
Research Article
Securing Cooperative Spectrum Sensing against DC-SSDF
Attack Using Trust Fluctuation Clustering Analysis in Cognitive
Radio Networks

Feng Zhao , Shaoping Li, and Jingyu Feng

Shaanxi Key Laboratory of Information Communication Network and Security, Xi’an University of Posts and Telecommunications,
Xi’an 710121, China

Correspondence should be addressed to Jingyu Feng; fengjy@xupt.edu.cn

Received 7 October 2018; Accepted 28 January 2019; Published 3 March 2019

Academic Editor: Daojing He

Copyright © 2019 Feng Zhao et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Cooperative spectrum sensing (CSS) has been recognized as a forceful approach to promote the utilization of spectrum bands.
Nevertheless, all secondary users (SU) are assumed as honest in CSS, thus giving opportunities for attackers to launch the spectrum
sensing data falsification (SSDF) attack. To defend against such attack, many efforts have been made to trust mechanism. In this
paper, we argue that securing CSS with only trust mechanism is not enough and report the description of dynamic-collusive SSDF
attack (DC-SSDF attack). To escape the detection of trust mechanism, DC-SSDF attackers can maintain high trust by submitting
true sensing data dynamically and then fake sensing data in the collaborative manner to increase their attack strength. Noting that
the resonance phenomenon may appear in the trust value curve of DC-SSDF attackers, a defense scheme called TFCA is proposed
from the design idea of trust fluctuation clustering analysis to suppress DC-SSDF attack. In the TFCA scheme, the decreasing prop-
erty of trust value in the resonance phenomenon is adopted to measure the similarity distance between two attackers. Based on the
similarity distance computation, the binary clustering algorithm is designed by electing initial binary samples to identify DC-SSDF
attackers. Finally, trustmechanismcanbe perfected byTFCA to correctDC-SSDF attackers’ trust value. Simulation results show that
our TFCA scheme can improve the accuracy of trust value calculation, thus reducing the strength of DC-SSDF attack successfully.

1. Introduction
Currently, spectrum bands are becoming more and more
scarce with the rapid development of wireless communica-
tion and the huge access demand of IOT devices. However,
a large number of the assigned spectra are not utilized
efficiently by licensed primary users (PU). According to the
Federal Communications Commission (FCC) [1], temporal
and geographical variations in the utilization of the assigned
spectrum range from 15% to 85%. To solve the contradiction
between the spectrum scarcity and low spectrum utilization,
it is possible that opportunistic access of the valid spectrum
bands should be given to unlicensed secondary users [2].
Without any interference to PUs, cognitive radio (CR) has
been considered as an emerging technology that can allow
a secondary user (SU) to sense and make efficient use of any
available valid PU spectrum bands.

To enhance the detection performance, cooperative spec-
trum sensing (CSS) [3] has recently received significant

attention as a valuable method in CR technology to avoid the
case of deep shadowing and multipath fading by exploiting
spatial diversity via the sensing results of different SUs. Nev-
ertheless, all secondary users are assumed as honest in CSS,
thus giving opportunities for attackers to fake sensing data by
SSDF attack [4]. At first, attackers submit false sensing data by
the static and individual way. This common SSDF attack can
be easily suppressed by trust mechanism. Such attackers will
hold a lower trust valuewhen they always submit false sensing
data individually. Various trust mechanism studies have been
proposed [5–8]. They can estimate whether cooperating SUs
are honest or not by their sensing behaviors in the past and
then give low weights to malicious SUs or even delete their
sensing data when making a final decision.

To escape the detection of trust mechanism, attackers
have to change their attack strategies. They can launch
SSDF attack with a dynamic manner to maintain high
trust value [9] (hereinafter “DSSDF”). In addition, some
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attackers conspire with each other to submit false sensing
data intentionally [10] (hereinafter “CSSDF”). If there are
a sufficient number of CSSDF attackers, conspirators can
increase the strength of attack and mislead FC make a wrong
final decision. Fortunately, it is easy to crushDSSDF attackers
one by one, if they launch DSSDF attack individually. CSSDF
attackers can be easily detectedwith an abnormality detection
algorithm by analyzing their highest similarities, if they
launch SSDF in the static manner.

In this paper, we report the description of dynamic-
collusive SSDF attack (hereinafter “DC-SSDF”), in which
the attackers with the dynamic and collaborative manner
can not only escape the detection of trust mechanism but
also increase the attack strength. From the design idea of
trust fluctuation clustering analysis, we propose a defense
scheme called TFCA to suppress DC-SSDF attack. The main
contributions of this paper are as follows:

(i) Conduct an in-depth investigation on DC-SSDF
attack, which is conducted by three attack procedures
in a round mode: “Dynamically prompting”, “Col-
laborative attack”, and “Self-check”. The harmfulness
of such attack is great. With high trust value, DC-
SSDF attackers can damage the fairness and usability
of CSS more easily. A high trust value means that an
SU’s sensing data can be accepted by CSS. By faking
sensing data with together, DC-SSDF attackers with
high trust value can deceive honest SUs to interfere
with PUs or monopolize primary spectrum bands via
CSS.

(ii) Estimate the sensing similarity among SUs from the
decreasing property of trust value in the resonance
phenomenon. DC-SSDF attackers cooperate together
in the “Collaborative attack” phase while prompting
their trust value, respectively, in the “Dynamically
prompting” phase. So, we can find that the resonance
phenomenon may appear in the trust value curve of
them. It specially is obvious that DC-SSDF attackers
may behave as the sensing similarity related on
decreasing trust value in the “Collaborative attack”
phase. In the TFCA scheme, we utilize the decreasing
property of trust value in the resonance phenomenon
to estimate the sensing similarity by measuring the
distance between any two SUs, which can avoid mass
mathematical analysis and computation.

(iii) Design a binary clustering algorithm to differentiate
DC-SSDF attackers and honest SUs. The resonance
frequency of the two SUs is recorded in line with their
trust value’s decreasing property in the resonance
phenomenon. Then, DC-SSDF attackers can get the
higher resonance frequency among themselves while
honest SUs can get the lower resonance frequency
among themselves. Based on this, we can use the
analysis of the maximum and minimum for the
resonance frequency to elect DC-SSDF samples and
honest samples rapidly, thus avoiding more iterations
of the algorithm.

Table 1: Abbreviations used in this paper.

Abbreviations Explanation
CSS Cooperative spectrum sensing
SU Secondary user
C Set of Cooperating SUs𝑆𝑈𝑖 The i-th SU
PU Primary user
SSDF Spectrum sensing data falsification
DC-SSDF Dynamic-collusive SSDF
TFCA Trust fluctuation clustering analysis
FC Fusion centerΦ1 DC-SSDF samplesΦ2 Honest samplesΨ1 Set of DC-SSDF attackersΨ2 Set of honest SUs

Table 2: Key variables used in this paper.

Variables Explanation
d Final decision of FC𝑑𝑖 Final decision of 𝑆𝑈𝑖ℎ𝑖 Number of true sensing of 𝑆𝑈𝑖𝑓𝑖 Number of false sensing of 𝑆𝑈𝑖𝑡𝑘𝑖 Trust value of 𝑆𝑈𝑖 at sensing time k𝑇𝑖 Trust vector of 𝑆𝑈𝑖𝑟𝑖𝑗 Resonance frequency between 𝑆𝑈𝑖 and 𝑆𝑈𝑗𝑑𝑖𝑠𝑖𝑗 Similar distance between 𝑆𝑈𝑖 and 𝑆𝑈𝑗𝑅𝑛×𝑛 Resonance frequency among cooperating SUs𝑅𝑖 Resonance frequency of 𝑆𝑈𝑖 corresponding to the

other cooperating SUs𝜌𝑖 Attenuation penalty factor of 𝑆𝑈𝑖 at sensing time k

The rest of this paper is as follows. In Section 2, prelimi-
naries related toCSS and trustmechanism are described. DC-
SSDF attack is analyzed in Section 3 and the TFCA scheme is
designed to defend against it in Section 4. Simulation analysis
of DC-SSDF attack and the TFCA scheme is performed in
Section 5. Finally, we give the conclusions of this paper in
Section 6. In addition, the abbreviations and key variables
used in this paper are listed in Tables 1 and 2, respectively.

2. Preliminaries

2.1. Cooperative Spectrum Sensing. A CSS action can be
modeled as a parallel fusion network, in which the fusion
center (FC) controls the action of CSS, including the process
of individual sensing, data reporting, and decision-making,
as shown in Figure 1 [3]. Firstly, the method of energy
detection is exploited by each SU to individually sense the PU
signal through the sensing channel, which is the preselected
licensed frequency band for observing the primary spectrum
between the PU transmitter and each cooperating SU. Sec-
ondly, all individual sensing data are submitted to FC through
the reporting channel, which is a control channel for sending
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Figure 1: Modeling CSS as a parallel fusion network.

individual sensing information between each cooperating SU
and the initiator SU. With the two types of given channels, it
can be seen that the CSS process between SUs seems to not
waste any more spectrums. Finally, the received individual
sensing data are fused by FC to determine the presence of PU.
With the “AND”, “OR”, or “Majority” rule, FC can make the
final decision [11].

Specially, individual sensing for PU signal with the energy
detection can be abstracted as the “0-1” hypothesis problem
[12]:

𝑦 (𝑡) = {{{𝑤 (𝑡) , 𝐻0𝑔 (𝑡) ⋅ 𝑝 (𝑡) + 𝑤 (𝑡) , 𝐻1 (1)

where 𝑦(𝑡) represents the detected PU signal by each SU, 𝑝(𝑡)
is the transferred PU signal, 𝑔(𝑡) is the sensing channel gain,𝑤(𝑡) is the zero-mean additive white Gaussian noise, and t
is the sample parameter. 𝐻0 and 𝐻1 denote the hypothesis
of absent and present PU signals, respectively. When the
estimated 𝑦(𝑡) is greater than the energy threshold, the PU
signal can be determined as present. Otherwise, no PU signal
is detected.

In the process of individual sensing, the sensing data at
each SU can be expressed as a binary variable as. For example,𝑑𝑖 indicates the sensing data of 𝑆𝑈𝑖, which is expressed as

𝑑𝑖 = {{{0, 𝐻01, 𝐻1 (2)

where “0” and “1” represent the hypothesis of the inexistence
and the existence of PU signal, respectively. Correspondingly,
FC alsomake the final decision binarywith the “AND”, “OR”,
and “Majority” rule. Under the “AND” rule, the final decision
d=1 if all 𝑑𝑖=1. On the contrary, d=1 if one 𝑑𝑖=1 under “OR”
rule. The “Majority” rule requires at least a half of SUs to
report “1”. The “AND” rule works well when the number of
cooperating SUs is small, whereas the “OR” rule works best
when the number of SUs is large, and the “Majority” rule can
be obtained from the k out of N rule under the condition
when 𝑘 ≥ 𝑁/2 [3]. Generally, the “Majority” rule is the best
choice to make the final decision, whereas one false sensing
data can disturb the decision result of the “AND” and “OR”

rule. In Section 5, the simulation of suppressing DC-SSDF
attack success ratio is performed to analyze the three fusion
rules more clearly.

2.2. Trust Mechanism. Trust mechanism has become more
andmore significant inmany application scenarios, including
e-commerce [13], P2P networks [14], internet of things [15],
and online social networks [16].

In CSS area, trust mechanism also plays important roles.
Typical CSS trust mechanism schemes are as follows. In
[5], the authors proposed a trust-aware hybrid spectrum
sensing scheme, in which the Beta reputation is employed
to calculate trust value. In [6], the authors proposed a
reliable CSS scheme with the assistance of trusted SUs to
mitigate SSDF attack. In [7], the authors considered the
construction of trust mechanism from the perspective of the
access competition related to vacant PU spectrum bands. In
[8], the authors proposed a trust management scheme by
considering multiple decision factors (hereinafter “MFTM”),
including (a) history-based trust factor, the trust level of an
SU during the period of spectrum sensing, (b) active factor,
the level of activity of an SU in the process of spectrum
sensing, (c) incentive factor, a reward or incentive for the
honest SUs, also serving as a punishment with decrease in
trust level for the attackers, and (d) consistency factor, the
constancy ofmaintaining a good trust level.The commonality
of these existing typical trust schemes is that the trust value
of an SU can be calculated by his previous sensing behaviors
and the sensing data ofmalicious SUs should be deleted when
making a final decision.

With this commonality, a basic trust mechanism called
BTM is abstracted to depict the existing typical trust schemes.
Since the sensing data of each SU can be regarded as the “0-
1” variable in CSS, it is possible for each SU to conduct two
types of sensing behaviors: true and false. In this case, we
can calculate the trust value of each SU with two indexes: the
number of true sensing behaviors (tru) and the number of
false sensing behaviors (fal). Currently, the beta function is
considered as one of the most popular modes using binary
input to calculate trust value. It first counts the number of
true and false behaviors that a user has conducted and then
calculates the trust value with the beta probability density
function-𝐵𝑒𝑡𝑎(𝛼, 𝛽) [17].𝐵𝑒𝑡𝑎 (𝛼, 𝛽) = Γ (𝛼 + 𝛽)Γ (𝛼) Γ (𝛽)𝜔𝛼−1 (1 − 𝜔)𝛽−1 (3)

where 𝜔 is the probability of sensing behaviors, 0 ≤ 𝜔 ≤ 1,𝛼 > 0, 𝛽 > 0.
For instance, ℎ𝑖 and 𝑓𝑖 represent the number of true and

false sensing behaviors conducted by 𝑆𝑈𝑖. Then, the trust
value of 𝑆𝑈𝑖 can be calculated as𝑡𝑖 = 𝐵𝑒𝑡𝑎 (ℎ𝑖 + 1, 𝑓𝑖 + 1) (4)

Note that the case Γ(𝑛) = (𝑛 − 1)! when n is an
integer [18]. The expectation value of (4) can be deduced
as 𝐸[𝐵𝑒𝑡𝑎(𝛼, 𝛽)] = 𝛼/(𝛼 + 𝛽). Therefore, 𝑡𝑖 can be further
calculated as 𝑡𝑖 = 1 + ℎ𝑖2 + ℎ𝑖 + 𝑓𝑖 (5)
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Figure 2: Evolution of SSDF attack.

3. DC-SSDF Attack Overview

Since the sensing data are usually viewed as the “0-1” variable,
it is possible for attackers to disturb CSS and launch SSDF
attack by submitting false sensing data.

Actually, the basic goal of SSDF attack is to illegally
occupy or disturb the PU spectrum bands by manipulating
the final decision of FC with using the two patterns [9].

(i) Always-absent: some attackers submit false “0” sens-
ing data to show the PU signal is absent, even though
some PUs are using their spectrums. As a result, a
wrong final decision is made by FC to show that the
PU spectrum bands are absent. The intention of such
attackers is to give interference to some PUs.

(ii) Always-present: some attackers submit false “1” sens-
ing data to declare that the PU signal is present, even
though no PU signals are detected. As a result, a
wrong final decision is made by FC to show that the
PU spectrum bands are present.The intention of such
attackers is tomonopolize the PU spectrum bands via
CSS.

At first, attackers always submit false sensing data indi-
vidually. That is, such two kinds of SSDF attack patterns are
launched in the static and individual way. This original SSDF
attack patterns [4] can be easily detected by current trust
mechanism such as [5–8], since the original SSDF attackers
will get a lower trust value when they always submit false
sensing data individually.

In this case, attackers have to change their strategies, thus
finding two types of attack modes: DSSDF and CSSDF. For
the first attack mode, attackers launch SSDF in a dynamic

manner to escape the detection of trust mechanism.They can
utilize dynamic behaviors that allow them to maintain high
trust value in an alternant process of submitting true and false
sensing data [19]. But, it is easy to crush DSSDF attackers one
by one, if they launch DSSDF attack individually. To increase
the strength of SSDF attack, some attackers form collusion
with each other to fake sensing data. They can fake honest
SUs’ statistical characteristics by collusion when they launch
SSDF attack [20]. But, CSSDF attackersmay be easily detected
with an abnormality detection algorithm by analyzing their
highest similarities, if they launch SSDF in the static manner.
Except forDSSDF andCSSDF attack, CFF attack is also found
in our previous publication [21]. Since the feedback data from
initiator SUs are generally unchecked, one of CFF attackers
can disguise as an initiator SU who sends the feedback in
accordance with the sensing data of their conspirators who
play the role of cooperating SUs, resulting in promoting their
conspirators’ trust value quickly. A two-level defense scheme
called FeedGuard from the design ideas of feedback trust
and I-C frequency correlation analysis is proposed in [21] to
defend against CFF attack.

In this paper, we find that the attackers with the dynamic
and collaborative manner can not only escape the detection
of trust mechanism but also increase the attack strength.This
new SSDF attack mode is named as DC-SSDF in this paper.
Obviously, DC-SSDF attack is the latest evolution of SSDF
attack, as shown in Figure 2.

Similar to DSSDF attackers, DC-SSDF attackers are
extremely sensitive to trust value before launching attack.
Assuming 𝑆𝑈𝑖 is one of DC-SSDF attackers, he launches DC-
SSDF attack under the constraint𝛿 ≤ 𝑡𝑖 ≤ 𝛿 + 𝜆 (6)
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Figure 3: A round of DC-SSDF attack procedure.

where 𝛿 is the threshold of trust value and 𝜆 (0 ≤ 𝜆 ≤ 1 − 𝛿)
is the trust warning line of DC-SSDF attackers.

In (5), 𝑡𝑖 = 0.5 when ℎ𝑖 = 𝑓𝑖 = 0. For 𝑡𝑖 ∈ [0, 1], 𝛿
can be set to the moderate value 0.5. For 𝑡𝑖 ≥ 𝛿, 𝑆𝑈𝑖 will
not be identified by trust mechanism since he is marked as
honest. This inspires DC-SSDF attackers to maintain high
trust value for themselves. That is, 𝑆𝑈𝑖 should maintain his
trust value within [𝛿, 𝛿 + 𝜆]. It is late for prompting trust
value when 𝑡𝑖 ≤ 𝛿. In this case, 𝑆𝑈𝑖 is marked as malicious
by trust schemes and anyone will not trust him again. Under
the constraint 𝛿 ≤ 𝑡𝑖 ≤ 𝛿 + 𝜆, the DC-SSDF attack procedure
can be conducted in a round mode including “Collaborative
attack”󳨀→“Self-check”󳨀→“Dynamically prompting” phases,
as shown in Figure 3.

(i) Dynamically prompting: DC-SSDF attackers submit
true sensing data dynamically to prompt their trust
value all by themselves until 𝑡𝑖 ≥ 𝛿 + 𝜆.

(ii) Collaborative attack: DC-SSDF attackers fake sensing
data in the collaborativemanner until the half of them
cannot maintain 𝛿 ≤ 𝑡𝑖 ≤ 𝛿 + 𝜆.

(iii) Self-check: Each 𝑆𝑈𝑖 self-checks whether 𝑡𝑖 ≤ 𝛿 at the
end of each collaborative attack. Yes means continue
to the “Collaborative attack” phase. No means go to
the “Dynamically prompting” phase.

4. Defending against DC-SSDF Attack Using
Trust Fluctuation Clustering Analysis

We capture the core phases, “Dynamically prompting” and
“Collaborative attack” of DC-SSDF attack, and then intro-
duce the design idea of Trust Fluctuation Clustering Analysis
including trust fluctuation analysis for distance measure
and binary clustering analysis to detect DC-SSDF attack-
ers. Meanwhile, the implementation strategies of TFCA are
designed to perfect trust mechanism.

4.1. Trust Fluctuation Analysis for Similarity Distance Mea-
sure. We have known that the attackers who conduct true or
false sensing behaviors alternately would maintain high trust
value. Accordingly, the trust value should be calculated at
each sensing time. For 𝑆𝑈𝑖, his trust value at sensing time k can
be described as 𝑡𝑘𝑖 , and then (7) can be further modified as

𝑡𝑘𝑖 = 1 + ℎ𝑘𝑖2 + ℎ𝑘𝑖 + 𝑓𝑘𝑖 (7)
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Figure 4: Fluctuation analysis of trust value for any two ofDC-SSDF
attackers.

where ℎ𝑘𝑖 and𝑓𝑘𝑖 represent the true of honest and false sensing
behaviors of 𝑆𝑈𝑖 at sensing time k. For 𝑆𝑈𝑖, his trust value
from the initial sensing time to the current sensing time can
form the trust vector 𝑇𝑖 = {𝑡1𝑖 , . . . , 𝑡𝑘𝑖 , . . . , 𝑡ℎ𝑖 }. Without loss
of generality, if no CSS action has been involved by 𝑆𝑈𝑖 at
sensing time k, we can set 𝑡𝑘𝑖 = 𝑡𝑘−1𝑖 .

When launching DC-SSDF attack, 𝑆𝑈𝑖’s trust value will
increase in the “Dynamically prompting” phase but decrease
in the “Collaborative attack” phase. To further analyze the
fluctuation of trust value for any two of DC-SSDF attackers
(such as 𝑆𝑈𝑖 and 𝑆𝑈𝑗), we perform a simple simulation
scenario with a higher value in 𝜆 such as 0.4, as shown in
Figure 4. It can be found that the two DC-SSDF attackers’
trust value fluctuates between 𝛿 and 𝛿 + 𝜆. With the increase
of sensing time, themore efforts of “Dynamically prompting”
they make, the more opportunities to “Collaborative attack”
they will get. Specially, we can find that the resonance
phenomenon appears in the trust value curve of them. To
depict the similarity of any two DC-SSDF attackers in the
process of fluctuation, we can record the resonance frequency
(𝑟𝑖𝑗) between the two SUs by Procedure 1. Considering that
DC-SSDF attackers cooperate together in the “Collaborative
attack” phase while prompting their trust value all by them-
selves in the “Dynamically prompting” phase, 𝑟𝑖𝑗 should be
recorded when the trust value of 𝑆𝑈𝑖 and 𝑆𝑈𝑗 decreases at the
same time after coming into the “Collaborative attack” phase.

The distance metric is generally useful to measure the
similarity among the vectors (such as𝑇𝑖 and𝑇𝑗).When 𝑆𝑈𝑗 is
one of DC-SSDF companions of 𝑆𝑈𝑖, theymay behave similar
to trust fluctuation after several rounds of “Collaborative
attack” phase. In the clustering analysis, such similar trust
fluctuation can make 𝑆𝑈𝑖 and 𝑆𝑈𝑗 get a shorter distance. In
our TFCA scheme, we should improve the calculation of the
distance in line with the characteristic of trust fluctuation
between 𝑇𝑖 and 𝑇𝑗 before designing the binary clustering
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Input: 𝑇𝑖, 𝑇𝑗;
Output: 𝑟𝑖𝑗;
(1) Initialize 𝑟𝑖𝑗 = 0;
(2) for 𝑘 = 1, 𝑘 ≤ max(|𝑇𝑖|, |𝑇𝑗|), 𝑘 + + do
(3) if 𝑡𝑘−1𝑖 > 𝑡𝑘𝑖&&𝑡𝑘−1𝑗 > 𝑡𝑘𝑗 then
(4) 𝑟𝑖𝑗 + +;
(5) end if
(6) end for

Procedure 1: Record 𝑟𝑖𝑗 value.
algorithm. For 𝑆𝑈𝑖 and 𝑆𝑈𝑗, their distance can be measured
as

𝑠𝑑𝑖𝑗 = 𝑟𝑖𝑗
max (󵄨󵄨󵄨󵄨𝑇𝑖󵄨󵄨󵄨󵄨 , 󵄨󵄨󵄨󵄨󵄨𝑇𝑗󵄨󵄨󵄨󵄨󵄨)√

𝑟𝑖𝑗∑
𝑘=1

󵄨󵄨󵄨󵄨󵄨𝑡𝑘𝑖 − 𝑡𝑘𝑗 󵄨󵄨󵄨󵄨󵄨2
+ max (󵄨󵄨󵄨󵄨𝑇𝑖󵄨󵄨󵄨󵄨 , 󵄨󵄨󵄨󵄨󵄨𝑇𝑗󵄨󵄨󵄨󵄨󵄨) − 𝑟𝑖𝑗

max (󵄨󵄨󵄨󵄨𝑇𝑖󵄨󵄨󵄨󵄨 , 󵄨󵄨󵄨󵄨󵄨𝑇𝑗󵄨󵄨󵄨󵄨󵄨)
(8)

under the constraint

𝑡𝑘−1𝑖 > 𝑡𝑘𝑖 &&𝑡𝑘−1𝑗 > 𝑡𝑘𝑗 (9)

where |𝑇𝑖| and |𝑇𝑗| are the number of elements in 𝑇𝑖 and𝑇𝑗, respectively. Obviously, if 𝑆𝑈𝑖 and 𝑆𝑈𝑗 often launch the
“Collaborative attack” phase together, they will get a shorter
distance. If not, 𝑑𝑖𝑗 will be stretched by the second part of
(11).

4.2. Binary Clustering Algorithm Design. The ultimate pur-
pose of our TFCA scheme is to detect DC-SSDF attackers.
To achieve this goal, the K-means algorithm is a good choice
since DC-SSDF attackers show some clustering features in
the light of their collaborative behaviours. However, the K-
means algorithm [22] cannot be applied directly in detecting
DC-SSDF attackers due to the two problems. The one is that
the selected sample should be definitely differentiated as a
DC-SSDF attacker or an honest SU. So, it is unsuitable to
select K samples as the initial mean vectors. Another one is
that we utilize the decreasing property of trust value in the
resonance phenomenon tomeasure the distance between two
SUs. In this case, if we use the mean of all vectors in a cluster
to measure the distance, the decreasing property would be
cleared.

In our TFCA scheme, we design a binary clustering
algorithm to differentiateDC-SSDF attackers and honest SUs.
Firstly, we select two samples as the initial mean vectors by
analyzing the resonance frequency of cooperating SUs set
(denoted as C) at the current sensing time. For all SUs in C,

Input: 𝑅𝑛×𝑛;
Output: Φ1 and Φ2;
(1) Initialize Φ1 = Φ2 = 0;
(2) for 𝑖 = 1, 𝑖 ≤ 𝑛, 𝑖 + + do
(3) Φ1 = {argmax(𝑅𝑖)} ∪ Φ1;
(4) Φ2 = {argmin(𝑅𝑖)} ∪ Φ2;
(5) end for

Procedure 2: Elect binary clustering samples.

their 𝑟𝑖𝑗 value can compose a matrix 𝑅𝑛×𝑛 in which n is the
number of elements in C.

𝑅𝑛×𝑛 =(((((
(

𝑟11 ⋅ ⋅ ⋅ 𝑟1𝑗 ⋅ ⋅ ⋅ 𝑟1𝑛... ⋅ ⋅ ⋅ ... ⋅ ⋅ ⋅ ...𝑟𝑖1 ⋅ ⋅ ⋅ 𝑟𝑖𝑗 ⋅ ⋅ ⋅ 𝑟𝑖𝑛... ⋅ ⋅ ⋅ ... ⋅ ⋅ ⋅ ...𝑟𝑛1 ⋅ ⋅ ⋅ 𝑟𝑛𝑗 ⋅ ⋅ ⋅ 𝑟𝑛𝑛
)))))
)

(10)

In the matrix, the resonance frequency vector of 𝑆𝑈𝑖
corresponding to the other cooperating SUs can be denoted
as 𝑅𝑖 = (𝑟𝑖1, . . . , 𝑟𝑖𝑗, . . . , 𝑟𝑖𝑛). It is worth noting that DC-SSDF
attackers can get the higher resonance frequency among
themselves while honest SUs can get the lower resonance
frequency among themselves. We can elect the SUs who hold
the maximum from each 𝑅𝑖 (𝑖 ∈ 1, 2, . . . , 𝑛) to compose the
DC-SSDF samples (Φ1).Meanwhile, we can elect the SUswho
hold the minimum from each 𝑅𝑖 (𝑖 ∈ 1, 2, . . . , 𝑛) to compose
the honest samples (Φ2). This election can be performed by
Procedure 2.

Secondly, to avoid clearing the decreasing property of
trust value in the resonance phenomenon, we employ the
elements of the generated cluster belonging toΦ1 to calculate
the new mean vector at each clustering iteration, rather than
using all the elements of the generated cluster.

Finally, the binary clustering algorithm can be designed
by Procedure 3 to detect DC-SSDF attackers.

4.3. Perfect Trust Mechanism. When DC-SSDF attackers are
detected, typical issues in perfecting trust mechanism focus
on (1) reducing their hon data with the attenuation penalty
factor (𝜌) and (2) deleting their sensing data.

For the first issue, it will be difficult for DC-SSDF
attackers to maintain high trust value, thus ensuring the
accuracy of trust calculation. If 𝑆𝑈𝑖 is detected as a DC-SSDF
attacker, his penalty factor at sensing time k can be calculated
as

𝜌𝑘𝑖 = var (𝑅𝑖)
var (𝑅𝑖) +max (𝑅𝑖) (11)

where var(𝑅𝑖) and max(𝑅𝑖) denote the variance and maxi-
mum of 𝑅𝑖, respectively. The smaller value of var(𝑅𝑖) means
that the resonance frequency of 𝑆𝑈𝑖 corresponding to the
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Intput: C, Φ1, Φ2 and 𝑅𝑛×𝑛;
Output: the set of DC-SSDF attackers (Ψ1) and honest SUs (Ψ2);
(1) Randomly select an element fromΦ1 and Φ2 respectively and use their trust vector as the initial mean vector {𝜇1, 𝜇2};
(2) repeat
(3) Initialize Ψ1 = Ψ2 = 0;
(4) for 𝑖 = 1, 𝑖 ≤ |𝐶|, 𝑖 + + do
(5) Measure the distance 𝑑𝑖𝑗 between 𝑆𝑈𝑖 and 𝜇𝑗 (1 ≤ 𝑗 ≤ 2) with equation (11);
(6) if 𝑑𝑖1 < 𝑑𝑖2 then
(7) Ψ1 = {𝑆𝑈𝑖} ∪ Ψ1;
(8) else
(9) Ψ2 = {𝑆𝑈𝑖} ∪ Ψ2;
(10) end if
(11) end for
(12) for 𝑗 = 1, 𝑗 ≤ 2, 𝑗 + + do
(13) Calculate the new mean vector 𝜇𝑗 = (1/|Φ𝑗 ∩ Ψ𝑗|) ∑𝑆𝑈𝑘∈(Φ𝑗∩Ψ𝑗) 𝑇𝑘;
(14) if 𝜇𝑗 ̸= 𝜇 then
(15) Update 𝜇 = 𝜇𝑗;
(16) else
(17) Keep the current mean vector unchanged;
(18) end if
(19) end for
(20) until the current mean vector is not updated again

Procedure 3: Binary clustering algorithm.

Input: C, ℎ𝑘−1𝑖 , 𝑓𝑘−1𝑖 Ψ1, Ψ2 and 𝑅𝑛×𝑛;
Output: ℎ𝑘𝑖 , 𝑓𝑘𝑖
(1) for each 𝑆𝑈𝑖 ∈ 𝐶 do
(2) if 𝑆𝑈𝑖 ∈ Ψ1 then
(3) ℎ𝑘𝑖 = ℎ𝑘−1𝑖 ∗ var(𝑅𝑖)

var(𝑅𝑖) +max(𝑅𝑖)
(4) 𝑓𝑘𝑖 = 𝑓𝑘−1𝑖 + 1
(5) deleted 𝑆𝑈𝑖’s sensing data
(6) else
(7) if 𝑑𝑖 == 𝑑 then
(8) ℎ𝑘𝑖 = ℎ𝑘−1𝑖 + 1
(9) else
(10) 𝑓𝑘𝑖 = 𝑓𝑘−1𝑖 + 1
(11) end if
(12) end if
(13) end for

Procedure 4: Perfect trust mechanism.

other cooperating SUs is more consistent. Thus, ℎ𝑘𝑖 would
be punished by more attenuation, and vice verse. The more
max(𝑅𝑖) also makes more attenuation to ℎ𝑘𝑖 .

For the second issue, it would be hard for DC-SSDF
attackers to manipulate the final decision again.

Procedure 4 is performed to perfect trust mechanism, in
which 𝑑𝑖 is the sensing data of 𝑆𝑈𝑖 and d is the final decision
made by FC.

5. Simulation Results and Discussion
5.1. Simulation Setup. We perform computer simulations
withMatlab to validate the performance of the TFCA scheme.
The simulation elements are shown in Table 3.

Table 3: Description of simulation elements.

Parameters Description Default𝑁𝑠 Number of SUs 60𝑁𝑝 Number of PUs 5
cycle Number of cycle simulation 100
round Rounds of attack 50𝑝𝑎 Percentage of attackers 0∼50%𝜆 Trust warning line 0.4𝛿 Threshold of trust value 0.5

The cycle-based fashion is used to perform simulations.
At each cycle, some SUs are selected randomly to execute
a number of CSS actions by cooperation. Trust mechanism
is employed to execute all CSS actions and update the trust
value on the corresponding SUs. By several cycles, a trusted
CSS network will be gradually formed with trust mechanism.

5.2. Simulation Results. To analyze the simulation result of
our TFCA scheme better, we compare it with BTM and
MFTM [9].

As we know, an attacker such as 𝑆𝑈𝑖 can be detected
when 𝑡𝑘𝑖 < 𝛿 at sensing time k. So, the main goal of DC-
SSDF attackers is to prompt trust value. To increase the attack
strength, 𝑆𝑈𝑖 must become a high-trust attacker; i.e., 𝑠𝑡𝑖 ≥𝛿. Due to the “Dynamically prompting” phases, DC-SSDF
attack can make attackers deviate the actual trust value and
cause some network trust errors (nte) by forming high-trust
attackers. Higher errors mean the lower accuracy in the trust
value calculation. nte can be specified by

𝑛𝑡𝑒 = 1𝑁𝑠 𝑁𝑠∑𝑖=1√ 1𝑡󸀠𝑘𝑖 (𝑡󸀠𝑘𝑖 − 𝑡𝑘𝑖 )2 (12)
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Figure 5: nte with the guard of TFCA.

where 𝑡󸀠𝑘𝑖 and 𝑡𝑘𝑖 are the actual and measured trust value of𝑆𝑈𝑖 at sensing time k, respectively.
In nte simulation, the actual trust value for an attacker is

randomly assigned in the interval (0, 𝛿]. As shown in Figure 5,
the TFCA scheme is better than BTMandMFTM in reducing
nte. Without any guard measures, the nte curve increases
rapidly in the BTM scheme. Although four decision factors
are involved in the MFTM scheme to perfect the trust value
calculation, it ignores the factor that attackers may prompt
trust value by collusion. Consequently, the MFTM scheme
also fails to reduce nte. By reducing DC-SSDF attackers’ hon
data with the attenuation penalty factor (𝑎𝑝), it can be found
that nte curve with TFCA increases smoothly. Even when the
number of DC-SSDF attackers is 30, nte of TFCA achieves
0.0475.

Generally, high-trust DC-SSDF attackers submit false
sensing data, which would cause a mass of malicious
responses at each cycle. The effectiveness of the TFCA
scheme can be also validated in terms of reducing malicious
responses, as shown in Figure 6.Without any guardmeasures,
DC-SSDF attackers’ trust value decreases slowly in the BTM
scheme, which can make them get more opportunities to
submit false sensing data, resulting in the increase of mali-
cious responses. Since the punishment to trust level for the
attackers is considered in the MFTM scheme, they get less
attack chances. So, the MFTM scheme is better than BTM. In
the TFCA scheme, the identified DC-SSDF attackers have no
right to request CSS since their trust value can be attenuated
to below 𝛿. Then, it is difficult to prompt their conspirators’
trust value again, thus suppressing malicious responses more
effectively.

We also analyze the performance of our TFCA scheme in
terms of attack success ratio. This simulation is performed at
the always-absent and always-present attack patterns.

It can be found that the TFCA scheme is also better in
suppressing attack success ratio than BTM andMFTMunder
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Figure 6: Suppressing malicious responses.

the “OR” rule at the always-absent attack pattern and the
“AND” rule at always-present attack pattern, as shown in
Figure 7. At always-present attack pattern, the damage of
attacks is the biggest under the “OR” rule only when one
false “1” data can make the final decision as “1”. At always-
absent attack pattern, the damage of attacks is the biggest
under the “AND” rule only when one false “0” data can
make the final decision as “0”. Under the “Majority” rule,
the TFCA scheme can reduce attack success ratio to some
extent with using the binary clustering algorithm. Although
the damage of attacks against the “Majority” rule amplifies
with the number of attackers, the TFCA scheme is better in
suppressing attack success ratio better than BTM andMFTM
at the always-absent and always-present attack patterns. The
reason is that the majority of sensing data are “1” or “0”
under the “Majority” rule; the final decision will be “1” or “0”.
According to this simulation analysis, we can validate that the
“Majority” rule is the best choice tomake the final decision in
CSS.

We have known that the binary clustering algorithm
can make our TFCA scheme suppress DC-SSDF attack.
Another question is how about the convergence of the
binary clustering algorithm. To validate the binary clustering
algorithm better, we compare it with the K-means algo-
rithm by observing the convergence of the number of DC-
SSDF attackers. As shown in Figure 8, the binary clustering
algorithm begins to converge after 9 iterations when the
ratio of attackers is 20%, whereas the K-means algorithm
begins to converge after 15 iterations. In the binary clustering
algorithm,we can analyze themaximumandminimumof the
resonance frequency to definitely differentiate the selected
samples as DC-SSDF samples and honest samples. Then, we
can employ the elements of the generated cluster who also
belong to the DC-SSDF samples to calculate the new mean
vector at each clustering iteration. In the K-means algorithm,
samples are selected randomly, and then all the elements



Wireless Communications and Mobile Computing 9

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Percentage of attackers

Ra
tio

 o
f a

tta
ck

 su
cc

es
s

‘‘OR" rule with BTM
‘‘OR" rule with MFTM
‘‘OR" rule with TFCA

(a) Always-absent

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Percentage of attackers

Ra
tio

 o
f a

tta
ck

 su
cc

es
s

‘‘OR" rule with BTM
‘‘OR" rule with MFTM
‘‘OR" rule with TFCA

(b) Always-present

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Percentage of attackers

Ra
tio

 o
f a

tta
ck

 su
cc

es
s

‘‘AND" rule with BTM
‘‘AND" rule with MFTM
‘‘AND" rule with TFCA

(c) Always-absent

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

Percentage of attackers

Ra
tio

 o
f a

tta
ck

 su
cc

es
s

‘‘AND" rule with BTM
‘‘AND" rule with MFTM
‘‘AND" rule with TFCA

(d) Always-present

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Percentage of attackers

Ra
tio

 o
f a

tta
ck

 su
cc

es
s

‘‘Majority" rule with BTM
‘‘Majority" rule with MFTM
‘‘Majority" rule with TFCA

(e) Always-absent

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Percentage of attackers

Ra
tio

 o
f a

tta
ck

 su
cc

es
s

‘‘Majority" rule with BTM
‘‘Majority" rule with MFTM
‘‘Majority" rule with TFCA

(f) Always-present

Figure 7: Suppressing DC-SSDF attack success ratio.



10 Wireless Communications and Mobile Computing

5 10 15 20 25 30
0

5

10

15

20

25

Iterations

N
um

be
r o

f D
C−

SS
D

F 
at

ta
ck

er
s

40% attackers with Binary clustering algorithm
40% attackers with K−means algorithm
20% attackers with Binary clustering algorithm
20% attackers with K−means algorithm
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of the generated cluster to calculate the new mean vector
at each clustering iteration. Therefore, the binary clustering
algorithm also converges faster than the K-means algorithm,
even though the ratio of attackers becomes 40%.

6. Conclusions

We report the description of DC-SSDF attack and present
the TFCA scheme to defend against this attack in this paper.
TheTFCA scheme is designed in three successive stages: trust
fluctuation analysis, binary clustering algorithm design, and
perfect trustmechanism, inwhich trust fluctuation clustering
analysis is introduced to construct the TFCA scheme since
the resonance phenomenon may appear in the trust value
curve of DC-SSDF attackers. Simulation results show that
our TFCA scheme can ensure the accuracy of trust value
calculation and suppress DC-SSDF attack success ratio to
some extent.

Data Availability

Weperform computer simulationswithMatlab to validate the
performance of the proposed scheme. No data were used to
support this study.
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