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Abstract. 
In mobile radio channel modelling, it is generally assumed that the angles of arrival (AOAs) are independent of time. This assumption does not in general agree with real-world channels in which the AOAs vary with the position of a moving receiver. In this paper, we first present a mathematical model for the time-variant AOAs. This model serves as the basis for the development of two nonstationary multipath fading channels models for vehicle-to-infrastructure communications. The statistical properties of both channel models are analysed with emphasis on the time-dependent autocorrelation function (ACF), time-dependent mean Doppler shift, time-dependent Doppler spread, and the Wigner-Ville spectrum. It is shown that these characteristic quantities are greatly influenced by time-variant AOAs. The presented analytical framework provides a new view on the channel characteristics that goes well beyond ultra-short observation intervals over which the channel can be considered as wide-sense stationary.



1. Introduction
In a typical downlink scenario, where plane waves travel from a base station (BS) to a mobile station (MS) via a large number of fixed scattering objects, the angles of arrival (AOAs) of the received signals are changing along the moving route of the MS. Only for very short observation intervals in which the MS travels a few tens of the wavelengths [1], the temporal variation of the AOAs can be neglected justifying the wide-sense stationary assumption of multipath fading channels. The lengths of the stationary intervals during which the mobile radio channel can be considered as wide-sense stationary or quasi-stationary have been investigated (e.g., in [2–4] and the references therein). By pushing the observation interval beyond the stationary interval, the received signal captures nonstationary effects that call for new channel modelling approaches using time-frequency analysis techniques [5]. One of the effects that come with long observation intervals is that the AOAs and thus the Doppler frequencies are changing with time along the MS’s moving route.
Attempts to include the temporal variations of the AOAs in mobile radio channel models have been made in [6–8]. In [6], a nonstationary multiple-input multiple-output (MIMO) vehicle-to-vehicle (V2V) channel model has been derived by assuming that the AOAs and AODs are piecewise constant. In [7], a proposal has been made for the extension of the IMT-Advanced channel model [9] by replacing the time-invariant model parameters, such as the propagation delays, AOAs, and the angels of departure (AODs) by time-variant parameters. In [8], a nonstationary one-ring model has been introduced in which the time-variant AOAs have been modelled by stochastic processes rather than random variables.
This paper is an extended version of our conference paper [10]. It expands on the recent results by studying the impact of time-variant AOAs on the statistical properties of multipath fading channels. It is shown that the multipath fading channel becomes non-wide-sense stationary if the AOAs change with time. Two new nonstationary channel models with time-variant AOAs are derived. The first one has an instantaneous channel phase that is related to the instantaneous Doppler frequency via the phase-frequency relationship [11], while the second one is based on a sum-of-cisoids (SOC) model in which the time-independent Doppler frequencies are replaced by time-dependent Doppler frequencies. The latter approach is simple, straightforward, and intuitive but results in a less accurate nonstationary channel model. The statistical properties of both channel models are investigated with emphasis on the time-dependent autocorrelation function (ACF), time-dependent mean Doppler shift, time-dependent Doppler spread, and the Wigner-Ville spectrum. Our analysis shows that our first proposed nonstationary channel model is consistent with respect to the mean Doppler shift and the Doppler spread, while this consistency property is not fulfilled by the SOC model with time-variant Doppler frequencies. The two proposed nonstationary channel models provide a trade-off between accuracy and complexity concerning the mathematical expressions.
One of the main differences between [6–8] and our paper is that the AOAs are modelled in different ways. For example, in [6], the AOAs are modelled as piecewise constant functions, that is, these parameters are considered as constant apart from a finite number of jumps, while in our paper the AOAs are modelled in our paper as continuous time-variant functions. Another difference is that the models in [6–8] have been developed for different propagation scenarios. The V2V channel model in [6] has been developed to simulate propagation scenarios which are typical for T-junctions. The BS-to-MS channel model in [7] covers basically the same scenarios as the IMT-Advanced channel model [9], while the model in [8] is restricted to scenarios that can be generated by the one-ring model under the assumption of isotropic scattering. This contrasts with our nonstationary generic model which is not restricted to any specific propagation scenario. The drawback of the models in [6–8] is that they are inconsistent with respect to the mean Doppler shift and the Doppler spread. Our preferred model avoids this drawback by using an integral relationship between the instantaneous channel phases and the corresponding instantaneous Doppler frequencies.
The organization of this paper is as follows. Section 2 presents the derivation of two nonstationary multipath fading channel models with time-variant AOAs. Their statistical properties will be analysed in Section 3. The numerical key results of our study are visualized in Section 4. Section 5 provides guidelines for various extensions of the model. Finally, Section 6 draws the conclusion and suggests possible future research topics in relation to the issues addressed in this paper.
2. Derivation of the Nonstationary Multipath Channel Models
2.1. Time-Variant AOAs
We consider a downlink non-line-of-sight (NLOS) propagation scenario in which a fixed BS operates as transmitter, and an MS acts as receiver. It is supposed that the BS and the MS are equipped with omnidirectional antennas. The BS antenna is elevated and unobstructed by any object, whereas the MS antenna is surrounded by a large number of  fixed scattering objects called henceforth scatterers . The coordinate system has been chosen such that the MS is located at the origin  of the -plane at . Furthermore, it is assumed that the MS moves with constant velocity  in the direction determined by the angle of motion  as indicated in Figure 1. For reasons of clarity, this figure highlights only the location of the scatterer  from which the MS receives the th multipath component (plane wave)  in the form of , where  denotes the path gain which is supposed to be constant, and  is the associated channel phase that will be studied in Section 2.3. The corresponding AOA  is defined as the angle between the propagation direction of the th incident plane wave and the -axis, that is,for , where  denotes the four-quadrant inverse tangent function. It should be mentioned that the four-quadrant inverse tangent function  returns the angle of the vector  with the positive -axis in the range . This function contrasts with the inverse tangent function , whose results are limited to the interval . In (1), the symbols  and  denote the coordinates of the scatterer ; and  and  indicate the position of the MS at time . According to (1), the AOA  is a nonlinear function of time , which can be turned into a linear function by developing  in a Taylor series around  and retaining only the first two terms. This results in the following model for the time-variant AOA:whereIn (4),  denotes the distance from the scatterer  to the origin of the -plane, that is, , as can be deduced from the geometrical model in Figure 1. In Section 4, it is shown that the two-term Taylor series expansion of  in (2) is sufficiently accurate for small observation intervals .




	
	
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
			
		
		
			
		
		
		
			
		
		
			
		
		
			
		
		
			
		
			
		
			
		
			
		
		
		
		
		
			
		
			
		
			
		
			
				
		
			
		
			
		
			
		
			
		
			
		
			
		
			
				
		
			
		
			
	


Figure 1: A multipath propagation scenario with time-variant AOAs .


2.2. Time-Variant Doppler Frequencies
Owing to the Doppler effect combined with the new feature that the AOAs  vary with time, it follows that the th incident plane wave highlighted in Figure 1 experiences a time-variant Doppler shift of  that can be expressed by using (2) asfor , where  stands for the maximum Doppler frequency. For a given propagation scenario with constant parameters , , , and , the time-variant Doppler shift  is a deterministic function of time. Otherwise, if one or several model parameters, for example,  and thus , are random variables, then  represents a stochastic process. If the MS moves during the time interval , then  describes a curve starting from the initial Doppler frequency  and ending with the finishing Doppler frequency .
The time-dependent mean Doppler shift  and the time-dependent Doppler spread  can be computed according to
2.3. Instantaneous Channel Phase
The instantaneous channel phase  of the th multipath component  is related to the instantaneous Doppler frequency  via the phase-frequency relationship [5, Eq. (1.3.40)]for . Using (5), the instantaneous phase  can be developed as follows:where  denotes the initial phase at . The initial phases  are generally unknown and modelled by independent identically distributed (i.i.d.) random variables, each with uniform distribution over the interval : that is, . Equation (9) tells us that the instantaneous phase  is not only a nonlinear function of time  but also periodic with period  if the AOA  varies with time according to (2). In the limit , however, it can be shown by applying L’Hôpital’s rule to (9) thatwhere . This result reveals a linear relationship between the instantaneous phase  and time , which holds only for constant AOAs . It should be noticed that the expression in (10) can be identified as the standard phase term of SOC channel models for Rayleigh/Rice fading channels [12, Section ].
A simpler but less accurate expression than (9) can be obtained for the instantaneous phase  by developing  in a first-order Taylor series around  as follows:where  denotes the time derivative of  at . By comparing the last two equations, we can conclude that the linear phase term  can be obtained from the nonlinear phase term  [see (9)] either in the limit  or by developing the nonlinear phase  in a first-order Taylor series around .
2.4. Complex Channel Gain
A model for the complex channel gain, denoted by , of a narrowband multipath fading channel is obtained by the superposition of all  plane wave components , that is,Substituting the instantaneous channel phase  according to (9) in (12) results in the complex channel gain of the proposed nonstationary multipath fading channel with time-variant AOAsOn the other hand, starting from the SOC model for Rayleigh fading channels [12, Eq. (4.97)] and replacing there intuitively the time-independent Doppler frequencies  by the instantaneous Doppler frequencies  according to (5) provide the complex channel gain  in a much simpler form, namely,This intuitive mathematical manipulation results in a nonstationary channel model that is inconsistent with respect to the mean Doppler shift  and the Doppler spread , as we will see in Section 3.2. Although the expression in (14) is mathematically simpler than the one in (13), the difference is not significant in terms of implementation costs and simulation time.
From the discussions in the previous subsection, it can be summed up that the two complex channel gains  in (13) and (14) include the original SOC model [13]as a special case that arises if the AOA  is supposed to be either constant  or if the instantaneous phase  in (12) is approximated by a first-order Taylor series [see (11)]. The main difference between the three stochastic channel models above is that the former two are non-wide-sense stationary, whereas the third one is wide-sense stationary. The statistical properties of the SOC model have been studied in [13], while those of the new non-wide-sense stationary models will be analysed in the next section.
3. Analysis of the Nonstationary Multipath Channel Models
3.1. Time-Dependent ACF
The time-dependent ACF  of a complex stochastic process  is defined aswhere  denotes the expectation operator and  stands for the complex conjugation operator. In the Appendix, it is proved that the time-dependent ACF  of the complex channel gain  in (13) can be written aswhere  denotes the sinc function, which is defined by .
Analogously, it can be shown that the time-dependent ACF  of the complex channel gain  introduced in (14) can be expressed bywhere  is the time-variant Doppler shift in (5) and  denotes its derivative with respect to time .
For the special case that the AOA  is constant, that is, , it is obvious that the two time-dependent ACFs in (17) and (18) reduce towhich represents the ACF of the SOC model described by (15). In this case, the ACF depends only on the time separation  but not on time , which was to be expected, because the SOC process  is wide-sense stationary.
Furthermore, if  and , then the expressions in (17)–(19) reduce to the ACF , where  denotes the mean power of the complex channel gain , and  is the zeroth-order Bessel function of the first kind [14, Eq. (8.411-1)]. In other words, the proposed nonstationary multipath fading channel models include the classical Jakes/Clarke model [1, 15] as a special case.
3.2. Time-Dependent Mean Doppler Shift and Time-Dependent Doppler Spread
From the time-dependent ACF , the time-dependent mean Doppler shift  and the time-dependent Doppler spread  can be derived by means ofrespectively, where  denotes the first (second) order derivative of  with respect to  at . Inserting (17) in (20) and (21) results after some straightforward mathematical steps in the following closed-form solutions:A comparison of (22) with (6) and (23) with (7) reveals that the equalities  and  hold, from which we can conclude that the proposed nonstationary multipath fading channel model described by (13) is consistent with respect to both the mean Doppler shift and the Doppler spread.
On the other hand, if we insert (18) in (20) and (21), then we obtainThis result demonstrates that the simple nonstationary channel model introduced in (14) is inconsistent with respect to the mean Doppler shift and the Doppler spread, because  and  hold. Concerning the SOC process  in (15), we mention for completeness that the equalities  and  hold, where  and  are the same quantities as in (22) and (23), respectively, if we replace  by . Thus, the SOC model is consistent with respect to the mean Doppler shift and the Doppler spread. More information on the consistency of nonstationary multipath fading channels can be found in [16].
3.3. Wigner-Ville Spectrum
The Wigner-Ville spectrum, which is also called the time-varying spectrum or the evolutive spectrum, will be denoted by  . This function is defined as the Fourier transform of the time-dependent ACF  with respect to  [11]: that is,Inserting (17) in (26) and using the property , we can express the Wigner-Ville spectrum  of the proposed nonstationary multipath fading channel model described by (13) asFor the wide-sense stationary case, for which  holds, the Wigner-Ville spectrum  in (27) reduces to the Doppler power spectral density (PSD) of the SOC process  presented in (15), that is,Furthermore, for the isotropic scattering case, in which  and  are i.i.d. random variables with  and , we obtain the Jakes/Clarke PSD [1, 15] after computing the expected value of  in (28). Hence, the Wigner-Ville spectrum  in (27) includes the classical Jakes/Clarke Doppler spectrum as a special case.
4. Numerical Results
This section presents a selection of numerical results to illustrate the main findings of this paper. In all considered propagation scenarios, we have set the number of multipath components  to . The gains  and initial AOAs  have been computed by using the extended method of exact Doppler spread (EMEDS) [17]. According to this method, the parameters  and  are given byrespectively, and the initial phases  are considered as realizations of independent random variables, each characterized by a uniform distribution over the interval . If not stated otherwise, the radii  in Figure 1 have been set to 50 m for all . For the mean power (variance)  of the in-phase and quadrature components of , we have chosen the value . The carrier frequency was set to 5.9 GHz, and the maximum Doppler frequency  was supposed to be Hz. This corresponds to a mobile speed of km/h, where we have assumed that the MS moves in -direction, implying that the angle of motion  equals zero, that is, .
Figure 2 depicts the trend of the time-variant Doppler frequencies  by using the exact expression for the AOAs  according to (1). For comparison, this figure also shows the behaviour of  for the approximate solution of  in (2). Figure 2 shows clearly that the first-order approximation is quite good over the interval from 0 to s during which the MS has covered a distance of 10 m.




	
	
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
		
		
		
		
		
		
		
		
		
		
		
			
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
			
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
			
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
			
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
			
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
			
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
			
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
			
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
			
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
				
					
				
					
				
			
		
		
		
			
				
					
				
					
				
			
		
		
		
		
			
				
					
				
					
				
			
		
		
			
				
					
				
					
				
			
		
		
		
			
				
					
				
					
				
			
		
		
		
			
				
					
				
					
				
			
		
		
		
		
			
				
					
				
					
				
			
		
		
		
			
				
					
				
					
				
			
		
		
		
			
				
					
				
					
				
			
		
		
			
				
					
				
					
				
			
		
		
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
				
			
				
			
				
			
				
		
		
			
		
			
	


Figure 2: Trend of the time-variant Doppler frequencies  by using the exact solution (black solid line) and the approximate solution (blue dashed line), where .


Figure 3 illustrates the signal envelope  by using the SOC model [see (15), Case ], the proposed nonstationary multipath fading channel model [see (13), Case ], and the simple nonstationary model [see (14), Case ]. This figure demonstrates clearly that the temporal variations of the AOAs  have a great influence on the temporal behaviour of the signal envelope . It is interesting to note that the three signal envelopes are identical at  and very similar for small values of , but they differ considerably with increasing values of . It should be mentioned that different realizations of the initial phases  result in different sample functions of the signal envelopes, but the aforementioned trend is the same for all realizations.




	
	
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
			
		
			
		
			
		
		
			
		
		
			
		
		
			
		
			
		
			
		
			
		
			
		
			
		
			
	


Figure 3: Illustration of the signal envelope  of a sample function of a wide-sense stationary SOC process [see (15)] in comparison with the signal envelopes  of the nonstationary processes described by (13) and (14).


Figures 4 and 5 present the ACF  of the SOC process  in (15) and the time-dependent ACF  of the nonstationary process  in (13), respectively. It can be observed that both ACFs are identical at the origin , but the temporal correlation properties of the nonstationary model differ more and more if time  proceeds. This means that the temporal variations of  influence greatly the fading behaviour of the signal envelope .




	
	
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
		
		
		
		
		
		
			
		
		
		
		
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
		
			
		
			
				
		
			
				
	


Figure 4: ACF  of a SOC process  with constant AOAs  for .












	
	
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
		
		
		
		
		
		
		
			
		
		
		
		
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
	


Figure 5: Time-dependent ACF  of the proposed nonstationary process  with time-variant AOAs  for .


Figures 6 and 7 depict the corresponding Doppler PSD  [see (28)] of the SOC process  in (15) and the Wigner-Ville spectrum  [see (27)] of the nonstationary process  in (13), respectively. A comparison of the two spectral representations shows clearly that the influence of the time-variant AOAs  cannot be neglected. This statement is obvious as the Doppler frequencies of the Wigner-Ville spectrum (Doppler PSD) associated with the stationary SOC process remain constant over time  (see Figure 6), while the spectral components of the nonstationary process experience a drift if time  proceeds (see Figure 7). Finally, we mention that the results in Figure 7 have been obtained numerically by setting the upper limit of  in the integral of (27) to  s and evaluating the integral by considering  samples, which results in a resolution of  s.












	
	
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
	


Figure 6: Wigner-Ville spectrum (Doppler PSD)  of an SOC process  with constant AOAs  for .












	
	
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
				
			
				
		
		
		
		
		
		
		
		
		
		
		
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
	


Figure 7: Wigner-Ville spectrum  of the proposed nonstationary process  with time-variant AOAs  for .


Figures 8 and 9 are devoted to a study on the influence of the (ring) radii  on the time-dependent mean Doppler shift  and the time-dependent Doppler spread , respectively. The presented graphs show that the smaller the radii  are, the faster the functions  and  are changing over time . Figure 8 shows also a comparison between the time-dependent mean Doppler shift  of the consistent model described by (14) and the inconsistent model according to (15). Both models have the same mean Doppler shift  at the origin , but the mean Doppler shifts deviate considerably from each other with increasing values of time . The same statement holds for the time-dependent Doppler spread shown in Figure 9. These results underline the importance of consistency, as the deviations between (22) and (24) as well as between (23) and (25) cannot be neglected.




	
	
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
		
		
			
		
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
		
		
			
		
		
		
		
		
		
		
		
		
		
		
		
		
			
		
			
		
		
		
		
		
		
		
		
		
		
		
		
		
		
			
		
		
		
		
		
		
		
		
		
		
		
		
		
			
		
			
		
		
		
		
		
		
		
		
		
		
		
		
			
				
		
		
			
		
			
		
			
		
			
		
			
		
			
				
			
			
			
				
			
				
			
				
		
		
			
	


Figure 8: Time-dependent mean Doppler shift  of the nonstationary channel models for different values of the radii .






	
	
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
		
		
			
		
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
		
		
			
		
		
		
		
		
		
		
		
		
		
		
		
		
			
		
			
		
		
		
		
		
		
		
		
		
		
		
		
		
		
			
		
		
		
		
		
		
		
		
		
		
		
		
		
			
		
			
		
		
		
		
		
		
		
		
		
		
		
		
			
		
			
				
			
			
			
				
			
				
			
				
		
		
			
	


Figure 9: Time-dependent Doppler spread  of the nonstationary channel models for different values of the radii  for .


5. Model Extensions
To isolate the effect of time-variant AOAs on the Doppler characteristic, we have assumed that the channel is frequency-nonselective and that the transmitter and receiver are equipped with single omnidirectional antennas. To relax these assumptions, we will provide some guidelines on model extensions in the following subsections.
5.1. Extension to Frequency-Selectivity
Starting from the narrowband multipath fading channel model in (12) and taking into account the fact that the th plane wave component  will be received after a time-variant propagation delay denoted by , the impulse response  of the resulting non-wide-sense stationary single-input single-output channel model can be expressed aswhere  is given by (9) for the consistent model or by  for the inconsistent model. The time-variant delay  can be derived from the geometrical model in Figure 1 aswhere  denotes the speed of light,  is the distance between the BS and MS, and .
5.2. Extension to MIMO
Let  denote the impulse response of a frequency-selective MIMO channel with  transit and  receive antennas; then the propagation link from the th transmit antenna to the th receive antenna can be modelled asfor  and , where  is the same as in [18, Eq. ] apart from the fact that we have to replace there the time-invariant quantities  and  by time-variant quantities  and , respectively. The expression in (33) can be derived by applying the design steps of the generalized principle of deterministic channel modelling [12, Section ].
5.3. Other Model Extensions
The proposed model is only applicable to omnidirectional antennas. The extension to directional antennas is possible through a proper adjustment of the constant path gains , which have to be replaced by time-variant path gains . The temporal characteristics of  depend on the antenna pattern and the direction in which the MS moves. It is also possible to consider birth-and-death effects of the scatterers. This extension results in a multiplication of each multipath component by a birth-and-death process or, equivalently, by replacing the time-invariant path gains  by proper time-variant path gains . The analysis of the Wigner-Ville spectrum of nonstationary mobile radio channels with time-variant path gains  is substantially different from the analysis in Section 3.3 and beyond the scope of this paper.
6. Conclusion
In this paper, we have developed and analysed multipath fading channel models with time-variant AOAs. Our study has shown that the effect of time-variant AOAs results in a non-wide-sense stationary multipath fading channel model. Expressions have been derived for the time-dependent ACF, time-dependent mean Doppler shift, time-dependent Doppler spread, and the Wigner-Ville spectrum of the proposed non-wide-sense stationary channel model. By comparing these statistical quantities with known results of studies assuming constant AOAs, we can conclude that the assumption of constant AOAs is only justified for very short observation intervals. The proposed nonstationary channel model allows extending the observation interval over a wider range without losing accuracy. The price for this added accuracy is a higher degree of complexity concerning the mathematical expressions.
One of the remaining problems that might be tackled in an upcoming study is to develop quantitative methods for the investigation of the length of the observation interval over which the proposed nonstationary channel models are sufficiently accurate. Another topic could be to extend the presented framework to the modelling of MIMO channels with time-dependent AOAs.
Appendix
Derivation of the Time-Dependent ACF  in (17)
 Substituting (13) in the definition of the time-dependent ACF  givesUsing  if  and 0 if , we obtainwhere we have used the sinc function defined as .
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