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Wireless sensor networks (WSN) have gradually integrated into the concept of the Internet of Things (IoT) and become one of the
key technologies. This paper studies the optimization algorithm in the field of artificial intelligence (AI) and effectively solves the
problem of node location in WSN. Specifically, we propose a hybrid algorithmWOA-QT based on the whale optimization (WOA)
and the quasi-affine transformation evolutionary (QUATRE) algorithm. It skillfully combines the strengths of the two algorithms,
not only retaining the WOA’s distinctive framework advantages but also having QUATRE’s excellent coevolution ability. In order
to further save optimization time, an auxiliary strategy for dynamically shrinking the search space (DSS) is introduced in the
algorithm. To ensure the fairness of the evaluation, this paper selects 30 different types of benchmark functions and conducts
experiments from multiple angles. The experiment results demonstrate that the optimization quality and efficiency of WOA-QT
are very prominent. We use the proposed algorithm to optimize the weighted centroid location (WCL) algorithm based on
received signal strength indication (RSSI) and obtain satisfactory positioning accuracy. This reflects the high value of the
algorithm in practical applications.

1. Introduction

With the development of the Internet of Things (IoT) to this
day, it can be said that the basic task originally conceived has
been completed, namely, the interconnection of human,
machine, and things [1]. However, people are no longer
satisfied with the simple networking and put forward higher
requirements. As the rapid expansion of scale, IoT has
produced an alarming amount of real-time monitoring data
[2]. There is no doubt that scientific management of these
data requires a “Super Brain”, and intelligence has become
an inevitable choice for the evolution and upgrade. Artificial
intelligence (AI) is fully qualified for this role. The history of
AI is much longer than that of IoT, but it has been plagued by
the difficulty of technical development and the lack of kinetic
energy for achievement transformation. In recent years, AI
has made breakthrough progress at the technical level, which
makes people full of confidence and hope for its future. How

to guide AI from the laboratory into various real application
scenarios is a challenging task. The booming IoT has pro-
vided a broad stage for AI to fully release its potentia, and
the naturally existing data sources continuously provide
power for it. Relying on the mature platform built by IoT,
AI can meet the most urgent demand for technology landing.
Although IoT already has a considerable volume in terms of
industrial chain and scale, many key technologies still need to
be polished and improved. IoT has been thinking for a long
time to seek considerable progress and sustainable develop-
ment, and the empowerment of AI just opens an important
window of opportunity for its development. Therefore, the
term AIoT (Artificial Intelligence of Things) came into being,
which can be understood as the integration of AI and IoT.

AI covers a wide range of technologies, in which the
optimization algorithm has received extensive attention from
researchers. Among many optimization algorithms, the
metaheuristic algorithm is the most active. Some of them
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are inspired by the evolution phenomenon in nature,
represented by genetic algorithm (GA) [3] and differential
evolution algorithm (DE) [4]. Some algorithms are inspired
by biological collective behavior, including particle swarm
optimization (PSO) [5], artificial bee colony algorithm
(ABC) [6, 7], Cat swarm optimization (CSO) [8, 9], WOA
[10, 11], and symbiotic organism search algorithm [12, 13].
Some are related to physical or mathematical rules, such as
black hole (BH) [14, 15] and QUATRE [16, 17]. Unfortu-
nately, there is no one algorithm capable of solving all
optimization problems according to the NFL theorem [18].
This has stimulated researchers’ endless enthusiasm, either
proposing new algorithms and technologies, or improving
existing ones [19, 20], or combining different ones [21]. It
is found that the hybrid strategy of the algorithm is worth
trying in many cases. This article mixes two algorithms,
WOA and QUATRE, and introduces the technology of
dynamically shrinking the search space. In the test of the
benchmark function, it is found that the hybrid algorithm
has made great progress.

As the key core technology of IoT, WSN has been
extended from military applications originally to a large
number of civil fields, such as environmental and ecological
protection, medical and health monitoring, agricultural
planting, traffic management, and logistics management
[22]. The main research contents of WSN include network
topology control and network protocol, node deployment
[23, 24], network security [25, 26], location technology, and
data fusion and data management. The development of
WSN also faces many challenges. For example, how to use
the limited communication ability to complete the transmis-
sion of sensing data needs further research. And how to max-
imize the service life of the network through low-power
design is also an urgent problem to be solved. This paper
introduces the optimization algorithm into the node location
problem of WSN and achieves satisfactory location accuracy.

The rest of this article is as follows: the second part is the
related research work, mainly for the brief introduction of
WOA and QUATRE; the third part discusses the combina-
tion and improvement strategy of the two algorithms in
detail; the fourth part is the statistics and analysis of experi-
mental data based on benchmark functions; the fifth part is
to use the algorithm to realize the location in WSN; and the
last part is the summary and outlook.

2. Related Works

2.1. Whale Optimization Algorithm (WOA).As ametaheuris-
tic optimization algorithm based on swarm intelligence,
WOA is exquisitely designed and full of characteristics. It
simulates the hunting behavior of humpback whale groups.
Inspired by this hunting method, WOA designed three
models: searching for prey, encircling prey, and bubble-net

attacking. First, initialize the position of each whale: X
!
=

ðx1, x2,⋯, xnÞ, which represents an n-dimensional candidate
solution. Through the cooperation of two stages of explora-
tion and exploitation, the best position is gradually found
(i.e., the optimal solution).

Three vectors appear in the algorithm: A
!
, C
!
and D

!
. A
!
and

C
!
are defined as follows:

A
!
= a!∙ 2 r! − 1

� �
, C

!
= 2 r! ð1Þ

where r! is a random vector between ½0, 1�. As the iteration
progresses, a! decreases linearly from 2 to 0. Therefore, A

!
∈

½−2, 2�, C! ∈ ½0, 2�. There is a random number prob ∈ ½0, 1�,
which is used to indicate the selection probability of the

updated mode. The random vector A
!
and the random num-

ber prob jointly control the conversion between exploration

and exploitation. Vector D
!

has different representations at
different stages. The operation symbol ð∙Þmeans multiplying
item by item, and j∙j means taking the absolute value.

(1) Exploration: searching mode
WOA’s exploration phase mimics the process of whales

searching for prey in the ocean. Use a randomly selected
search agent to update the solution. To achieve the goal of
global search, the search agent is forced to leave the reference
whale. The position update formula for exploration is as
follows:

D
!
= C

!
∙X
!

rand − X
!

tð Þ
��� ���,

X
!

t + 1ð Þ = X
!

rand − A
!
∙D
!��� ���:

8><
>: ð2Þ

X
!ðtÞ is the solution vector at the t − th iteration. X

!
rand

represents a random solution in the current population.

When prob < 0:5 and jA!j ≥ 1, Equation (2) will be used
to update the solution vector.

(2) Exploitation
The exploitation phase of WOA includes two modes:

encircling mode and bubble-net attacking mode.

2.1.1. Encircling Mode. Once humpback whales find their
prey, they surround them. Since the best position is
unknown, it is assumed that the current best solution is the
destination or the approximate best position. Other search
agents will update their position with reference to the current
optimal, as shown in Eq.(3):

D
!
= C

!
∙X∗�! tð Þ − X

!
tð Þ

��� ��� 
X
!

t + 1ð Þ = X∗�! tð Þ − A
!
∙D
!

8><
>: ð3Þ

X∗�!ðtÞ denotes the current optimal. When prob < 0:5
and jA!j < 1, the solution will be updated by the above
formula.

2.1.2. Bubble-Net Attacking Mode. Bubble-net attacking is the
most distinctive hunting method of humpback whales. In
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addition to swimming around prey, whales also move along a
spiral path. WOA creates a spiral equation to simulate
through the distance, as shown in the following formula:

D′
�!

= X∗�! tð Þ − X
!

tð Þ
��� ���,

X
!

t + 1ð Þ = D′
�!

∙ebl∙cos 2πlð Þ + X∗�! tð Þ:

8><
>: ð4Þ

Here, the distance between X
!ðtÞ and X∗�!ðtÞ is recorded as

D′
�!

, which can be understood as the distance between the
whale and its prey. The constant b is used to define the shape
of the logarithmic spiral. l is a random number between ½0, 1�.
When prob ≥ 0:5, Equation (4) will be used to generate a new
solution.

2.2. QUasi-Affine Transformation Evolutionary (QUATRE)
Algorithm. QUATRE is a coevolutionary algorithm based
on quasi-affine transformation. As a new structure of evo-
lutionary calculation, it can be used to solve the problem
of distributed bias in the DE algorithm. The evolution for-
mula is similar to the affine transformation, as shown
below:

X←M⨂X + �M ⊗ B: ð5Þ

Suppose there are ND-dimensional solution vectors Xi,
which constitute a population matrix: X = ðX1, X2,⋯,
Xi,⋯, XNÞT . There are two matrices: the donor matrix B
and the coevolutionary matrix M. The operator ⨂ repre-
sents the bitwise multiplication of matrix elements. M and
�M are mutually inverse matrices, and and they are both
binary matrices (matrix elements only take 0 or 1).

2.2.1. The Coevolutionary Matrix M. The QUTARE algo-
rithm considers that all search agents in the population have
the same status. By the cooperative structure, the search
agents cooperate with each other and share information.
The initialized matrix Minitial is constructed, and then,
through a series of transformations, the coevolutionary
matrix M is obtained.

There are three methods for constructing Minitial.
The specific choice depends on the size relationship
between the population size ps and the search space
dimension D. If ps =D, Minitial is a D-dimensional binary
lower triangular matrix, as shown in Equation (6). When
ps >D, Minitial needs to be expanded. If ps = p∙D, Minitial
is a matrix of pD-dimensional binary lower triangular
matrices stacked vertically. If ps = p∙D + q, the first p∙D
rows are handled according to the previous situation,
and the rest take the first q lines in Equation (6), as shown
in Equation (7). Next, M can be obtained after two steps
of transformation of Minitial. First, the elements of each
row in Minitial are randomly arranged. Then, the elements
of each row vector remain unchanged while their positions

in the matrix are randomly arranged. So we can get M,
see

Minitial =

1
1 1

⋯

1 1 ⋯ 1

2
666664

3
777775 ~

1 1
1 1 ⋯

⋯

1 ⋯ 1

2
666664

3
777775 =M: ð6Þ

Minitial =

1
1 1

⋯

1 1 ⋯ 1
1
1 1

⋯

1 1 ⋯ 1
1
1 1
⋯

2
666666666666666666666666664

3
777777777777777777777777775

~

1
1 ⋯ 1

1 ⋯

1 ⋯ 1
1
1 ⋯ 1

⋯

1 1 ⋯ 1
1 1
1 1

1

2
666666666666666666666666664

3
777777777777777777777777775

=M:

ð7Þ
2.2.2. The Donor Matrix B. The donor matrix B dominates
the way of evolution. Similar to the different mutation strat-
egies in DE, there are many ways to generate B. The mode
used here is called QUATRE/best/1, as shown in

Bi,G = Xgbest,G + F∙ Xr1,G − Xr2,Gð Þ: ð8Þ

Assume that the population matrix of the Gth generation
is XG = ðX1,G, X2,G,⋯, Xi,G,⋯, XN ,GÞT , which consists of
ND-dimensional candidate solutions Xi,G. Each Xi,G has
an evolution guide vector Bi,G corresponding to it. Xgbest,G
represents the best individual in the population. Xr1 and
Xr2 are generated by randomly arranging the row vectors of
XG. F ∈ ð0, 1� is the scaling factor.

3. The Hybrid Algorithms Based on WOA and
QUATRE (WOA-QT)

The metaheuristic algorithm has two basic elements: explora-
tion and exploitation. The task of exploration is to trial differ-
ent solutions in the search space and try to find the global
optimal. The task of the exploitation is to search in the local
scope and fully tap the optimization opportunities brought
by the current optimal. Ideally, if the two stages can cooper-
ate with each other and realize smooth transition, the local
optimum can be avoided and the optimal solution can be
found finally [27].

WOA has proved to be superior to some advanced
optimization algorithms, for example, PSO, DE, GSA, and
fast evolutionary programing (FEP) [28]. It provides multiple
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update modes and strives to balance the relationship between
exploration and exploitation. But inevitably, it still faces
many problems, such as how to further improve the explora-
tion ability, release the exploitation potential, and avoid local
optimization. Local optimal stagnation and slow convergence
are its two main disadvantages. In order to improve the abil-
ity to escape from the local optimum, this paper introduces
the QUATRE algorithm into WOA and use the strategy of
dynamically shrinking the search space to improve time effi-
ciency. In this part, we will analyze the causes of the problems
in detail and explain the relevant countermeasures.

3.1. The Combination of WOA and QUATRE. Although
WOA has two different exploitation models, both of them
are highly dependent on the current optimum. When the
problem is a multimodal function or a complex function,
there is a risk of falling into a local optimum. How to deal
with this situation requires careful consideration.

QUATRE is a coevolution algorithm, which uses matrix
mode calculation and concise parameters. From the point of
view of statistics and probability theory, the moving way of
individuals is more reasonable in the process of evolution. In
addition, the coevolutionary matrix in the algorithm can per-
ceive the structure of objective function more comprehen-
sively, whichmakes the search of solution spacemore effective.

Based on the above considerations, this paper proposes a
hybrid algorithm based onWOA and QUATRE. The specific
idea is to embed QUATRE in the exploitation stage of WOA.

The current optimal solution X∗�!ðtÞ plays an absolute dom-
inant role in both the encircling mode and the bubble-net
attacking mode. The QUATRE algorithm can be used to pre-
process the current optimal, and the effect is equivalent to
perturb the current optimal solution in accordance with
statistics and probability theory to make up for the lack of
randomness and diversity. The fusion method of the two
algorithms in the encircling mode is as follows:

XQ
�!

tð Þ =M⨂ X∗�! tð Þ + �M ⊗ B:

D
!
= C

!
∙XQ
�!

tð Þ − X
!

tð Þ
��� ���:

X
!

t + 1ð Þ = XQ
�! − A

!
∙D
!
:

8>>>><
>>>>:

ð9Þ

Here, the current optimal solution X∗�!ðtÞ is processed by
the QUATRE to get XQ

�!ðtÞ, which will replace X∗�!ðtÞ to
guide the position update of the encircling mode in the
exploitation stage.

Similarly, in the bubble-net attacking mode, the fusion of
the two algorithms is also performed, as shown in the follow-
ing formula:

XQ
�!

tð Þ =M⨂ X∗�! tð Þ + �M ⊗ B,

D′
�!

= XQ
�!

tð Þ − X
!

tð Þ
��� ���,

X
!

t + 1ð Þ = D′
�!

∙ebl∙cos 2πlð Þ + XQ
�!

tð Þ:

8>>>>><
>>>>>:

ð10Þ

XQ
�!ðtÞ replaces X∗�!ðtÞ to guide the position update of the

bubble-net attacking mode during the exploitation phase. In
the proposedWOA-QT, Equations (9) and (10) will still have
a 50% probability of being selected.

QUATRE has different mutation strategies, which empha-
size different focuses of search capabilities [29, 30]. The mode
QUATRE/best/1 is concise in form which only uses the
current optimal solution Xgbest,G and two randomly selected
solutions Xr1 and Xr2. Xgbest,G dominates the evolution of
the population, so that individuals with higher fitness values
can be fully utilized to perform good local search, and the con-
vergence speed is faster. Although the combination of the two
algorithms has increased the randomness of the population,
we choose QUATRE/best/1 as the mutation strategy to avoid
overcorrection. Therefore, both the population diversity is
ensured and the convergence speed is also taken into account.
Therefore, both the population diversity is ensured and the
convergence speed is also taken into account.

3.2. Strategy of Dynamically Shrinking Search Space (DSS).
The candidate solution should gradually approach the global
optimal solution. The general trend is that the size of search
space will decrease as the iteration progresses. However, the
search space of WOA is always the size at the time of initial-
ization. It is obviously unreasonable to roam randomly in
such a fixed-size space, which may cause delay in the optimi-
zation process. In this paper, we propose a mechanism to
dynamically shrink the search space, which is used in the
exploration phase of WOA. As the optimization proceeds,
the upper and lower limits of the selection range of the ran-
dom solution will change accordingly, so that the size of the
search space is gradually reduced, thereby improving search
efficiency. The specific method is as follows:

First define four variables: the upper limit of the newly
generated search space ub_new, the lower limit of the newly
generated search space lb_new, the largest solution compo-
nent of the current iteration ub_ max, and the smallest solu-
tion component of the current iteration lb_ min. The initial
values of the above variables are set according to the initial
size of the search space.

ubnew = ubnew + ubmax − ubnewð Þ ∗ t
max
iter

 !
, ð11Þ

lbnew = lbnew + lbmin − lbnewð Þ ∗ t
max
iter

 !
: ð12Þ

where t represents the current number of iterations and
max _iter is the maximum number of iterations. As the
iteration progresses, ub_new will decrease approximately
linearly according to Equation (11), and lb_new will increase
approximately linearly according to Equation (12). As a
result, the exploration scope is gradually reduced, and the
global optimum is constantly approached. The random solu-
tion in the exploration process is now generated from a
dynamically shrinking search space defined by ub_new and
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lb_new. And the contraction speed is not too fast, which can
effectively avoid local optimal stagnation.

3.3. Hybrid Algorithm WOA-QT. This section describes the
optimization steps of WOA-QT. The pseudo code is shown
in Pseudocode 1.

(1) Initialization: generate N individuals Xiði = 0, 1, 2,
3,⋯,NÞ randomly to form population X. Set initial values
to parameters in WOA and QUATRE. Specify the maximum
number of iterationsmax _iter and parameters related to the
size of the search space (including initial upper limit ub and
lower limit lb, the upper limit ub_new and lower limit lb_
new of search space after each iteration, the maximum
solution component ub_ max and minimum solution com-
ponent lb_ max of the current iteration).

(2) Evaluation: calculate each individual’s fitness value
f ðXiÞ. By comparing with each other, determine the indi-
vidual X∗ who currently has the best fitness value.

(3) Update: choose one of the modes to update the indi-
vidual’s position.

(i) Exploration: when prob < 0:5 and jAj ≥ 1 , use Equa-
tion ((2)) to update the solution. That is to select a random
solution Xrand in the current search space (between the upper
limit ub_new and lower limit lb_new ).

(ii) Exploitation

(A) When prob < 0:5 and jAj < 1, use Equation (9) to
update the solution. This is the WOA encircling
mode embedded with QUATRE

(B) B. When prob ≥ 0:5, use Equation (10) to update the
solution. This is the WOA bubble-net attacking
mode embedded with QUATRE

(4) Reevaluation: re-evaluate the population to find the
best individual X∗. And shrink the size of search space
according to the Equations (11) and (12).

(5) Termination: repeat steps (3) to (4). If a predefined
function value has been obtained or all iterations have been
completed, record the global optimal solution X∗ and its best
fitness value f ðX∗Þ. The optimization process ends here.

4. Experiment Results and Analysis

This part selects 30 benchmark functions for performance
evaluation, as shown in Tables 1, 2, and 3. Most of the bench-
mark functions come from literature [31], including three
categories: unimodal, multimodal, and fixed-dimension
complex functions. We also separately evaluate the perfor-
mance in solving low-dimensional and high-dimensional
problems. The selected unimodal functions and multimodal
functions are scalable functions covering low and high

Generate initial population X containing N individuals Xiði = 0, 1, 2, 3,⋯,NÞ.
Initialize the parameters related to the algorithm: a, r, b, prob, t, max_iter.
Initialize two matrices in QUATRE:
the coevolutionary matrix M (Eq. (6) or Eq. (7)).
the donor matrix B (Eq. (8)).

Initialize the parameters related to the search space size:
ub = ub_new=ub_max.
lb = lb_new= lb_min.

Calculate the fitness value of each solution.
X ∗ = the best individual.
While (t<max_iter) and (not obtain the predefined function value).
For each solution.
Update a, r, b, l, prob, M, B.

If1 (prob <0.5).
If2 (jAj < 1).

Update the position of the current solution using Eq. (9).
Else if2 (jAj ≥ 1).

Select a random solution Xrand.
Update the position of the current solution using Eq. (2).

End if2.
Else if1 (prob ≥ 0:5).

Update the position of the current solution using Eq. (10).
End if1.

End for.
Check if any solution goes beyond the search space and amend it.
Calculate the fitness value of each solution.
Update X ∗ if there is a better solution.
t= t+1.
Shrink the search space size using Eq. (11) and (12).

End while.
Return X ∗

Pseudocode 1: The pseudocode of the proposed WOA-QT.
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dimensions. All the experiments were compared among
WOA-QT, WOA, and QUATRE. Each algorithm runs
independently 40 times. The specific experimental scheme
is as follows.

4.1. Experiments for Low-Dimensional Unimodal and
Multimodal Functions. First, the low-dimensional unimodal
functions and multimodal functions are tested, and the
dimension is set to 30. The comparative indicators we
selected include the minimum (i.e., optimal value), medium,
maximum, mean, and standard deviation values of each
experiment. Figure 1 shows the convergence curve of each
function.

In the test of 10 unimodal functions, we can see that
WOA-QT has achieved the first place in the comparison of
the optimal values for 9 times (F1-F6, F8-F10). Compared
with the other two algorithms, WOA-Q’s optimization
accuracy and convergence speed have been significantly
improved, showing excellent local search capabilities. In
addition, WOA-QT also has an absolute advantage in the
comparison of other statistical data, which shows that its per-
formance stability is far better than WOA and QUATRE.

From the experimental results of 10 multimodal func-
tions, we can see that WOA-QT has an absolute advantage
in the ranking of all indicators. This shows that it can effec-
tively avoid falling into the local optimal.

4.2. Experiments for High-Dimensional Unimodal and
Multimodal Functions. This experiment continues to use

the test functions from the previous section but expand the
dimension to 500. The conclusion of this experiment is basi-
cally consistent with that of the last one. The WOA-QT still
maintains good performance in high-dimensional situations.
Please see Figure 2 for the function convergence curves.

4.3. Experimental Results of Fixed-Dimension Complex
Function. We also tested 10 fixed-dimension complex func-
tions. It is found that the comprehensive performance of
WOA-QT is still the best of the three. Figure 3 shows the
function convergence curves obtained in this experiment.

4.4. Analysis of Experiment Results. In this paper, different
types of benchmark functions are selected for testing for the
sake of the scientificity and fairness of evaluation. It also
examines the algorithm’s ability to solve scalable dimensional
problems.

When solving the unimodal problem, WOA-QT embodies
the outstanding local exploitation ability. In the face of multi-
modal problems, it can well avoid falling into local optimum.
Both optimization accuracy and speed benefit greatly from
the effective hybrid mechanism of the two algorithms. In addi-
tion, when the dimension of the problem space expands or
shrinks, or when the problem is gradually complicated and
the amount of calculation increases suddenly, WOA-QT still
maintains reliable optimization performance, especially with a
satisfactory convergence speed. The high time efficiency proves
the effectiveness of the DSS strategy.

Table 1: Details of 10 unimodal functions.

Functions DIMENSION RANGE f _ min

F1 xð Þ = 〠
n

i=1
x2i 30,500 100, 100½ � 0

F2 xð Þ = 〠
n

i=1
ix2i 30,500 −10, 10½ � 0

F3 xð Þ = 〠
n

i=1
xj j +Πn

i+1 30,500 −10, 10½ � 0

F4 xð Þ = 〠
n

i=1
〠
i

j−1
x2j

 !
30,500 100,100½ � 0

F5 xð Þ =maxi xij j, iϵ 1,m½ �f g 30,500 100,100½ � 0

F6 xð Þ = 〠
n−1

i=1
100 xx+1 − x2i
� �

+ xi − 1ð Þ2� 	
30,500 −30, 30½ � 0

F7 xð Þ = 〠
n−1

i=1
xi + 0:5ð Þ2 30,500 100,100½ � 0

F8 xð Þ = 〠
n

i=1
ix4 30,500 −1:28,1:28½ � 0

F9 xð Þ = 〠
n

i=1
ix4 + rand 0, 1½ Þ 30,500 −1:28,1:28½ � 0

F10 xð Þ = 〠
n

i=1
∣ x2i ∣ 30,500 −1, 1½ � 0
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5. Node Location in WSN

WSN, RFID, cloud computing, and wireless data communi-
cation, etc., together constitute the technical foundation of
IoT. Among them, WSN is not only an important informa-
tion collection subject of the perceptual layer of IoT but also
a basic transmission channel of the network layer.WSN plays
a vital role in how to realize the intelligent perception, trans-
mission, processing, and application of data in IoT. There are
many research topics in WSN, among which node location
has always been a research hotspot. Because the monitoring
data with unknown location information is usually meaning-
less, and the location problem is the basis and premise of
most applications, the performance of the sensor node loca-
tion algorithm directly affects its usability. The commonly
used evaluation indicators include location accuracy, scale,
node density, and power consumption. This paper uses the
proposed WOA-QT algorithm to solve the node location
problem in WSN. Specifically, it is to intelligentize the node
location algorithm to further improve the positioning
accuracy.

Although there are many node location algorithms, they
can be classified into range-based and range-free. Range-

based location algorithm calculates the position of unknown
nodes by measuring distance or angle information. Com-
monly used ranging technologies include Time of Arrival
(TOA), Time Difference of Arrival (TDOA), Received Signal
Strength of Indicator (RSSI), and Angle of Arrival (AOA).
Range-free localization algorithm only determines the node
position according to the connectivity of the network and
other information without knowing the distance or angle.
The commonly used methods are convex programming,
DV-hop, centroid location algorithm, and so on.

Different location algorithms have their own advantages
and disadvantages. The location algorithm used in this paper
integrates RSSI ranging and weighted centroid positioning
algorithms (WCL_RSSI), which can improve positioning
accuracy to a certain extent. To meet the requirements of
further reducing the positioning error, this paper uses the
proposed WOA-QT algorithm to optimize WCL_RSSI.

5.1. RSSI Ranging Technology. The principle of the RSSI rang-
ing method is to convert the strength of the received wireless
signal energy into the distance between the nodes, and then
use it to estimate the location of the unknown node. Because
no additional hardware is required, and the cost and power

Table 2: Details of 10 multimodal functions.

Functions DIMENSION RANGE f _ min

F11 xð Þ = 1 − cos 2Π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
〠
n

i=1
x2i

 !vuut
0
@

1
A + 0:1

ffiffiffiffiffiffiffiffiffiffi
〠
n

i=1
x2i

s
30,500 −100,100½ � 0

F12 xð Þ = 〠
n

i=1
x2i − 10 ∗ cos 2πxið Þ + 10
� 	

30,500 −5:12,5:12½ � 0

F13 xð Þ = −208 exp −0:2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
m
〠
n

i

x2i

s !
− exp 1

m
〠
n

i=1
cos 2πxið Þ + 20 + 2:718

 !
30,500 −32, 32½ � 0

F14 xð Þ = 1
4000 + 〠

n

i=1
x2i −Πn

i=1 cos
xiffiffi
i

p
� �

+ 1 30,500 −600,600½ � 0

F15 xð Þ = π
n ∗ 10 ∗ sin πy1ð Þ + ∑

n−1

i−1
yi − 1ð Þ2 1 + 10 ∗ sin2 πyi+1ð Þ� 	 �

yi = 1 + xi + 1
4 ∗ u zi, a, k,mð Þ =

k xi − að Þ, x > a

0,−a < xi < a

k −xi − að Þ, x > a

8>><
>>:

30,500 −50, 50½ � 0

F16 xð Þ = 〠
n

i=1
∣ xi sin xið Þ + 0:1xi ∣ 30,500 −100,100½ � 0

F17 xð Þ = 0:59 +
sin2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑n

i=1x
2
i

� �q� �−0:5
1 + 0:0001 ∑n

i=1x
2
4

� � 30,500 −100,100½ � 0

F18 xð Þ = 〠
n

i=1
0:1n − 0:1〠

n

i=1
cos 5πxið Þ − 〠

n

i=1
xi − πð Þ2

 !
30,500 −10, 10½ � 0

F19 xð Þ = 〠
n−1

i=1
0:1n x2i + x2x+1

� �0:25 × 1 + sin2 50 x2i + x2x+1
� �

∧ 0:1ð Þ� �� 	
30,500 −1, 1½ � 0

F20 xð Þ = 〠
n

i=1
106
� � i−1

n−1x2i 30,500 −10, 10½ � 0
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consumption are relatively low, the RSSI method is widely
used, especially for large-scale WSN node location problems.
However, environmental factors such as distance and obsta-
cles will have a great impact on the transmission of wireless
signals, resulting in severe attenuation of the signal’s power
strength. This paper selects the log-distance distribution
model as the distance measurement model of wireless signal
propagation path loss, as shown below:

RSSI dð Þ = RSSI d0ð Þ − 10γlg d
d0

� �
+ Xσ: ð13Þ

Assuming that the distance between the node to be
located and the signal source is d, RSSIðdÞ indicates the signal
strength received by the node; d0 is the reference distance,
generally 1m; γ is the path loss factor that reflects the influ-
ence of the environment on signal transmission. The more
obstacles in the transmission path, the greater the value
of γ; Xσ is a random variable, obeying normal distribu-
tion: Xσ ~Nðμ, σ2Þ. By Equation (13), the distance d can
be obtained: d = 10ðRSSIðd0Þ−RSSIðdÞ+Xσ/10γÞ.

There are K beacon nodes in the target area: Siðxi, yiÞ,
i = 1, 2,⋯, K . Nðx, yÞ is the unknown node. If the distance
between N and Si is too far, the signal power will be greatly
attenuated, which will seriously affect the location accuracy.

Generally speaking, the unknown node and the beacon
node are not directly connected, and there may be several
intermediate nodes between the two. Therefore, it can be
considered that RSSI starts from the beacon node Si and
is finally transmitted to the unknown node N in a relay
manner. The distance of the connection path between the
two is recorded as Di. If M intermediate nodes are passed,
thenDi =∑M+1

l=1 dr, where dr can be obtained by Equation (13).
In order to convert Di to the Euclidean distance ρi

between N and Si, this requires knowing the approximate
proportional relationship between the two distances. Assume
that the connection distance between two beacon nodes Si
and Sj is Di,j (can be obtained by RSSI ranging), and the
Euclidean distance is

di,j =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xj − xi
� �2 + yj − yi

� �2r
: ð14Þ

We define αi as the path scale factor of the beacon
node Si, as shown below:

αi = 〠
K

j=1,j≠i
Di,j/di,j
� �

: ð15Þ

Table 3: Details of 10 fixed-dimension complex functions.

Functions DIMENSION RANGE f _ min

F21 xð Þ = 〠
5

i=1
i ∗ cos i + 1ð Þð x1 + i

 !
∗ 〠

5

i=1
i ∗ cos i + 1ð Þx2ð Þ + i

 !
2 −5:12,5:12½ � −186:7309

F22 xð Þ = 〠
11

i=1
ai −

x1 b2i + bix2
� �

b2i + bix3 + x4

" #2
4 −5, 5½ � 0:0003

F23 xð Þ = −
1 + cos 12

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x21 + x22

p� �
0:5 x21 + x22
� �

+ 2
2 −5:12,5:12½ � −1

F24 xð Þ = x2 −
5:1
4π2 x

2
1 +

5
π
x1 − 6

� �2
+ 10 1 − 1

8π

� �
cos x1 + 10 2 −5, 5½ � 0:398

F25 xð Þ = 1 + x1 + x2 + x3ð Þ2 ∗ 19 − 14x1 + 3x21 − 14x2 + 6x1x2 + 3x22
� �� 	

× 18 − 32x1 + 12x21 + 48x2 − 36x1x2 + 27x22
� � 2 −2, 2½ � 3

F26 xð Þ = −0:0001 sin x1ð Þ sin x2ð Þ exp 100 −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x21 + x22

p
π

�����
�����

 !�����
����� + 1

 !0:1

2 −10, 10½ � −2:0626

F27 xð Þ = −0:0001 cos x1ð Þ cos x2ð Þ exp 100 −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x21 + x22

p
π

�����
�����

 !�����
����� + 1

 !0:1

2 −10, 10½ � −2:0626

F28 xð Þ = −〠
5

i=1
X − aið Þ X − aið ÞT + ci

h i−1
4 0, 10½ � −10:1532

F29 xð Þ = −〠
7

i=1
X − aið Þ X − aið ÞT + ci

h i−1
4 0, 10½ � −10:4028

F30 xð Þ = −〠
10

i=1
X − aið Þ X − aið ÞT + ci

h i−1
4 0, 10½ � −10:5363
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Obviously, the distance ρi can be obtained with the
following formula:

ρi =Di/αi: ð16Þ

5.2. Weighted Centroid Location Algorithm Based on RSSI
(WCL_RSSI). It is not hard to see, if only relying on RSSI
ranging to locate, the accuracy is poor. Therefore, a
weighted centroid location algorithm (WCL) based on
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Figure 1: The convergence curves of 30-dimensional functions (F1-F20).
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RSSI has emerged. The ordinary centroid location algo-
rithm considers that all beacon nodes have equal status.
In fact, different beacon nodes have different influences
on the location of unknown nodes. The WCL algorithm

is to reflect the degree of influence of each beacon node
on the position of the centroid (i.e., the unknown node)
through the weight factor. The triangle centroid position-
ing algorithm is used here. The pairwise distance between
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Figure 2: The convergence curves of 500-dimensional functions (F1-F20).
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the unknown node and the three beacon nodes is recorded
as (ρ1, ρ2, and ρ3), which are used to construct the weight
coefficient. The relevant formulas are as follows:

xl =
x1/ ρ1 + ρ2ð Þ + x2/ ρ2 + ρ3ð Þ + x3/ ρ1 + ρ3ð Þ
1/ ρ1 + ρ2ð Þ + 1/ ρ2 + ρ3ð Þ + 1/ ρ1 + ρ3ð Þ ,

yl =
y1/ ρ1 + ρ2ð Þ + y2/ ρ2 + ρ3ð Þ + y3/ ρ1 + ρ3ð Þ
1/ ρ1 + ρ2ð Þ + 1/ ρ2 + ρ3ð Þ + 1/ ρ1 + ρ3ð Þ :

ð17Þ

S1ðx1, y1Þ, S2ðx2, y2Þ, and S3ðx3, y3Þ represent three
beacon nodes, and the coordinate of the centroid of the
triangle enclosed by them is the position of unknown
nodes Nlðxl, ylÞ.

WCL_RSSI has the advantages of low computational
complexity, simple implementation and high location accu-
racy. Moreover, the location process is less affected by the
change of the transmission environment and does not
require interaction between nodes [32].

5.3. Apply the Proposed WOA-QT Algorithm to WCL_RSSI.
This article uses WOA-QT to improve WCL_RSSI in order
to obtain the node position with higher accuracy. In the
two-dimensional plane, the solution of the WOA-QT corre-
sponds to the candidate position coordinates of the unknown
node, which is denoted as Nlðx, yÞ. The Euclidean distance

between Nlðx, yÞ and the beacon node Siðxi, yiÞ is do =ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx − xiÞ2 + ðy − yiÞ2

q
. Nlðxw, ywÞ represents the location of

unknown node estimated by the WCL_RSSI. Similarly, the

distance between Nlðxw, ywÞ and Siðxi, yiÞ is dw =ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxw − xiÞ2 + ðyw − yiÞ2

q
. Obviously, there is a deviation

between do and dw. It should be noted that the connection
path between the unknown node and the beacon node has
a great influence on the location accuracy. The greater the
number of hops, the smaller the positioning error tends to
be. The weight of hops needs to be considered when
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Figure 3: The convergence curves of fixed-dimension functions (F21-F30).
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measuring the distance error. Therefore, the evaluation func-
tion f ðx, yÞ is as follows:

f x, yð Þ =min

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
K
〠
K

i=1

do − dw
hopi

� �2
vuut

0
@

1
A: ð18Þ

There are K beacon nodes. The hop number between the
beacon node Si and the unknown node is recorded as hopi.
Equation (18) expresses the optimization goal, that is, to
minimize the root mean square error of the difference
between the two distances.

5.4. Simulation Results. Assume that in a two-dimensional
area of 1000m × 1000m, 60 beacon nodes are deployed,
and the positions of 240 unknown nodes are to be deter-

mined. The communication radius of sensor node is 15
meters, and the maximum number of iterations of the algo-
rithm is 400. Table 4 lists the average distance error between
the unknown node position estimated by each algorithm and
the true position. The simulation experiment involves five
algorithms. Simulation results show that WCL_RSSI based
on WOA-QT has the smallest error, and the positioning
accuracy is improved obviously. In order to visualize the
positioning error, Figure 4 marks the distance deviation
between the estimated position of each unknown node and
its true position.

6. Conclusion

AI and IoT are compatible and symbiotic, who are born to be
the best partner. They have broken through the bottlenecks
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Figure 4: The comparison of location errors. (a) PSO andWOA-QT. (b) QUATRE andWOA-QT. (c) WOA andWOA-QT. (d) WCL based
on RSSI and WOA-QT.

Table 4: The average distance error of each algorism.

WOA-QT(WCL_RSSI) PSO(WCL_RSSI) WOA(WCL_RSSI) QUATRE(WCL_RSSI) WCL_RSSI

20.7632 23.315 22.7465 22.6332 24.9505
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of their respective parallel developments, enabling high-
frequency resonance and coordinated development.

In this paper, the optimization algorithm in AI is used to
solve the node location problem in WSN which is the key
technology of IoT. There are two optimization algorithms
involved: WOA and QUATRE. WOA is derived from natural
wisdom, and the QUARTRE has the beauty of mathematics.
The two algorithms utilize each other and work closely
together to form an organic whole. The overall optimization
performance is much better than that when the two are sep-
arated. The potential of local exploitation is further tapped
through the mutual fusion, so that the local stagnation is
effectively avoided in the process of searching for the global
optimal. Although algorithm hybridization will inevitably
bring more calculations, but with the cooperation of the
two algorithms and the DSS strategy, the time efficiency of
the algorithm has not been affected, and even better in many
cases. So the increase in complexity of this algorithm is
worthwhile. With the help of optimization technology, the
node location accuracy of WSN has been significantly
improved. It can be said that a successful AIoT case with
application value is realized.

The QUATRE algorithm has many variants. When com-
bined with other algorithms, we can consider how to choose
different variants adaptively [33]. In addition, the complexity
caused by algorithm hybridization can be considered to use
surrogate-assisted technology to ease [34, 35]. In the field of
WSN, there are many challenging problems that need to be
overcome [36, 37]. It can be combined with other AI technol-
ogies such as machine learning [38–40] to promote the birth
of more application scenarios of AIoT.
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1. 30 well-known benchmark functions. 2. Random position
location of sensor nodes by computers.

Conflicts of Interest

The authors declare no conflict of interest.

References

[1] J. Gubbi, B. Rajkumar, M. Slaven, and P. Marimuthu, “Internet
of Things (IoT): A vision, architectural elements, and future
directions,” Future Generation Computer Systems, vol. 29,
no. 7, pp. 1645–1660, 2013.

[2] A. Triantafyllou, P. Sarigiann, and T. D. Lagkas, “Network
Protocols, Schemes, and Mechanisms for Internet of Things
(IoT): Features, open Challenges, and Trends,” Wireless Com-
munications and Mobile Computing, vol. 2018, Article ID
5349894, 24 pages, 2018.

[3] K. Deb, A. Samir, P. Amrit, and T. Meyarivan, “A fast and
elitist multiobjective genetic algorithm: NSGA-II,” IEEE
Transactions on Evolutionary Computation, vol. 6, no. 2,
pp. 182–197, 2002.

[4] K. V. Price, Differential Evolution, Springer, Berlin, Heidelberg,
2013.

[5] J. Kennedy and R. Eberhart, “Particle swarm optimization,” in
Proceedings of ICNN'95-International Conference on Neural
Networks, Perth, Australia, November 1995.

[6] D. Karaboga and C. Ozturk, “A novel clustering approach:
artificial bee colony (ABC) algorithm,” Applied Soft Comput-
ing, vol. 11, no. 1, pp. 652–657, 2011.

[7] P. W. Tsai, M. K. Khan, J.-S. Pan, and B. Y. Liao, “Interactive
artificial bee colony supported passive continuous authentica-
tion system,” IEEE Systems Journal, vol. 8, no. 2, pp. 395–405,
2014.

[8] S.-C. Chu, P. W. Tsai, and J.-S. Tsai, “Cat swarm optimiza-
tion,” in Pacific Rim international conference on artificial intel-
ligence, Springer, Berlin, Heidelberg, August, 2006.

[9] P. W. Tsai, J.-S. Pan, S. M. Chen, and B. Y. Liao, “Enhanced
parallel cat swarm optimization based on the Taguchi
method,” Expert Systems with Applications, vol. 39, no. 7,
pp. 6309–6319, 2012.

[10] S. Mirjalili and A. Lewis, “The whale optimization algorithm,”
Advances in Engineering Software, vol. 95, no. 5, pp. 51–67,
2016.

[11] J.-S. Pan, J.-L. Liu, and E.-J. Liu, “Rank-based whale optimiza-
tion algorithm for solving parameter optimization of solar
cells,” International Journal of Modeling and Optimization,
vol. 9, no. 4, pp. 209–215, 2019.

[12] A. E. Ezugwu and D. Prayogo, “Symbiotic organisms search
algorithm: theory, recent advances and applications,” Expert
Systems with Applications, vol. 119, pp. 184–209, 2019.

[13] S.-C. Chu, Z. G. Du, and J.-S. Pan, “Symbiotic Organism
Search Algorithm with Multi-Group Quantum-Behavior
Communication Scheme Applied in Wireless Sensor Net-
works,” Applied Sciences, vol. 10, no. 3, p. 930, 2020.

[14] H. Abdolreza, “Black hole: a new heuristic optimization
approach for data clustering,” Information Sciences, vol. 222,
pp. 175–184, 2013.

[15] J.-S. Pan, Q. W. Chai, S.-C. Chu, and N. X. Wu, “3-D Terrain
Node Coverage of Wireless Sensor Network Using Enhanced
Black Hole Algorithm,” Sensors, vol. 20, no. 8, p. 2411, 2020.

[16] Z. Y. Meng, J.-S. Pan, and H. Xu, “QUasi-Affine TRansforma-
tion evolutionary (QUATRE) algorithm: a cooperative swarm
based algorithm for global optimization,” Knowledge-Based
Systems, vol. 109, pp. 104–121, 2016.

[17] Z. Y. Meng and J.-S. Pan, “QUasi-Affine TRansformation evo-
lution with external ARchive (QUATRE-EAR): an enhanced
structure for differential evolution,” Knowledge-Based Systems,
vol. 155, pp. 35–53, 2018.

[18] D. H. Wolpert and W. G. Macready, “No free lunch theorems
for optimization,” IEEE Transactions on Evolutionary Compu-
tation, vol. 1, no. 1, pp. 67–82, 1997.

[19] T. T. Nguyen, J.-S. Pan, and T. K. Dao, “An improved flower
pollination algorithm for optimizing layouts of nodes in wire-
less sensor network,” IEEE Access, vol. 7, pp. 75985–75998,
2019.

[20] J.-S. Pan, P. Hu, and S.-C. Chu, “Novel parallel heterogeneous
meta-heuristic and its communication strategies for the pre-
diction of wind power,” PRO, vol. 7, no. 11, pp. 845–868, 2019.

[21] P. Hu, J.-S. Pan, S.-C. Chu, Q. W. Chai, T. Liu, and Z. C. Li,
“New Hybrid Algorithms for Prediction of Daily Load of
Power Network,” Applied Sciences, vol. 9, no. 21, p. 4514, 2019.

[22] J.-S. Pan, P. C. Song, S.-C. Chu, and Y. J. Peng, “Improved
Compact Cuckoo Search Algorithm Applied to Location of
Drone Logistics Hub,”Mathematics, vol. 8, no. 3, p. 333, 2020.

13Wireless Communications and Mobile Computing



[23] M. Rout and R. Roy, “Optimal wireless sensor network infor-
mation coverage using particle swarm optimisation method,”
International Journal of Electronics Letters, vol. 5, no. 4,
pp. 491–499, 2016.

[24] T.-W. Sung and C.-S. Yang, “Distributed Voronoi-based self-
redeployment for coverage enhancement in a mobile direc-
tional sensor network,” International Journal of Distributed
Sensor Networks, vol. 9, no. 11, Article ID 165498, 2016.

[25] S.-C. Chu, T. K. Dao, and J.-S. Pan, “Identifying correctness
data scheme for aggregating data in cluster heads of wireless
sensor network based on naive Bayes classification,” EURASIP
Journal on Wireless Communications and Networking,
vol. 2020, no. 1, pp. 1–15, 2020.

[26] T. K. Dao, T. T. Nguyen, J.-S. Pan, Y. Qiao, and Q.-A. Lai,
“Identification failure data for cluster heads aggregation in
WSN based on improving classification of SVM,” IEEE Access,
vol. 8, pp. 61070–61084, 2020.

[27] P. W. Tsai and C.-W. Chen, “Review on swarm intelligence for
optimization,” Computing Science and Technology Interna-
tional Journal, vol. 2, no. 1, pp. 13–17, 2014.

[28] X. Yao, Y. Liu, and G. Lin, “Evolutionary programming made
faster,” IEEE Transactions on Evolutionary Computation,
vol. 3, no. 2, pp. 82–102, 1999.

[29] S. Das, S. S. Mullick, and P. N. Suganthan, “Recent advances in
differential evolution –An updated survey,” Swarm and Evolu-
tionary Computation, vol. 27, pp. 1–30, 2016.

[30] Q. Fan, X. F. Yan, and Y. Xue, “Prior knowledge guided
differential evolution,” Soft Computing, vol. 21, no. 22,
pp. 6841–6858, 2016.

[31] S. Gupta, K. Deep, S. Mirjalili, and J. H. Kim, “A modified sine
cosine algorithm with novel transition parameter and muta-
tion operator for global optimization,” Expert Systems with
Applications, vol. 154, article 113395, 2020.

[32] J. Wang, P. Urriza, Y. X. Han, and D. Cabric, “Weighted
centroid localization algorithm: theoretical analysis and dis-
tributed implementation,” IEEE Transactions on Wireless
Communications, vol. 10, no. 10, pp. 3403–3413, 2011.

[33] S. L. Wang, T. F. Ng, and F. Morsidi, “Self-adaptive ensemble
based differential evolution,” International Journal of Machine
Learning and Computing, vol. 8, no. 3, pp. 286–293, 2018.

[34] C. L. Sun, Y. C. Jin, R. Cheng, J. L. Ding, and J. C. Zeng,
“Surrogate-assisted cooperative swarm optimization of
high-dimensional expensive problems,” IEEE Transactions
on Evolutionary Computation, vol. 21, no. 4, pp. 644–660,
2017.

[35] S. F. Qin, C. L. Sun, Y. C. Jin, and G. C. Zhang, “Bayesian
approaches to surrogate-assisted evolutionary multi-objective
optimization: a comparative study,” in 2019 IEEE Symposium
Series on Computational Intelligence (SSCI), Xiamen, China,
December 2019.

[36] V. Sadhu, X. Y. Zhao, and D. Pompili, “Energy-efficient analog
sensing for large-scale and high-density persistent wireless
monitoring,” IEEE Internet of Things Journal, vol. 7, p. 1, 2020.

[37] M. T. Lazarescu, “Design of a WSN platform for long-term
environmental monitoring for IoT applications,” IEEE Journal
on Emerging and Selected Topics in Circuits and Systems, vol. 3,
no. 1, pp. 45–54, 2013.

[38] M. A. Alsheikh, S. W. Lin, D. Niyato, and H.-P. Tan, “Machine
learning in wireless sensor networks: algorithms, strategies,
and applications,” IEEE Communications Surveys & Tutorials,
vol. 16, no. 4, pp. 1996–2018, 2019.

[39] K. Thangaramya, K. Kulothungan, R. Logambigai, M. Selvi,
S. Ganapathy, and A. Kannan, “Energy aware cluster and
Neuro-fuzzy based routing algorithm for wireless sensor net-
works in IoT,” Computer Networks, vol. 151, pp. 211–223,
2019.

[40] L. F. Gou, H. H. Li, H. Zheng, H. C. Li, and X. X. Pei, “Aeroen-
gine control system sensor fault diagnosis based on CWT and
CNN,” Mathematical Problems in Engineering, vol. 2020,
Article ID 5357146, 12 pages, 2020.

14 Wireless Communications and Mobile Computing


	A Node Location Method in Wireless Sensor Networks Based on a Hybrid Optimization Algorithm
	1. Introduction
	2. Related Works
	2.1. Whale Optimization Algorithm (WOA)
	2.1.1. Encircling Mode
	2.1.2. Bubble-Net Attacking Mode

	2.2. QUasi-Affine Transformation Evolutionary (QUATRE) Algorithm
	2.2.1. The Coevolutionary Matrix M
	2.2.2. The Donor Matrix B


	3. The Hybrid Algorithms Based on WOA and QUATRE (WOA-QT)
	3.1. The Combination of WOA and QUATRE
	3.2. Strategy of Dynamically Shrinking Search Space (DSS)
	3.3. Hybrid Algorithm WOA-QT

	4. Experiment Results and Analysis
	4.1. Experiments for Low-Dimensional Unimodal and Multimodal Functions
	4.2. Experiments for High-Dimensional Unimodal and Multimodal Functions
	4.3. Experimental Results of Fixed-Dimension Complex Function
	4.4. Analysis of Experiment Results

	5. Node Location in WSN
	5.1. RSSI Ranging Technology
	5.2. Weighted Centroid Location Algorithm Based on RSSI (WCL_RSSI)
	5.3. Apply the Proposed WOA-QT Algorithm to WCL_RSSI
	5.4. Simulation Results

	6. Conclusion
	Data Availability
	Conflicts of Interest

