tech-
nologies of industrial contexts, the modularity, and the
open-source benefits. This work is a contribution in this
matter, providing light to critical aspects of SDN controller
choice, IoT interfaces, and widely extended technologies and
protocols of industrial contexts.

3. ODL as Industrial IoT Platform

There are many IoT platforms [4, 5] aiming at managing IoT
networks, but it is difficult to find one that complies with
the requirements of open source and heterogeneity for an
Industrial IoT (IIoT) scenario. Figure 2 summarizes the main
features of the most popular IoT platforms.

As the authors’ knowledge most of open source IoT
platforms enables interoperability, some of them through
a multilanguage and multiprotocol system. They usually
provide an SDK to develop applications. However, a real
implementation in an industrial scenario with a wide range
of industrial technologies requires big human resources to
develop the functionalities required. In this point is where
some companies offer their expensive commercial versions.
This picture invited us to explore other software alternatives,
like SDN, because nowadays some SDN platforms allow the

integration of IoT services together with traditional human-
based services, through a global orchestration of distributed
cloud, heterogeneous IT, and IoT networks. In SDN (see
Figure 1), the software entity controller (i) carries the huge
amount of data generated by the IT and IoT networks to
any distributed computing node, (ii) allocates computing
and storage resources into distributed data centers, and (iii)
processes the collected data to make decisions. In addition,
SDN offers the possibility of network orchestration through
the use of a cluster of controllers, which adds scalability to the
management system, high availability, data persistence, and
fault tolerance using a backup controller.

Among all available SDN controllers, this work has
addressed a comparison from those that are open source and
widely accepted by the scientific community [21, 22] to point
out the one that meets the requirements of an IIoT scenario.

ONOS is an open source SDN controller written in
Java with a distributed network operating system and good
performance. It is composed by an extensible and mod-
ular platform and a set of applications. As southbound
interfaces (SBI), ONOS supports OpenFlow, NETCONE,
and PCEP. As northbound interfaces, it uses REST. Ryu
(http://osrg.github.io/ryu/) is a component-based SDN con-
troller with a set of predefined components written in
Python, which can be modified, extended and composed
to create a customized controller application. It supports
different OpenFlow versions. Since it is written in Python,
the network performance seems to be lower than other
Java based SDN controllers, as stated in [21]. Floodlight
(http://www.projectfloodlight.org/floodlight/) consists of a
set of modules which provide service to other modules and/or
to the control logic application through a simple Java or REST
APL Tt can run on the top of Linux, Mac, and Windows
OS. According to [23], Floodlight shows high performance
in terms of packet loss. OpenDaylight is an open-source
controller written in Java, with a high performance and
widely supported by the networking industry. ODL includes
IoT Data Broker (IoTDM) plugin, which opens the door to
use ODL as a SDN platform for IoT networks management.
IoTDM is a data-centric middleware that acts as an oneM2M
compliant and enables authorized applications to retrieve IoT
data uploaded by any device in the network. With IoTDM,
ODL seems to be the most suitable candidate to manage an
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[IoT. Table 1 summarizes a comparison of the main features
provided by the SDN controllers reviewed.

4. Technologies and Communication Protocols
in an Industrial IoT Scenario

In the previous section it was concluded that ODL together
with IoTDM is our most suitable solution as IIoT platform.
However, not all technologies and communication protocols
coexisting in an IIoT scenario are compatible with ODL and
IoTDM. Note that ODL and IoTDM works with XML/JSON
data formats and HTTP, MQTT, or CoAP as communication
protocols

In this section we review what technologies and commu-
nication protocols are widely used in an industrial facility,
showing their data formats and compatibility with ODL and
IoTDM. Table 2 summarized them. The goal is to identify the
need of a parser in the southbound to enable communication
between industrial technologies and ODL together with
IoTDM. The technologies reviewed are the follows:

(i) Radio Frequency Identification (RFID) is one of the
wireless technologies widely used in the industry as an
alternative to the bar code. RFID uses the EPCglobal
Class-1 Gen-2 standard as communication (and anti-
collision) protocol [24]. The data received and stored
in the RFID reader from RFID tags can adopt XML
format and can be sent via HTTP.

(ii) Bluetooth Low Energy (BLE (https://www.bluetooth
.com)), the power-conserving variant of Bluetooth
for personal area networks (PAN), is commonly used
by Internet-connected machines and appliances. Its
name also refers to its protocol, which is a full protocol
stack. The BLE data format is not JSON or XML
structure.

(iii) Modbus (http://www.modbus.org) is an industrial
standard communication protocol, used for pro-
grammable logic controllers (PLCs), to transmit sig-
nals from instrumentation and control devices back
to a main controller or data gathering system, and it is
typically used for connecting a supervisory computer
with a remote terminal unit (RTU) in supervisory
control and data acquisition (SCADA) systems. There
are different versions of Modbus protocol: Modbus
RTU and Modbus ASCII for serial lines and Modbus
TCP for Ethernet. The data format of Modbus is an
Application Data Unit (ADU).

(iv) Controller Area Network (CAN or CAN Bus) [25] isa
vehicle bus standard designed to allow electronic con-
trol units and devices to communicate with each other
in applications without a host computer. Examples of
devices working with CAN Bus are electronic control
units, microcontrollers, devices, sensors, actuators,
and other electronic components. CAN Bus is also
a message based protocol, originally designed for
multiplex electrical wiring within motor vehicles, but
is used in the context of industrial applications. This

standard generates DBC files, which are a proprietary
format that describes the data over a CAN bus.

(v) Ethernet for Control Automation Technology (Ether-
CAT (https://www.ethercat.org)) is based on the
CAN open protocol and on Ethernet but differs
from network communications in being specifically
optimized for industrial automation control, and its
data format is EherCAT Slave Information (ESI).

(vi) Profibus and Profinet (https://us.profinet.com) are
standards for fieldbus communications in the indus-
trial automation. Profibus links controllers or control
systems to decentralized field devices (sensors and
actuators) on the field level and also enables consis-
tent data exchange with higher ranking communica-
tion systems. Profinet connects devices, systems, and
cells, facilitating faster, safer, less costly, and higher
quality manufacturing. It easily integrates existing
systems and equipment while bringing the richness of
Ethernet down to the factory floor. Profinet commu-
nications are commonly TCP/IP based. Both Profinet
and Profibus devices can connect to SCADA sys-
tems and IoT platforms through a gateway based on
OPC (https://opcfoundation.org/), a communication
standard for industrial telecommunication processes.
OPC Unified Architecture (OPC UA) is the client-
server architecture (see Figure 3) that serves as gate-
way to convert Profinet and Profibus data to propri-
etary XML/JSON data format. OPC UA supports real-
time data communications, alarms, security features,
etc. The OPC server is the data source and any
application based on OPC standard can access to this
server as OPC client to read and write on it. Software
vendors only need to include OPC client capabilities
in their products. Unfortunately, the industrial OPC
software is not traditionally open source, and the
companies are obeyed to spend a lot of money for
locked-vendor OPC client-server solutions. Recently,
some open-source OPC UA software solutions are
available in [26].

5. Software Architecture Based on SDN and
IoT for Industrial Iot Scenarios

Figure 1 is extended to Figure 4 to illustrate the software
architecture proposed for an industrial 14.0 scenario if only
open-source software is used. All devices (networks) are
placed in the bottom, orchestrated by the SDN controller.
In the bottom-left the IIoT network is placed, with IoT
devices from different technologies (sensor motes, RFID,
BLE) and industrial machinery working under Profinet,
Ethercat, CAN Bus and Modbus. The IIoT network coexist
with the conventional IT enterprise network, composed of
routers, switches, PCs, printers, etc.

In the middle of Figure 4 a single controller is plotted,
managing the IT and IIoT networks. A second controller is set
as backup, to guarantee scalability and react to risk situations
such as high computational load in the main controller,
cybersecurity attacks, bottleneck in the IT or IIoT network,
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TaBLE 2: Comparison of the most common technologies and communication protocols in an IToT scenario.

Parser in the southbound

Technology Communication Protocol to XML or JSON format for SDN and IloTDM
communication
IoT devices HTTP, CoAP, or MQTT Yes, XML, JSON No

EPCglobal Class-1 Gen-2 (among RFID tags and reader)

RFID HTTP (between RFID reader and server) Yes, XML No
BLE BLE No, if Oife'gA IS0t yes, if OPC-UA is not used
Modbus RTU, Modbus ASCII,
Modbus Modbus TCP No= Yes:
CAN Bus CAN Bus Nos* Yes
EtherCAT CAN open-Ethernet Nos Yes:
Profibus CAN open-Ethernet Nos Yes:
Profinet TCP/IP Nos Yes

«If OPC-UA is not used.
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etc. The decision comes from the fact that according to the
work in [24], a single controller has more than enough pow-
erful to manage the traffic of a set of medium-size IT and IoT
networks in an industrial scenario. Authors in [27] show how
a single NOX (https://github.com/noxrepo/nox-classic/wiki)
controller can handle at least 30Kb flows per second with
10ms of install delay. Hence, in this scenario, only two
controllers are considered, but the number of controllers
could vary because ODL allows a flexible deployment of
controllers, depending on the needs. ODL uses a software
functionality called Virtual Tenant Network (VIN) for the
orchestration of a cluster of controllers (see Figure 5).
Another possibility of SDN controller deployment, not
considered in this work, is the use of a dedicated SDN
controller for each type of network: one controller for the
IT network and one controller for the IoT network. This
solution has some advantages such as modularity, more
efficient management of applications in the northbound and
southbound, or a decrease of bottleneck risk. However, this
deployment shows some disadvantages: (i) more hardware,
that is, at least two high-powerful computers to allocate each
controller and two more for allocating backup controllers; (ii)
to use a nonunified interface: the number of user interfaces
will be equal to the number of controllers running in the
deployment; (iii) to replicate NBI and SBI applications if they
operate in both networks: the use of a single application for
managing more than one network is very usual. For instance,
NBI applications for visualization and device management
with dashboard are needed in every network orchestration.
The deployment and the communication among all actors
in the architecture proposed are explained in detail in the next
subsections, from the physical to the application layer, that is,
from the southbound to the northbound SDN architecture.

5.1. Southbound Layer. The southbound is the physical/
logical connection between devices (networks) placed in
the industrial scenario and the SDN controller (ODL and
IoTDM), installed in a virtual or local machine. Three
networks are identified: IT network, IoT network and non-
compliant IoT networks, or industrial machinery networks.
Conventional IT networks are directly connected to the ODL
controller via wired or wireless connection, transmitting
and receiving monitoring and management data with the
widely used Openflow and NETCONF protocols and even
with SNMP protocol if it is required, because ODL has
a plugin to support it. The IoT network, composed of
Wireless Sensor Networks (WSN) or a set of sensor nodes, is
connected to ODL through IoTDM via wired or wireless con-
nection (LoRa (https://www.lora-alliance.org/) and Sigfox
(https://www.sigfox.com/) coud be used as wireless network).

Wireless Communications and Mobile Computing

Other networks noncompliant with the communication pro-
tocols HTTP, CoAP, or MQTT and the data formats JSON or
XML will need a gateway or wrapper to communicate with
ODL through IoTDM.

RFID is compatible with IoTDM. RFID readers are the
gateways of the RFID network deployments, sending and
receiving the data to ODL and IoTDM in JSON or XML
format, through HTTP. Most of IoT sensors (motes) in the
market are also compatible with [oTDM. Motes acting as
gateways in the sensor network deployments store and send
data collected directly to ODL through IoTDM in JSON
format using CoAP or MQTT protocol. TelosB, TinyOS,
Beagle Bone, or Tmote Sky use CoAP while Raspberry Pi and
Arduino can use both.

On the other hand, those devices operating with BLE
need a wrapper to communicate with [oTDM. The wrapper
is a SW+HW entity that can be implemented in the same
machine where ODL together with [oTDM is being executed
or in a low cost solution near the BLE devices, for instance,
a Raspberry Pi 3 Compute Module 10 Board V3 with one
or more Compute Modules 3 (https://www.raspberrypi.org/
products/compute-module-io-board-v3/). Raspberry Pi 3 is
widely used in industrial scenarios due to their robustness. In
any of the two options, a BLE receptor is required (via USB
or GPIO) as gateway between the BLE network and IoTDM,
and a parser from BLE data to JSON and vice versa must
be working in the wrapper. An open-source solution of this
parser can be found in [28].

The industrial machinery networks, with devices oper-
ating with technologies and communication protocols like
Modbus, CAN Bus, and Ethercat cannot operate directly with
IoTDM due to their data format and communication proto-
cols incompatibility. As we stated in the previous section, this
machinery uses as intermediate step in their communications
a OPC UA client-server architecture. Each technology needs
an OPC UA server to convert the data to JSON format and to
communicate with an OPC UA client. The OPC UA client is,
at the end, the entity that must communicate with ODL and
IoTDM. Note that OPC-UA server-clients are not typically
open-source software. Then, two open source options are
proposed in this work for enabling interoperability among
industrial machinery and ODL with IoTDM:

(i) An OPC UA client-server solution for each tech-
nology, installed in an intermediate machine. This
machine could be the wrapper. This must parse, adapt,
and restructure the received data from OPC UA
clients in order to shape a valid JSON or XML under-
stood by IoTDM. The communication procedure of
this option is plotted in Figure 4 with blue lines. In
[26] alist of open source solutions can be found.

(ii) A parser for each technology which addresses sep-
arately the data conversion to XML or JSON. They
could be installed in an intermediate machine (wrap-
per). The communication procedure of this option
is plotted in Figure 4 with red lines. There are some
open-source solutions that can be used: modbus TCP
[29] for Modbus; ecatmod for EtherCAT [30] and
libcanardbc [31] for CAN bus.
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TaBLE 3: Methods implemented in the HubPlugin class.

Method Description

getConfig Returns to the controller the hub configuration

getDevices Returns to the controller the device list managed by the hub.
getDeviceConfig Returns to the controller a concrete device configuration

getDeviceData Returns to the controller the data given by a concrete device
getDeviceSchema Returns to the controller the configuration scheme from a concrete device
setConfig Updates the hub configuration

setDeviceConfig Updates a concrete device configuration

Proprietary
Languages

e ————
e ————

WRAPPER

_—

Proprietary
XML/JSON

—

e ————
_—

Generic
XML/JSON

_—
—_—

IoTDM Plugins

e ——

FIGURE 6: Data flow (upload) to reach a generic JSON/XML data format.

In any of the two options an intermediate machine is needed.
In Figure 4 the wrapper is plotted as a single machine, but a
set of machines could be required if the number of networks
to gateway or the amount of data to process is high.

Note that the software solution proposed for industrial
machinery will change in a near future because the OPC
Foundation is working on a new extension to make OPC UA
compatible with IoT applications, the OPC UA PubSub [32].

In short, those devices that cannot communicate directly
with IoTDM make use of a wrapper to shape their data
to be understood by IoTDM. The communication among
the actors of this scenario is illustrated in Figure 6. The
wrapper joins the functionalities of the parsers described
above as a single bridge that receives the data from different
technologies and parses and sends the converted data to ODL
with IToTDM.

5.2. Controller Layer. ODL with IoTDM works in the con-
troller layer. It can be run in a dedicated enterprise server
or in the cloud. The latter could simplify the implementation
and reduce the hardware costs. The decision about where the
SDN platform must be allocated depends on the computation
resources in the IT network factory, the size of the IT IoT
and industrial machinery networks and the amount of data
traffic to manage, the security policies in the enterprise, etc.
ODL and IoTDM can be executed in Linux and Windows,
but the former is better in terms of performance and
compatibility. When ODLwith IoTDM is executed, it keeps
awaiting incoming device petitions and/or data. The data
received by IoTDM with specific JSON structure must be
parsed to generic JSON structure, needed to be understood by
any application in the northbound layer. Thanks to the open
ODL functionality, this parser has been developed in this
work. Here is where the vendor lock-in problem is completely
broken.

The parser has been developed with an abstract class,
HubPlugin, which has been defined in the controller. It

includes some methods to be implemented for each new
technology to adapt. This lets us isolate the communication
mechanisms and the data formats of each vendor. The plugin
not only provides the data in the required JSON format but
also sets the communication protocol with the physical hub
(HTTP, CoAP, or MQTT). In this software architecture a
hub is understood as a technology involved in the physical
layer (RFID, BLE, Profibus, Modbus, etc.). Each HubPlugin
implementation must include a set of methods, summarized
in Table 3.

The data in ODL with IoTDM are internally processed
and stored in the Model-Driven SAL (MD-SAL) [33]. This
is a set of infrastructure services defined in ODL with
the aim of providing a common and generic support to
applications, plugins for developers and infrastructure ser-
vices for data storage, RPC, service routing and notification
for publish/subscribe services. Figure 7 shows the module
hierarchy of the parser implemented in the controller layer.
The services are described as follows:

(i) Controller Manager is responsible for the north-
bound interface implementation. It also includes
the controller core, adding the following tasks: (i)
communication with ODL data base (MDS-SAL) and
(ii) dynamic plugins instantiation (specific format to
generic format translators) for enabled hubs (tech-
nologies).

(ii) Controller Provider is in charge of giving the base
element executed by ODL when it starts, initiating the
Controller Manager.

(iii) Data Gathering polls every configured time to all
activated plugins, allowing the data storage.

(iv) ODL Data Base is the specific MD-SAL data store
from ODL.
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Create
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ControllerManager

HubPlugin

DataGathering

ODL Data Base

FIGURE 7: Modules hierarchy implemented in ODL.

(v) Hub Plugin is the abstract class which defines the
behavior of each plugin and hub involved in the
scenario.

5.3. Northbound Layer. The Northbound layer is the high-
est layer in the SDN architecture. It is composed of user
applications. These integrate the so-called Northbound APIs.
The main functionality of this layer is to give the users final
applications with different purposes, for instance, data and
device management in the network, device visualization in
graphic interfaces, host tracker, flow programmer, or static
routing.

Northbound applications communicate with the physical
network in the Southbound through the SDN controller,
which takes decisions about how to proceed. An example of
Northbound API is given in Section 6, where a web applica-
tion is developed with the aim of managing an IToT network,
composed of devices from different vendors. Other examples
of Northbound APIs are shown in Figure 8. There is a wide
variety, with different purposes: cloud orchestration tools
based on OpenStack (https://www.openstack.org/), VMware
(https://www.vmware.com/), or CloudStack (https://cloud-
stack.apache.org/) for instantiation of virtual machines in
network elements; services to increase network security such
as firewalls to filter traffic according to certain criteria based
on ports, IP addresses, or services; network planning tools
such as Net2Plan (http://net2plan.com/), to generate topolo-
gies, to collect statistics or to execute network optimization
algorithms; applications of accounting and load balancing;
applications focused on network operation and management,
some of them based on CRUD services (Create, Read, Update,
and Delete), or dashboards to show the topology and the
current status of every device in the network.

[[emaIr]
UR[d7IN
Topur] yred/4Soodoy,
Sununosoy

3s ANID ‘spaeoquse

Judwageuey YI0MIIN
Iaoue[Rg PROT

Northbound
! API

SDN Controller

Southbound
! API !

IoT Network IT Network

FIGURE 8: Northbound APIs examples.

6. I1oT Pilot Scenario Using ODLwith
IoTDM and Plugins

In contrast to the works reviewed in Section 2, this work
shows a pilot to test the proposed open source SDN archi-
tecture solution. This pilot provides light to the orchestration
of an industrial scenario using SDN, testing the management
of a set of lamps and sensors installed in an industrial
warehouse, together with the IT network operating in the
same factory. This scenario could be real in a medium-high
factory, and it could be extended for managing any industrial
technology, just following the software and hardware requi-
sites described in Section 5.

Following the three layered architectures in Figure I,
extended in Figure 4, the southbound consists of a set of
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Network

FIGURE 9: Dashboard of web interface for orchestrating IloT
networks.

smart lamps (Philips Hue (https://www.philips.co.uk/c-p/
8718291775027/hue-personal-wireless-lighting/specifica-
tions)) and a set of intelligent sensors used in industrial
scenarios for monitoring temperature, humidity, etc. (B+B
SmartWorx (http://advantech-bb.com)). They work as an
IIoT network. In the controller layer ODL with IoTDM,
version Carbon 0.6.3 is executed in a local machine running
Ubuntu- Linux. In the northbound a simple web application
has been developed to test the communication among all
actors in the architecture. The user-devices interactions
are done in a background communication between the
web interface and the controller layer. A snapshot of the
web application is shown in Figure 9. It shows the visual
management of those devices connected to the IIoT network
and allows users to create, modify, and/or delete entities
related to the deployed scenario. The web tool offers four
main functionalities:

(i) Dashboard: main application screen, showing general
information about the platform as the number of
devices (hubs) to manage.

(ii) Network: showing the topology deployed.
(iii) Hubs: screen to manage hubs via CRUD.

(iv) Devices: screen to visualize and configure devices.

The pilot has been tested for orchestrating the single IToT
network, the IT network and both together with a single
controller.

7. Conclusions

On the one hand, this work has identified the main problems
that could arise in the I14.0 adoption for a medium-high fac-
tory: the management of thousands of IoT devices of different
technologies and vendors, the heterogeneity of communi-
cation protocols and data formats, the need of manage the
traditional industrial machinery networks and IT networks
together with new IoT infrastructures, and the risks of huge
amount of data traffic in the 4.0 infrastructure, which could
derive in undesirable packet delays and network congestion.
After that, an open-source software solution architecture
based on ODL together with IoTDM has been proposed
to orchestrate the whole 14.0 infrastructure, enabling inter-
operability and management of IIoT devices from different
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vendors, including conventional industrial machinery and
IT networks. The software architecture solution includes the
use of different system of plugins in the southbound and
in the controller layer. In the latter, the plugin is based on
oneM2M standard that parse the JSON/XML format from
IoTDM to a generic JSON/XML format understood by any
application in the northbound. The system of plugins has
been developed with modularity and scalability premises,
giving an open software solution that allows anyone to be
able to develop a new plugin for each technology involved
in an industrial scenario. The software architecture presented
in this work provides scalability and exportation to other
industrial scenarios, breaking the vendor lock-in barriers and
generating a vendor-agnostic solution.

This work gives light to the practical difficulties appearing
in introducing SDN in industrial contexts for 14.0 adoption.
It reviews and provides solution to critical aspects from
the controller architectural choices, specific IoT interfaces,
and the difficulties for covering different communication
protocols popular in industrial contexts.

Data Availability

The paper proposes an open-source software architecture
solution for “orchestrating” and Industrial IoT scenario. All
software components are free (available) in the references
the authors have included throughout the paper. Only two
software components are not open-source (available) because
they are still working on them. But the authors give all details
about their structure: Section 5: controller layer: middleware
parser and Section 6: northbound application. The authors
are planning to upload the source code in the github reposi-
tory of their research group: https://github.com/girtel/.
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