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The centralized cooperative spectrum sensing (CSS) allows unlicensed users to share their local sensing observations with the
fusion center (FC) for sensing the licensed user spectrum. Although collaboration leads to better sensing, malicious user (MU)
participation in CSS results in performance degradation. The proposed technique is based on Kullback Leibler Divergence (KLD)
algorithm for mitigating the MUs attack in CSS. The secondary users (SUs) inform FC about the primary user (PU) spectrum
availability by sending received energy statistics. Unlike the previous KLD algorithm where the individual SU sensing information
is utilized for measuring the KLD, in this work MUs are identified and separated based on the individual SU decision and the
average sensing statistics received from all other users. The proposed KLD assigns lower weights to the sensing information of
MUs, while the normal SUs information receives higher weights. The proposed method has been tested in the presence of always
yes, always no, opposite, and random oppositeMUs. Simulations confirm that the proposed KLD scheme has surpassed the existing
soft combination schemes in estimating the PU activity.

1. Introduction

Therapid evolution inwireless communication demands new
wireless services in both the used and unused parts of the
radio spectrum [1]. The Federal Communications Commis-
sion (FCC) exclusively assigns spectrum bands to various
services [2, 3]. Cognitive radio (CR) is a smart technique
that gains knowledge from the environment and adjusts its
parameters accordingly [4]. The incumbent primary users
(PUs) are free to transmit any time with no restrictions, while
the secondary users (SUs) can get the benefit of the spectrum
only when the licensee declares it free [5].

In cognitive radio network (CRN), sensing the incumbent
user spectrum is vital. An offensive detection on the PU
channel due to false alarm reduces the SUs opportunity to
utilize the free spectrum. Similarly, any misdetection in the
PU transmission will produce interference in the transmis-
sion of legitimate and opportunistic users. In case of the

frequent usage of the spectrum by the PUs, the termination
probability of SUs is not easy to ensure.The proposed scheme
in [6] uses channel reservation to improve the quality of
service (QoS) for SUs. To confirm the status of the PU
a number of detection schemes, such as energy detector
(ED), feature detector (FD), and matched filter detector
(MFD), are used in [3, 7]. The use of multiple antennas
for spectrum sensing is considered in [8], when noise and
signal of the PU are considered as independent complex zero-
mean Gaussian random variables. Detection results of the
orthogonal frequency division multiplexing (OFDM) signals
in the frequency selective fading channels are considered
in [9, 10]. Optimal interference subcarriers are obtained
based on Genetic Algorithm (GA) to suppress intercarrier
interference of the unlicensed user to the licensee [11]. In [12],
side-lobes reduction using generalized side-lobe canceller
combined with GA and differential evolution is proposed.
The GA and interior point method design schemes enhance
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the performance of hybrid computing technique based on
active noise control for random, complex random, and
sinusoidal input noise variations in the primary secondary
paths [13]. An improved energy detector scheme is suggested
in [14] to maximize the throughput of a CRN network with
minimum interference to the PUs.

Individual SU faces a number of restrictions to sense
the PU spectrum accurately. The sensing performance of a
solitary device is degraded due to fading, shadowing, energy
constraints, and hidden station dilemmas of the primary
signal. It is therefore most probable that a single user might
fail to spot detection of the licensee transmitter [5]. The
cooperative user devices placed more than a few wavelengths
apart experience an independent fading effect. The doubt
to efficiently detect the licensed spectrum possession is
mitigated by enabling different users to share their local
sensing results and make a cooperative decision [15–19]. The
particle swarm optimization is able to find their foods by
sharing their search information in contrast with GA using
crossover and kids reproduction [20]. Cooperative spectrum
sensing (CSS) using energy harvest-basedweighedmethod in
[21] reduces the energy wastage of the SUs with better sensing
results. The use of cyclostationary signatures in [22] is used
to subdue large number of challenges related to cooperative
network in the rising applications of the CR. The proposed
method in [23] enhances throughput of the CRN in the
presence of mobile SUs to access the PU spectrum. The MUs
presence in a CSS environment reduces the effectiveness of
the cooperation. Therefore, precise recognition and exclusion
of the false sensing information are extremely vital [24].
Significant investigations are carried out to make the collab-
orative schemes resistant to any MU attack. The aim of any
MU in CSS is to provide false sensing data to the FC [25].

The assistance of trusted nodes in a reputation based
CSS network is discussed in [26], where Nyman-Pearson and
likelihood ratio test is utilized for spectrum sensing improve-
ments. The primary emulation category of MUs discussed
in [27] tries to impersonate activities of the legitimate PU
transmitter. A robust technique with prime focus on always
yes group of MUs is implemented in [28]. An extended
sequential cooperative scheme that reduces the number of
sensing reports is investigated in [29]. In the soft fusion
combination schemes proposed in [30–32] sensing energies
from different SUs are combined to take accurate decision
about the PU spectrum holes. Similarly, in the hard fusion
schemes SUs provide a hard binary decision to the FC to
predict the licensed user activity in the spectrum [33–35].The
optimal quantization scheme in [36, 37] is able to produce
improved detection with a control on the probability of false
alarm. Bioinspired heuristics based on GA find the design
parameters of nonlinear Hammerstein controlled autoregres-
sive systems with distinct values of the noise variance [38].
The study in [39–45] focuses on evolutionary computation
for optimizing the detection and false alarm probabilities to
minimize the sensing error for a particular SU.

In this paper, Kullback Leibler Divergence (KLD) has
been employed to protect the CSS against the spectrum
falsification attack (SFA) of always no (AN), always yes
(AY), random opposite (RO), and the always opposite (AO)

categories of MUs by assigning weights to the sensing reports
of SUs before global combination at the FC. In our previous
study [46], SUs perform their local sensing, report soft
energies to the FC, and also store this information in its local
database. FCdetermines theKLdivergence score against each
user and also acknowledges this same information to the user.
A normally declared user tries to send mean of the previous
energy reports to the FCbased on its current observation.The
work in [46, 47] uses the KLD to determine the probability
distribution function (PDF) dissimilarity of a particular SU
under the presence and absence hypothesis of the licensed
user channel. The PDF uses the energy statistics of an
individual user under both hypotheses for declaring it normal
or malicious. In this work, FC takes sensing data from all SUs
and determines KLD score based on the energy statistics of
individual user with the average statistics received from all
other users. The final decision is made at FC by assigning
weights to the local energy information of each individual SU
based on the measured KLD score of each SU. Lower weights
are assigned to the sensing data of MUs based on the KLD
results, while the regular user sensing information receives
higher weights. The lower weights keep the FC final decision
less prone to the attack of MUs. By following the proposed
method, the performance of CSS is kept at itsmaximum in the
presence of MUs without identifying any malicious activity.

The proposed method results are tested in the company
of AO, RO, AY, and AN categories of MUs in a coopera-
tive environment. The outcome shows that these MUs in
CSS increase the false alarm and misdetection, resulting in
an increased interference to the primary transmission and
reduced throughput of the network. Simulations confirmed
that the proposed one-to-many relation based KLD method
leads to more accurate and sophisticated detection than the
traditional soft combination schemes in [46, 47].

The rest of the paper is organized as follows: In Section 2,
the system model is presented. Section 3 explains the pro-
posed scheme, where proposedmethod is used to overwhelm
theMUs effects in the global decision of the FC. Experimental
outcomes are presented in Section 4. Section 5 concludes the
paper.

2. System Model

In the CSS as in Figure 1, all SUs report their local sensing
information of the PU channel to the FC. The FC collects
sensing notifications of all individual SUs and generates a
global decision to show the actual status of the PU spectrum.

The spectrum sensing decisions𝐻1 and𝐻0made by each
SU in a particular spectrum are as follows:

𝑦𝑗 (𝑙) = {𝐻0 𝑛𝑗 (𝑙)𝐻1 ℎ𝑗𝑠 (𝑙) + 𝑛𝑗 (𝑙)} (1)

where 𝐻0 is the hypothesis about the availability and 𝐻1 is
the hypothesis for the occupancy of the PU spectrum by the
licensed user. 𝑦𝑗(𝑙) is the received signal by the 𝑗𝑡ℎ user at the𝑙𝑡ℎ time slot. 𝑛𝑗(𝑙) is the Additive White Gaussian Noise at the𝑗𝑡ℎ user receiver. ℎ𝑗 is the amplitude of the channel gain and𝑠(𝑙) denotes the PU transmit signal.
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Figure 1: The conventional CSS mechanism.

Accordingly, as a consequence of 𝐻1 and 𝐻0 hypothesis,
the observed signal energy at the 𝑗𝑡ℎ receiver can be repre-
sented as

𝐸𝑗 (𝑖) =
{{{{{{{{{{{{{

𝑙𝑖+𝐾−1∑
𝑙=𝑙𝑖

󵄨󵄨󵄨󵄨󵄨𝑛𝑗 (𝑙)󵄨󵄨󵄨󵄨󵄨2 , 𝐻0
𝑙𝑖+𝐾−1∑
𝑙=𝑙𝑖

󵄨󵄨󵄨󵄨󵄨ℎ𝑗𝑠 (𝑙) + 𝑛𝑗 (𝑙)󵄨󵄨󵄨󵄨󵄨2 , 𝐻1

}}}}}}}}}}}}}
(2)

In (2), each of the 𝑖𝑡ℎ sensing intervals is divided into 𝐾
total number of samples. When the number of samples is
considered large enough, the soft energy report of these SUs
is similar to that of a Gaussian random variable in the𝐻0 and𝐻1 hypothesis as in [29, 30].

𝐸𝑗
∼ {{{

𝑁(𝜇0 = 𝑀, 𝜎20 = 2𝑀) , 𝐻0
𝑁(𝜇1 = 𝑀(𝜂𝑗 + 1) , 𝜎21 = 2𝑀(𝜂𝑗 + 1)) , 𝐻1

}}}
(3)

Here 𝜂𝑗 is the signal-to-noise ratio between the primary
transmitter and the 𝑗𝑡ℎ user. Moreover, (𝜇0, 𝜎20) and (𝜇1, 𝜎21 )
are the energy distributions means and variances when 𝐻0
and𝐻1 hypotheses are true.

TheKLDbetween the two normally distributed functions𝑎(𝑥) and 𝑏(𝑥) is calculated as follows [46]:

𝐾(𝑎 ‖ 𝑏) = ∫ 𝑎 (𝑥) log(𝑎 (𝑥)𝑏 (𝑥)) 𝑑𝑥 (4)

Similarly, the KLD representation for functions 𝑎(𝑥) and𝑏(𝑥) with the means and variances (𝜇𝑎, 𝜎2𝑎) and (𝜇𝑏, 𝜎2𝑏) is as
follows:

𝐾(𝑎 ‖ 𝑏) = 𝐾 (𝜇𝑎, 𝜇𝑏, 𝜎2𝑎 , 𝜎2𝑏)
= 12 (log(𝜎2𝑏𝜎2𝑎) − 1 + (𝜎2𝑎𝜎2

𝑏

) + (𝜇𝑎 − 𝜇𝑏)2𝜎2
𝑏

) (5)

The MUs in Figure 2 are producing dissimilar energy distri-
bution in the𝐻1 and𝐻0 hypothesis as compared with normal
SUs. The KLD score against these MUs is dissimilar to the
normal SUs and is easily separable from the normal user
category.

The probability distribution functions of the energy
statistics reported by the normal SU, AY, AN, AO, and
RO users are given in Figure 2. The energy distributions
provided by all four categories of MUs are different from the
normal user distributions. Therefore, any cooperative user
having energy distribution dissimilar to the normal user in
Figure 2(a) is treated as malicious one. The AO user distri-
bution in Figure 2(b) always negates the distribution of the
normal user. The AY user in Figure 2(c) is producing similar
high energy distributions under both hypotheses. Similarly,
the AN user with always free state information of the licensee
channel has its low energy distributions in Figure 2(d). The
RO user behaves as AO with probability P and as a normal
user with probability (1-P) in Figure 2(e).

3. The Proposed One-to-Many
Relations Based KLD

The proposed work considers total cooperative users larger
in number compared with MUs. All the cooperative users
inform FC about their local spectrum observations of the
primary channel. FC collects and takes its global decision
based on the received energy statistics of the reporting users.
Before making any global decision, FC assigns weights to
the local sensing of SU reports with the proposed KLD
method.The resultant weights illustrate reliability of the local
spectrum sensing information of the individual cooperating
users prior to making any final decision at the FC.

A pseudocode showing the proposed KLD algorithm for
the local detection determining KLD score using one-to-
many relationship based energy statistics and taking global
decision based on the received energy and measured weights
is given below:

(1) For 𝑖 = 1 to limit

(2) For 𝑗 = 1 to SU
(3) Local detection 𝐸𝑗(𝑖) by the 𝑗𝑡ℎ user
(4) New values ofmean and variance (𝜇𝑗𝑎 (𝑖), 𝜎2𝑗𝑏(𝑖)) based

on 𝐸𝑗(𝑖)
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Figure 2: The probability density function of the users based on the reported statistics: (a) normal, (b) AO malicious, (c) AY malicious, (d)
AN malicious, and (e) RO malicious.

(5) Average means and variance values while taking out
the 𝑗𝑡ℎ user energy statistics.

𝜇𝑗𝑎󸀠 (𝑖) = ((∑𝑀𝑗=1 𝜇𝑗𝑎 (𝑖)) − 𝜇𝑗𝑎 (𝑖)(𝑀 − 1) ) , 𝑖 ∈ 1, . . .𝑁

𝜎2
𝑗𝑏󸀠

(𝑖) = ((∑𝑀𝑗=1 𝜎2𝑗𝑏 (𝑖)) − 𝜎2𝑗𝑏 (𝑖)(𝑀 − 1) ) , 𝑖 ∈ 1, . . . ,𝑁
(6)

(6) One-to-many relationship based KLD

𝐾𝑗 (𝑖) = 𝐾𝐿 (𝜇𝑗𝑎󸀠 (𝑖) , 𝜇𝑗𝑎 (𝑖) , 𝜎2𝑗𝑏󸀠 , 𝜎2𝑗𝑏) (7)

(7) Weights for the 𝑗𝑡ℎ user in the 𝑖𝑡ℎ interval
𝑐𝑗 (𝑖) = ( 1𝐾𝑗 (𝑖))
𝑤𝑗 (𝑖) = ( 𝑐𝑗 (𝑖)∑𝑀𝑗=1 𝑐𝑗 (𝑖)) ,

𝑖 ∈ 1, . . . ,𝑁
(8)

(8) End SUs
(9) If∑𝑀𝑗=1𝑤𝑗(𝑖) ∗ 𝐸𝑗(𝑖) ≥ 𝜀
(10) Global decision, 𝐺𝐵(𝑖) = 𝐻1
(11) Else
(12) Global decision, 𝐺𝐵(𝑖) = 𝐻0
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(13) End
(14) End limit

3.1. Data Collection and Adjustments by the FC. FC receives
the individual soft energy information 𝐸𝑗(𝑖) in the 𝑖𝑡ℎ interval
from all the 𝑗𝑡ℎ cooperating SUs as
𝑒 = [𝐸1 (𝑖) 𝐸2 (𝑖) 𝐸3 (𝑖) . . . 𝐸𝑀 (𝑖)] , 𝑖 ∈ 1, . . . , 𝑁 (9)

where 𝑒 is a row vector containing the soft spectrum sensing
data of all 𝑀 users during the 𝑖𝑡ℎ interval. The soft energy
report 𝐸𝑗(𝑖) has mean and variance (𝜇1, 𝜎21 ) under hypothesis𝐻1 and (𝜇0, 𝜎20) under the𝐻0 hypothesis.

FC further determines new values of the mean and
variance for all users in the 𝑖𝑡ℎ sensing interval based on the
received energy observations in (9) as

𝑎 (𝑖) = [𝜇1𝑎 (𝑖) 𝜇2𝑎 (𝑖) 𝜇3𝑎 (𝑖) . . . 𝜇𝑀𝑎 (𝑖)] ,
𝑖 ∈ 1, . . . ,𝑁 (10)

where 𝜇𝑗𝑎 (𝑖) = {𝑧1𝜇𝑗1 + 𝑧2𝐸𝑗 (𝑖) , 𝐻1𝑧1𝜇𝑗0 + 𝑧2𝐸𝑗 (𝑖) , 𝐻0} (11)

Here𝜇𝑗𝑎(𝑖) is the new value of themean for the 𝑗𝑡ℎ SU in the 𝑖𝑡ℎ
sensing interval, which is updated according to the received
energy 𝐸𝑗(𝑖) and (𝑧1, 𝑧2) preselected constants.

Similarly, new variance values are determined and col-
lected based on the received energy 𝐸𝑗(𝑖) as

𝑏 (𝑖) = [𝜎21𝑏 𝜎22𝑏 𝜎23𝑏 . . . 𝜎2𝑀𝑏] ,
𝑖 ∈ 1, . . . , 𝑁 (12)

where 𝜎2𝑗𝑏 (𝑖) = {{{
𝑧1𝜎2𝑗1 + 𝑧1 [𝐸𝑗 (𝑖) − 𝜇𝑗1]2 , 𝐻1
𝑧1𝜎2𝑗0 + 𝑧1 [𝐸𝑗 (𝑖) − 𝜇𝑗0]2 , 𝐻0

}}} (13)

In the newmean and variance measurements in (11) and (13),
the constant 𝑧1 = (𝑘 − 1)/(𝑘) and the constant 𝑧2 = (1/𝑘),
where the constant 𝑘 is the effective level of the mean and
variance by the received energy 𝐸𝑗(𝑖).
3.2. One-to-Many Relationship Based KLD Measurement.
After the collection of mean and variance information on
behalf of all𝑀 users in the 𝑖𝑡ℎ sensing intervals, FCmeasures
a difference in the mean and variance of the 𝑗𝑡ℎ user energy
statistics with all other users. The average mean values are
measured on behalf of all 𝑀 SUs based on the new mean
values of (10) as

𝜇𝑗𝑎󸀠 (𝑖) = ((∑𝑀𝑗=1 𝜇𝑗𝑎 (𝑖)) − 𝜇𝑗𝑎 (𝑖)(𝑀 − 1) ) (14)

The one-to-many difference results of the mean for all𝑀 SUs
are collected as

𝑎
󸀠 (𝑖) = [𝜇1𝑎󸀠 (𝑖) 𝜇2𝑎󸀠 . . . 𝜇𝑀𝑎󸀠 (𝑖)] , 𝑖 ∈ 1, . . . , 𝑁 (15)

Similarly, the average variance values are measured on behalf
of all 𝑀 SUs based on the new variance values of (12) as
follows:

𝜎2𝑗𝑏󸀠 (𝑖) = ((∑𝑀𝑗=1 𝜎2𝑗𝑏 (𝑖)) − 𝜎2𝑗𝑏 (𝑖)(𝑀 − 1) ) (16)

𝑏
󸀠 (𝑖) = [𝜎21𝑏󸀠 (𝑖) 𝜎22𝑏󸀠 (𝑖) 𝜎23𝑏󸀠 (𝑖) . . . 𝜎2𝑀𝑏󸀠 (𝑖)] ,

𝑖 ∈ 1, . . . , 𝑁 (17)

Here 𝜇𝑗𝑎󸀠(𝑖) is the average mean and 𝜎2𝑗𝑎󸀠(𝑖) is the average
variance value of the energy samples provided by all other
users while ignoring the mean and variance results of the𝑗𝑡ℎ user. These mean and variance values are obtained by
excluding the 𝑗𝑡ℎ user. The result in (15) and (17) determines
the impact of not including each cooperative user during the
average mean and variance observation measurement. As all
MUs including AY, AN, AO, and RO have dissimilar results
of the mean and variance in comparison with normal SUs,
therefore the average results attained against these users are
different from the normal SUs in (15) and (17).

The KLD value for the 𝑗𝑡ℎ SU is determined between the
individual sensing results in (10), (12), and the information
provided by all other SU information as in (15) and (17) as

𝐾𝑗 (𝑖) = 𝐾𝐿 (𝜇𝑗𝑎󸀠 (𝑖) , 𝜇𝑗𝑎󸀠 (𝑖) , 𝜎2𝑗𝑏󸀠 (𝑖) , 𝜎2𝑗𝑏 (𝑖)) (18)

where 𝐾𝑗(𝑖) denotes the KLD result in the presence and
absence hypothesis of the 𝑗𝑡ℎ SU in the 𝑖𝑡ℎ interval.TheseKLD
scores against each SU sensing are modified as

𝑐𝑗 (𝑖) = ( 1𝐾𝑗 (𝑖)) , 𝑖 ∈ 1, . . . , 𝑁, 𝑗 ∈ 1, . . . ,𝑀 (19)

The result in (19) is normalized for assigning weights to each
SU decision as

𝑤𝑗 (𝑖) = ( 𝑐𝑗 (𝑖)∑𝑀𝑗=1 𝑐𝑗 (𝑖)) , 𝑖 ∈ 1, . . . , 𝑁, 𝑗 ∈ 1, . . . ,𝑀 (20)

In (20) the users with abnormal behavior acquire lower
weights in comparison with normal users.

Table 1 shows the weight measurement for the normal
and malicious users against various signals-to-noise ratios.
These weights are obtained for the case when one of the four
categories of MUs participates in CSS. In Table 1 as the value
of signal-to-noise ratio increases the weight assigned to these
MUs decreases while the normal user’s weights increase.

Similarly, Table 2 shows the weights for the case when
all four categories of MUs participate in CSS. In Table 2,
the weight result assigned to each MU is shown along with
the average weights received by all the normal cooperative
SUs. In this case, the different weights received by these MUs
approach zero with increasing signal-to-noise ratio while the
normal SUs weights increase with increasing signal-to-noise
ratio.
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Table 1: KLD weights assigned by the FC under one category of MU participation.

SNR (dB) Weights
AY only AN only AO only RO only Normal User

-20 0.006757 0.006553 0.016615 0.008775 0.080399
-19 0.006750 0.006551 0.008679 0.006123 0.080798
-18 0.006745 0.006547 0.008341 0.005763 0.081049
-17 0.006740 0.006544 0.008341 0.005757 0.081110
-16 0.006737 0.006539 0.006206 0.005616 0.081198
-15 0.006731 0.006537 0.006186 0.005537 0.081231
-14 0.006722 0.006532 0.006164 0.005393 0.081266
-13 0.006717 0.006530 0.005722 0.005295 0.081306
-12 0.006715 0.006526 0.005722 0.005290 0.081324
-11 0.006711 0.006525 0.005629 0.004688 0.081428
-10 0.006709 0.006521 0.005629 0.004318 0.081441
-9 0.006706 0.006518 0.005190 0.003863 0.081545
-8 0.006704 0.006516 0.004947 0.003836 0.081636
-7 0.006701 0.006510 0.003674 0.003773 0.081739
-6 0.006692 0.006505 0.001509 0.003198 0.081777
-5 0.006687 0.006502 0.001507 0.001335 0.082069

Table 2: KLD weights assigned by the FC when all categories of MUs participate.

SNR (dB) Weights
1 AY 1 AN 1 AO 1 RO Normal User

-20 0.000682 0.000359 0.001661 0.065425 0.077865
-19 0.000523 0.000331 0.001155 0.012339 0.082344
-18 0.000466 0.000319 0.001085 0.006149 0.082800
-17 0.000379 0.000277 0.001037 0.005841 0.082875
-16 0.000287 0.000212 0.000825 0.005060 0.082967
-15 0.000229 0.000169 0.000817 0.004495 0.082984
-14 0.000175 0.000159 0.000766 0.004449 0.083008
-13 0.000160 0.000139 0.000645 0.004355 0.083035
-12 0.000137 0.000113 0.000637 0.003774 0.083047
-11 0.000112 0.000080 0.000477 0.002980 0.083048
-10 0.000096 0.000079 0.000469 0.002719 0.083058
-9 0.000095 0.000070 0.000285 0.002563 0.083061
-8 0.000094 0.000069 0.000242 0.002524 0.083136
-7 0.000082 0.000066 0.000222 0.002486 0.083254
-6 0.000055 0.000039 0.000137 0.001171 0.083307
-5 0.000010 0.000008 0.000057 0.000266 0.083694

3.3. Global Decision at FC. On the basis of weighted results
measured to guarantee the authenticity of each SU sensing
information in (20), the global statement 𝐺𝐵(𝑖) is declared by
the FC as

𝐺𝐵 (𝑖) = {{{
𝐻1, 𝑀∑
𝑗=1

𝑤𝑗 (𝑖) ∗ 𝐸𝑗 (𝑖) ≥ 𝜀
𝐻0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

}}} ,
𝑖 ∈ 1, . . . , 𝑁

(21)

where 𝑤𝑗 is the weight assigned to the 𝑗𝑡ℎ user energy in
the data fusion at the FC and 𝜀 the threshold value for the

detection of the PU. The lesser weight results are charged
by the FC against the sensing information of a user with
malicious behavior, while the normal user sensing report
is assigned with a higher weight value. All MUs including
AY, AN, AO, and RO are easily identified by the proposed
scheme with their KLD behavior. The normal SUs have a
higher KLD result because they have less inconsistency with
the average of all other users sensing information. The MUs
receive minimum weight because the information provided
by MUs deviates more from the average sensing information
provided by all other SUs. It is therefore noticeable that these
MUs get lower weights as compared with normal SUs.
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Figure 3: Flowchart of the proposed CSS mechanism.

3.4. Updating Statistics Based on the Global Decision. Due to
the nonavailability of the exact information about the PU,
optimal values of the means (𝜇𝑗1, 𝜇𝑗0) and variances (𝜎2𝑗0, 𝜎2𝑗1)
for measuring KLD are not possible. It is therefore good to
consider the global decision𝐺𝐵(𝑖) results as an estimate of the
primary signal, in order to calculate and update these values.
The updated mean and variance will be used by the FC in the
KLD calculation in the next sensing interval.

𝐸𝑗1 = {𝐸𝑗 (𝑖) | 𝐻1} ≈ {𝐸𝑗 (𝑖) | 𝐺𝐵 (𝑖) = 𝐻1} (22)

𝐸𝑗0 = {𝐸𝑗 (𝑖) | 𝐻0} ≈ {𝐸𝑗 (𝑖) | 𝐺𝐵 (𝑖) = 𝐻0} (23)

After the establishment of universal decision at the FC,
resultant decision 𝐺𝐵(𝑖) = 1 will update mean 𝜇𝑗1 and
variance 𝜎2𝑗1 values under the𝐻1 hypothesis as follows:

𝜇𝑗1 = 𝐵1𝜇𝑗1 + 𝐵2𝑍𝑗 (𝑖)
𝜎2𝑗1 = 𝐵1𝜎2𝑗1 + 𝐵1𝐵2 [𝑍𝑗 (𝑖) − 𝜇𝑗1]2 (24)

Similarly, the decision 𝐺𝐵(𝑖) = 0 will update mean 𝜇𝑗0 and
variance 𝜎2𝑗0 under the𝐻0 hypothesis for all cooperative users
as

𝜇𝑗0 = 𝐵1𝜇𝑗0 + 𝐵2𝐸𝑗 (𝑖)
𝜎2𝑗0 = 𝐵1𝜎2𝑗0 + 𝐵1𝐵2 [𝐸𝑗 (𝑖) − 𝜇𝑗0]2 (25)

In (25) 𝐵1 = 𝑧/(𝑧 − 1) and 𝐵2 = 1/𝑧, where 𝑧 indicate the
window size of the sensing history for the estimated mean
and variance.

The proposed scheme flowchart diagram in Figure 3
illustrates the stepwise procedure of the local detection, KL
divergence measurement based on the weight assignments at
the FC, and global decision establishment by the FC.

4. Numerical Results and Discussion

In order to get simulation results for the CRN, parameters
settings are made with 10, 16, 20, and 30 total cooperative
users. Out of the total cooperative SUs, four users are
intentionally selected as AY, AO, RO, and AO nature of
MUs. The average signal-to-noise ratios for the simulation
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Figure 4: Detection vs. false alarm results with AY malicious users.

are selected as -20 dB to -5 dB for all SUs. The sensing time
for each SU is selected as 1ms containing 270 samples in each
sensing interval. Total sensing intervals for the cooperative
users are selected as 200. The RO users perform malicious
acts probabilistically in the intervals 1 to N. The window size
(z) for updating mean and variance is selected as 270. In the
study, all 4 categories of MUs, i.e., AY, AN, AO, and RO, are
spread evenly.

The proposed KLD performance is compared with tradi-
tional KL and equal gain combination (EGC) schemes in 6
different cases as follows.

Case 1. In this case ROC results are drawn between the
proposedmethod and traditional KL and EGC scheme under
various signal-to-noise ratio values of -20 dB to -5 dB as
displayed in Figure 4. MUs are selected as AY only in the first
part of the comparison in Figure 4. Results are obtained for
all combinations by taking the total AY users number as 1,
2, 3, and 4 subsequently. The results show that the proposed
KLD scheme is more secure against the increasing number of
AY users 1 to 4 and has better detection probability results in
comparison with all other schemes. In Figure 4 when there
is only 1 AY user active in CSS the ROC results of all fusion
schemes are less affected, but when the total number of AY
users is increased to 3 and 4 the proposedKL results dominate

the traditional KL and EGC schemes by producing a high
detection with fewer false alarms. The EGC scheme is more
affected by the increasing number of AY users because EGC is
giving equal weight to the detection performance of normal
and AY users.The proposed KL is able to assign less weight to
theAYusers in comparisonwith normal SUs as it is clear from
the average weight value measured against each AY users in
Table 1. The less weight assigned to the AY users reduces the
false data effect of the AY users participation in CSS. The
harmful effect of the AY users contribution in CSS is further
reduced with increasing average SNR by lowering the weight
assignment to them in the global decision.

Case 2. In this part of the simulation, all parameters are kept
similar to Case 1 with changing only the nature of MUs from
AY to AN user. Comparison is made between proposed KL,
traditional KL, and EGC scheme by testing the system against
increasing AY users number from 1 to 4 as in Figure 5.

Since the proposed KL is treating AY and AN users
similarly in determining the KLD, therefore using proposed
KLD the weight that AN user receives is almost equal to the
AY user weights in Case 1. The ROC performance of the
proposed and all other schemes against the AN scenario is
very similar to Case 1, due to the similar behavior of the AN
user to that of the AY user. As in Case 1, when the numbers
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Figure 5: Detection vs. false alarm results with ANmalicious users.

of AN users are increased from 1 to 4, the proposed KL
is less affected by this increment in Figure 5. All AN users
receive lower weight due to their KLD score results while the
normal SUs receive higher weights in comparison with AN
users which results in better performance of the proposed KL
scheme. The traditional KL and EGC schemes performance
in detecting the licensed PU channel reduces more quickly
in comparison with the proposed KL method as the total
AY increases from 1 to 4. The gap in the ROC curves of the
traditional fusion schemes becomes wider for a total of 4 AN
users from the one when only 1 AN user takes part as shown
in Figure 5.

Case 3. In the third scenario detection and false alarm results
are obtained for the increasing number of AO users from 1
to 4 in Figure 6 with the same parameters in Cases 1 and
2. Since the AO users have their mean and variance results
opposite to the average mean and variance values provided
by all other users, therefore, the proposed KL method is
able to generate lower reliability report in terms of weight
for the AO user in comparison with normal cooperative
users. The results show that as the number of AO users
increases to 4 few drops are observed in the ROC curve
of the proposed scheme as compared with the traditional
KL and EGC scheme. In comparison with Cases 1 and 2,
the traditional soft combination schemes like KL and EGC

performance degrade even more. The existence of AO users
results in less correct detection and high false alarm rate of the
PU spectrum for the EGC and KL scheme. Proposed method
results in Figure 6 are followed by the KL while EGC has
shown its worst performance among all fusions.

Case 4. The ROC results for the scenario in which only RO
user participates in CSS are depicted in Figure 7. The RO
user hides its malicious identity by acting probabilistically
as AO at randomly selected sensing intervals in the N total
intervals and is difficult to catch with the provided statis-
tics.

The traditional KL and EGC schemes are not able to han-
dle the RO user information intelligently and their ROC
results degrade severely with the increased number of RO
participations in Figure 7.

The proposed KL scheme is able to identify the RO
users when they perform malicious acts probabilistically and
generate better detection and false alarm results in Figure 7
compared with the traditional KL and EGC schemes. Results
show that the proposed KLD is less affected by the increasing
number of RO users, unlike the traditional EGC and KLD
schemes. All the RO nature users in the proposed CSS receive
lesser weights in comparison with weights obtained by the
normal SUs because their malicious behavior is easily caught
by the proposed KL scheme.
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Figure 6: Detection vs. false alarm results with AOmalicious users.

Case 5. In this part of the simulation as in Figure 8 MUs
are equally selected in numbers as AY, AN, AO, and RO
categories. The simulation is performed against an average
signal-to-noise ratio of -12.5 dB.

The detection and false alarm probability results are
obtained for the proposed, traditional KL, and EGC schemes
for a total of 10, 20, and 30 cooperative SUs in Figure 8
under average signal-to-noise ratio of -12.5 dB and total 4
MUs. Figure 8 shows that the one-to-many relation based
KLD scheme has better ROC performance than all other
schemes with different levels of the cooperative users. It
is noticeable that the detection performance is enhanced
for all combination schemes with the increasing number
of total cooperative and fixed MUs. The proposed method
ROC results are more precise and superior to the traditional
schemes, i.e., KLD and EGC schemes, at all levels of the total
sensing users.

Case 6. In this case, the AY, AO, AN, and RO users number
is kept the same. The total number of participating SUs in
CSS is kept fixed as 16 and different ROC results are plotted
for the one-to-many relations based KLD and other soft
combination schemes at different levels of the averages signal-
to-noise ratios.

The simulation results in Figure 9 show that under fixed
malicious and total cooperative users the ROC performance

rises with increasing signal-to-noise ratio values for all com-
bination schemes. Similarly, in Figure 9 as the signal-to-noise
ratio value increases from -15.5 dB to -9.5 dB, all schemes are
able to generate a high detection rate with minimum false
alarm. The proposed scheme ROC results are more accurate
and precise than the traditional combination schemes at
both SNR levels. The proposed method ROC improvement
with increasing signal-to-noise ratio is due to more clear
distinction in the energy distribution of the absence and
presence hypothesis information provided by the normal and
MUs. As the SNR increases in Figure 9, the proposed method
detection results rise more quickly against other methods.
These results also show that the CSS performance improves
more with the increasing signal-to-noise ratio information in
Case 6 as compared with the increasing total number of users
in Case 5.

All the above experimental results clarify the fact that
by following the proposed one-to-many relations based
KLD method an improvement is obvious in the sensing
performance at the FC. This improvement in performance
is achieved by raising the detection probability and lowering
the false alarm results leading to a reduction in the error
probability of the system. The proposed fusion combination
scheme shows optimum and accurate results in the presence
of MUs. The use of the proposed method for calculating
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Figure 7: Detection vs. false alarm results with RO users.
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Figure 9: Detection vs. false alarm results with all MUs and different levels of signal-to-noise ratios.

weights following soft combination scheme makes the pro-
posed CSS results more valid in the presence of malicious
user. The simulation results show that the risk of AY, AN,
RO, and AO users with CSS significantly reduces by adopting
the proposed scheme. It is clear from the graphical result that
the process of cooperation turns out to be more precise by
using the suggested methodology. The one-to-many relation
based KLD is able to generate better sensing results, by
assigning lower weights to the MUs information, and is able
to eliminate the effect of MUs in the resultant CSS.

5. Conclusion

In this paper, the efficiency degradation due to the presence
of abnormal users in CSS is minimized using one-to-many
relationship based KLD method for the PU detection. Func-
tionality of the proposed scheme is verified in the presence
of AY, AN, AO, and RO type MUs. FC first receives the
individual sensing information of all SUs and then applies
the proposed method for measuring weights against each
SU. MUs with abnormal behavior as compared with normal
SUs are given lower weights by the proposed scheme, while
the normal SUs receive higher weights. FC further employs
these weights in combining the sensing information of all
SUs in predicting a global decision. The results show that the
user with abnormal behavior has less impact on the global
decision as compared to a normal SU decision. Simulation

result reflects the superiority and authenticity of the proposed
scheme in producing more precise and reliable decisions as
compared with EGC and traditional KL fusion schemes.
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