Research Article
SIC-Coding Schemes for Underlay Two-Way Relaying Cognitive Networks

Pham Ngoc Son,1 Tran Trung Duy,2 and Khuong Ho-Van3,4
1Ho Chi Minh City University of Technology and Education, Ho Chi Minh City, Vietnam
2Posts and Telecommunications Institute of Technology, Ho Chi Minh City, Vietnam
3Ho Chi Minh City University of Technology (HCMUT), Ho Chi Minh City, Vietnam
4Vietnam National University Ho Chi Minh City, Ho Chi Minh City, Vietnam

Correspondence should be addressed to Pham Ngoc Son; sonpndtvt@hcmute.edu.vn
Received 22 March 2020; Revised 14 July 2020; Accepted 30 July 2020; Published 24 August 2020

In this paper, we propose an underlay two-way relaying scheme with the successive interference cancellation (SIC) solution in which two secondary sources transmit simultaneously their data to each other through secondary relays. The proposed scheme is operated in only two time slots and under an interference constraint of a primary receiver, denoted as the UTW-2TS scheme. In the UTW-2TS scheme, the secondary relays employ the SIC operation to decode successively the data from received broadcast signals and then encode these data by two techniques: digital network coding (DNC) enforced by XOR operations (denoted as the UTW-2TS-DNC protocol) and superposition coding (SC) enforced by power domain additions (denoted as the UTW-2TS-SC protocol). A selected secondary relay which subjects to maximize decoding capacities and to minimize collection time of channel state information in two protocols UTW-2TS-DNC and UTW-2TS-SC experiences residual interferences from imperfect SIC operations. Outage probabilities and throughputs are solved in terms of exact closed-form expressions to evaluate the system performance of the proposed protocols. Simulation and analysis results provide performance enhancement of the proposed protocols UTW-2TS-DNC and UTW-2TS-SC owing to increase the number of the cooperative secondary relays, the interference constraints, and the distances from the secondary network to the primary receiver. The best throughputs are pointed at optimal interference power allocation coefficients and optimal locations of the selected secondary relay. Considering the same power consumption, the UTW-2TS-DNC protocol outperforms the UTW-2TS-SC protocol. Finally, the simulation results are collected to confirm the exact analysis values of the outage probabilities and throughputs.

1. Introduction

In recent years, the radio spectrum has become scarce due to the increasing bandwidth demand for mobile multimedia services and the explosive development of next-generation wireless networks such as wireless sensor networks, Internet of Things (IoT), and fifth-generation (5G) networks. On the other hand, the utilization of the licensed frequency spectrum versus time and space is low [1]. In this context, cognitive radio was proposed as an effective spectrum sharing solution in which secondary users (SUs) coexist with primary users (PUs) [2]. The SUs can operate flexibly and intelligently in (interweave, overlay, and underlay) protocols to access the licensed frequency spectra of the PUs as long as quality of service (QoS) of the primary network is maintained [3, 4]. In the interweave cognitive radio [5], the SUs use spectrum sensing methods to detect the unoccupied spectra to avoid interference to the PUs. In an opposite way, the SUs in the overlay and underlay methods can access the licensed bands at the same time with the PUs [6–9]. The overlay approach requires the cooperation between the SUs and the PUs; i.e., the secondary transmitters have to combine the data of the SUs and the PUs and then send the combined data to the intended secondary and primary receivers [6]. The SUs in the underlay approach can access the spectra at any time provided that the interferences affected on the PUs must be below a tolerable interference level [7–9]. Based on the required QoS, the PUs can calculate the tolerable interference
level and send it to the secondary network so that the SUs can appropriately adjust their transmit powers.

Two-way communication networks have been much interested in switching data between interactive users in which many research studies have been launched to enhance performance [10]. Two-way cooperation solutions investigated in [10] have great attractions owing to increase significantly spectrum utilization efficiency. The operation of two-way relaying is to exchange data between users with the help of other intermediate users as amplify-and-forward (AF) and decode-and-forward (DF) devices, denoted as relays. In [11], an optimum relay is selected to decode received signals from the transmit users, mix these data by XOR operation, and then broadcast back to both users. The operation of the optimum relay in [11] is named as digital network coding (DNC).

1.1. Related Work and Motivation. Proposals for increasing performance in the underlay two-way relaying networks have been studied in [12–18]. The authors in [12] combined DNC and opportunistic relay selection (ORS) to decrease the outage performance of the secondary two-way relaying network under the interference constraint required by the primary receiver. Moreover, the best relay selection strategy in the third time slot, which follows a max-min criterion, was proposed in [12] to significantly increase the system outage probabilities, as compared with the traditional DNC approach [12]. By expanding the published work [12], Toan et al. in [13, 14] analyzed the performance of the underlay two-way relaying communication systems with the presence of multiple primary receivers. The authors in [15] evaluated the outage probabilities and symbol error probabilities of many primary one-way networks and a secondary two-way network operating on both the independent and identically distributed (i.i.d.) and independent but nonidentically distributed (i.i.d.) Nakagami-m fading channels. Imperfect channel state information (CSI) from the SUs to the PUs have been included in probability analyses [16]. The authors exploited both the direct and relaying links with appropriate diversity combinations in an underlay three-phase two-way scheme [17]. In [18], the authors considered an underlay wiretap cognitive two-way relaying network in which two SUs exchange their messages via multiple secondary DF relays in the presence of an eavesdropper. In [18], DNC, ORS, and artificial noises were used to mitigate eavesdropping attacks. However, above investigations perform on three orthogonal time slots, and hence, the bandwidth utilization efficiency is only 2/3 (two data per three time slots). This motivates us to propose new two-way relaying approaches for the underlay cognitive radio network, where only two time slots are used to obtain the data rate of 2/2.

In [19], the authors applied successive interference cancellation (SIC) technique to sequentially decode signals received from multiple sources. With SIC, the spectral efficiency of the two-way relaying systems is improved because the number of time slots decreases. Indeed, SIC is one of the core technologies in nonorthogonal multiple access (NOMA) systems which can assign nonorthogonal resources such as power, time, and code to different users [20]. For the NOMA systems operating in the power domain, multiple transmit signals that are allocated with different transmit powers are merged by the superposition coding (SC) before they are sent to intended receivers. At each receiver, the signal with higher transmit power is first decoded, and it is then removed from the received signal. This process, named SIC, is repeated until the receiver obtains the desired signal [21]. The authors in [19] pointed out some implementation problems of the SIC utilization such as complexity and residual interference after performing interference cancellations. These issues will lead to lower decoding capacities than expected ones. In [22], the authors evaluated two-way relaying NOMA systems fully in terms of the outage probability, outage floor, ergodic capacity, and power allocation. The system performance of the proposed protocol in [22] outperforms that of three-time slot two-way relaying systems with orthogonal multiple access. In addition, we have applied the SIC scheme with DNC and ORS at the last time slot (the second time slot) for traditional two-way relaying networks in [23]. The results obtained in [23] presented improvements of the system performances as well as bandwidth utilization efficiencies, as compared with the corresponding scenarios without using SIC. However, the previous published works [19, 22, 23] only considered the conventional wireless networks; i.e., the underlay cognitive network was not studied.

1.2. Contributions. Motivated by above issues, in this paper, we propose an underlay two-way relaying scheme with the SIC solution in which two secondary sources send concurrently their data to each other through multiple secondary relays under an interference constraint of a primary receiver. The proposed scheme is operated in two time slots, denoted as the UTW-2TS scheme. In the UTW-2TS scheme, the secondary relays employ the SIC operation to decode successively the data from received broadcast signals. The data carried by the stronger channel gains is decoded firstly and will be subtracted to detect the remaining data. These decoded data are encoded by two techniques: the DNC enforced by XOR operations (denoted as the UTW-2TS-DNC protocol) and the SC enforced by power domain additions (denoted as the UTW-2TS-SC protocol). In addition, because of imperfect operations of the SIC, the secondary relays experience residual interferences. A secondary relay is selected in two protocols UTW-2TS-DNC and UTW-2TS-SC which subjects to maximize decoding capacities and to minimize collection time of CSI. Outage probabilities and throughputs are solved in terms of exact closed-form expressions to evaluate the system performance of the proposed UTW-2TS-DNC and UTW-2TS-SC protocols. These outage probability and throughput expressions are proved by doing the Monte Carlo simulations. The contributions of this paper are cataloged as follows:

1. Proposing SIC-based underlay two-way relaying cognitive protocols which enhance the data rate, as compared with the corresponding ones without using the SIC.
(2) Exactly analyzing the outage probabilities and throughputs of two secondary sources in two operation protocols UTW-2TS-DNC and UTW-2TS-SC with the same two-way relaying model in which the SIC solution in the selected secondary relay is practically considered in the perfect and imperfect cases.

(3) The UTW-2TS-DNC protocol outperforms the UTW-2TS-SC protocol with the same power consumption.

(4) The proposed UTW-2TS-DNC and UTW-2TS-SC protocols can achieve the best throughputs at optimal interference power allocation coefficients and optimal locations of the selected secondary relay. In addition, we examine the throughputs of the UTW-2TS-SC protocol versus the changes of the power allocation coefficients.

(5) The system performances in terms of the outage probabilities and throughputs are improved when the number of the cooperative secondary relays, the interference constraints, and the distances from the secondary nodes to the primary receiver are increased as well as when the residual interference powers decrease.

1.3. Paper Organization and Notations. This paper is organized into sections as follows. Section 2 presents a system model of an underlay two-way relaying scheme with multiple secondary relays. Section 3 analyzes outage probabilities and throughputs of the proposed protocols UTW-2TS-DNC and UTW-2TS-SC. Results and discussions are shown in Section 4. Lastly, Section 5 summarizes contributions.

The notations used in this paper are denoted as follows: \(f_X(\cdot) \) and \(F_X(\cdot) \) denote, respectively, the probability density function (PDF) and the cumulative distribution function (CDF) of a random variable (RV) \(X \); \(\Pr \{ \Xi \} \) denotes the probability operation of an event \(\Xi \); \(E \{ \cdot \} \) denotes the expectation operator; \(\binom{p}{m} \) denotes the binomial coefficient \(\frac{M!}{p!(M - p)!} \); \(\oplus \) denotes XOR math operation; and \(\Gamma [u, v] \) is the upper incomplete Gamma function.

2. System Model

Figure 1 presents a system model of an underlay two-way relaying scheme. In this scheme, secondary sources \(S_1 \) and \(S_2 \) own data \(x_1 \) and \(x_2 \) (\(x_1 \in S_1 \) and \(x_2 \in S_2 \), respectively). The exchange of information is achieved between the \(S_1 \) and the \(S_2 \) through a cluster of \(M \) intermediate secondary relays \(R_i \), where \(i = \{1, 2, \ldots, M\} \). More specifically, the data \(x_1 \) of \(S_1 \) is exchanged with the data \(x_2 \) of \(S_2 \). The secondary network including \(S_1, S_2 \), and \(R_i \) suffers an interference constraint of a primary receiver (PR), denoted as \(I \). The secondary relays can perform the SIC technique to decode the received data-carried signals successively in an interval of a time slot.

We assume that a direct link between the secondary sources \(S_1 \) and \(S_2 \) does not exist due to the far distance or deep shadow fading \([18, 23, 24]\). It is also assumed that the secondary and primary nodes are installed with a single antenna, and additive noises at all the receivers are zero-mean Gaussian random variables (RVs) whose mean is zero, and variance is \(\sigma^2 \).

In Figure 1, \(h_{XY} \) and \(d_{XY} \) denote the flat-block Rayleigh fading channel coefficient and the normalized link distance of link \(X-Y \), respectively, where \(X, Y \in \{ S_1, S_2, R_i, PR \} \). Because the secondary relays \(R_i \) are located in the cluster, where the secondary relays \(R_i \) are close to each other, the normalized distances can be assumed to be identical, i.e., \(d_{S_i,R_i} = d_{R_i,S_i} = d_1 \), \(d_{S_i,R_1} = d_{R_1,S_i} = d_2 \), \(d_{R_i,PR} = d_3 \), \(d_{S_i,PR} = d_4 \), and \(d_{S_2,PR} = d_5 \). Because \(h_{XY} \) have Rayleigh distributions, the channel gains \(g_{XY} = |h_{XY}|^2 \) are exponential RVs with the PDFs \(f_{g_{XY}}(y) = \lambda_{XY} y e^{-\lambda_{XY} y} \) and the CDFs \(F_{g_{XY}}(y) = 1 - e^{-\lambda_{XY} y} \), where \(\lambda_{XY} = d_{XY} \), and \(\eta \) is a path loss exponent (see \([23, 27, 28]\)). Moreover, we have \(\lambda_{S_1,R_i} = \lambda_{R_i,S_i} = \lambda_1 \), \(\lambda_{S_2,R_i} = \lambda_2 \), \(\lambda_{R_i,PR} = \lambda_3 \), \(\lambda_{S_1,PR} = \lambda_4 \), and \(\lambda_{S_2,PR} = \lambda_5 \).

In the underlay cognitive radio network, the secondary network coexisted in the same frequency with the primary network and satisfies that the interference power at the primary receiver (PR) is less than or equal the constraint \(I \). [29, 30]. We have the inequality

\[
\begin{align*}
P_{S_1} g_{S_1,PR} + P_{S_2} g_{S_2,PR} & \leq I, \\
P_{R_i} g_{R_i,PR} & \leq I, \quad i = \{1, 2, \ldots, M\},
\end{align*}
\]

where \(P_{S_1}, P_{S_2}, \) and \(P_{R_i} \) are transmit powers of the secondary source \(S_1 \), the secondary source \(S_2 \), and the secondary relays \(R_i \), respectively.

From (1), the transmit powers of the secondary transmitters can be set as \(P_{S_1} = \alpha_1 I / g_{S_1,PR} \), \(P_{S_2} = \alpha_2 I / g_{S_2,PR} \), and \(P_{R_i} = I / g_{R_i,PR} \), where \(\alpha_1 \) and \(\alpha_2 \) are interference power allocation coefficients, \(0 < \alpha_1, \alpha_2 < 1 \), and \(\alpha_1 + \alpha_2 = 1 \).
Comment 1. In practice, the transmit powers P_X must be below a maximum power (denoted by $P_{X_{\text{max}}}$), where $X \in \{S_1, S_2, R_i\}$. Therefore, P_X should be formulated as $P_X = \min\{P_{X_{\text{max}}}, u/g_{\text{PR}}\}$, where $u \in \{a_1, a_2, 1\}$. Suppose that $P_{X_{\text{max}}} \gg 1$ (e.g., the X nodes are near the PR node); hence, we can approximate P_X by $P_X = u/g_{\text{PR}}$. It is worth noting that this assumption is used in many published literatures, i.e., [12, 26, 30–36].

The operation principle of the UTW-2TS schemes happens in two time slots as follows. In the first time slot, secondary sources S_1 and S_2 transmit simultaneously the data-carried signals x_1 and x_2, respectively, to all secondary relays under interference constraint of the primary receiver (PR). A selected secondary relay, denoted as R_m, where $m = \{1, 2, \cdots, M\}$, decodes the desired data by applying the SIC process. In the second time slot (last time slot), the R_m creates the new data x by the DNC technique, denoted as the UTW-2TS-DNC protocol, or by the SC technique, denoted as the UTW-2TS-SC protocol. The new data will be transmitted back to two secondary sources S_1 and S_2. Collection of CSI and system parameters for decoding data, cancelling interferences, subtracting self-interference components, and selecting the cooperative relay are performed by the medium access control (MAC) protocol as specified in [37].

The secondary sources S_1 and S_2 transmit simultaneously the data x_1 and x_2, respectively, to the secondary relays R_i at the same time (the first time slot) and the same frequency as the uplink NOMA operation, where $i = \{1, 2, \cdots, M\}$. The received signal at the R_i is expressed as

$$y_{R_i} = \sqrt{P_{S_1}} x_1 h_{S_1,R_i} + \sqrt{P_{S_2}} x_2 h_{S_2,R_i} + n_{R_i}, \quad (2)$$

where $E\{|x_1|^2\} = E\{|x_2|^2\} = 1$, and n_{R_i} presents the Gaussian noises at the secondary relays R_i with the same variance σ^2.

The secondary relays R_i can compute the distances d_{S,R_i} and d_{S,R_i} by taking coordinate parameters in received request-to-send (RTS) messages of the secondary sources S_1 and S_2 in the setup phase [37]. Coordinates of the nodes can be received from the navigation systems. Hence, the secondary relays R_i can make decoding decisions of the signals x_1 and x_2 in (2) by the SIC technique as follows.

Case 1. ($d_{S,R_i} \leq d_{S,R_2}$ or $E\{g_{S,R_i}\} \geq E\{g_{S,R_2}\}$ (R_i is closer S_1 than S_2)).

In this case, the data x_1 in (2) is decoded by the secondary relay R_i firstly whereas a signal $\sqrt{P_{S_2}} x_2 h_{S_2,R_i}$ containing x_2 is treated as interference. The received signal-to-interference-plus-noise ratios (SINRs) at the R_i to decode x_1 are obtained from (2) as

$$\gamma_{R_i \rightarrow x_1}^{(1)} = \frac{P_{S_2} g_{S,R_i}}{P_{S_2} g_{S,R_i} + \sigma^2} = \frac{\alpha_2 Q g_{S,R_i} g_{S,PR}}{\alpha_2 Q g_{S,R_i} g_{S,PR} + g_{S,PR} g_{S,PR}} \left(1 - e^{-\lambda_1 \gamma_{\text{PR}}}\right), \quad (3)$$

where $Q = 1/\sigma^2$.

In (3), to increase the decoding capacity for the data x_1, decrease the collection of the CSI, and minimize help of the cooperative secondary relays, we only select one secondary relay among M secondary relays. Indeed, the selected secondary relay R_m is obtained as $R_m = \arg \max_{i=1,2,\cdots,M} g_{S,R_i}$. Then, the CDF and PDF of the RV g_{S,R_m} are correspondingly expressed as ([28], eqs. 7–14)

$$F_{g_{S,R_m}}(y) = \left(1 - e^{-\lambda_1 \gamma_{\text{PR}}}\right) M = \sum_{p=0}^{M} \left(1 - p\right)^2 e^{-p \lambda_1 \gamma_{\text{PR}}}, \quad (4)$$

$$f_{g_{S,R_m}}(y) = M \lambda_1 e^{-\lambda_1 \gamma_{\text{PR}}} \left(1 - e^{-\lambda_1 \gamma_{\text{PR}}}\right)^{M-1}. \quad (5)$$

After decoding x_1 successfully, the inference component $\sqrt{P_{S_2}} x_2 h_{S_2,R_m}$ in (2) can be cancelled completely or partly by the SIC technique in which the transmit power P_{S_2} and the channel coefficient h_{S_2,R_m} were known in the setup phase [37]. The remaining received SINR at the selected secondary relay R_m to decode x_2 is inferred as

$$\gamma_{R_m \rightarrow x_2}^{(1)} = \frac{P_{S_2} g_{S,R_m} g_{S,PR}}{\epsilon \lambda_1 g_{\text{PR}} + \sigma^2}. \quad (6)$$

where $\epsilon \lambda_1$ is a residual interference part at the secondary relay R_m due to the imperfect SIC operations and can be modeled as an identical complex normal distribution $\epsilon \lambda_1 g_{\text{PR}} \sim \text{CN}(0, \Psi)$ [19] with zero mean and same variance Ψ (Ψ is also the power of the residual interference part), and hence, $g_{S,R_m} = |r_m|^2$ are also exponentially distributed RVs with the PDF as $f_{g_{S,R_m}}(y) = \Omega e^{-\Omega y}$ and the CDF as $F_{g_{S,R_m}}(y) = 1 - e^{-\Omega y}$ ([28], eqs. 6–68), where $\Omega = 1/\Psi$, $\epsilon = 0$ and $\epsilon = 1$ denote perfect and imperfect interference cancellation at the secondary relay R_m, respectively.

Substituting $P_{S_2} = \alpha_2 g_{S,R_m} g_{S,PR}$ into (6), $\gamma_{R_m \rightarrow x_2}^{(1)}$ is expressed as

$$\gamma_{R_m \rightarrow x_2}^{(1)} = \frac{\alpha_2 Q g_{S,R_m} g_{S,PR}}{g_{S,PR} (\epsilon Q g_{\text{PR}} + 1)}. \quad (7)$$

Case 2. ($d_{S,R_i} > d_{S,R_2}$ or $E\{g_{S,R_i}\} < E\{g_{S,R_2}\}$ (R_i is closer S_2 than S_1)).

Similarly, the secondary relay R_i decodes the data x_2 firstly with the interference signal $\sqrt{P_{S_2}} x_2 h_{S_2,R_i}$, where $i = \{1, 2, \cdots, M\}$. The SINRs at the R_i for decoding x_2 and x_1 are expressed, respectively, as

$$\gamma_{R_i \rightarrow x_2}^{(2)} = \frac{P_{S_2} g_{S,R_i} g_{S,PR}}{P_{S_2} g_{S,R_i} g_{S,PR} + \sigma^2} = \frac{\alpha_2 Q g_{S,R_i} g_{S,PR}}{g_{S,PR} (\epsilon Q g_{\text{PR}} + 1)}. \quad (8)$$

$$\gamma_{R_i \rightarrow x_1}^{(2)} = \frac{P_{S_2} g_{S,R_i}}{\epsilon Q g_{\text{PR}} + \sigma^2} = \frac{\alpha_2 Q g_{S,R_i} g_{S,PR}}{g_{S,PR} (\epsilon Q g_{\text{PR}} + 1)}. \quad (9)$$
In the second time slot, if the selected secondary relay R_m decodes successfully both data x_1 and x_2 in the first time slot, the R_m creates a new data x as

$$x = \begin{cases} \sqrt{\beta_1} x_1 + \sqrt{\beta_2} x_2, \quad \text{digital network coding (the UTW-2TS-DNC protocol)}, \\ \sqrt{\beta_1} x_1 + \sqrt{\beta_2} x_2, \quad \text{superposition coding (the UTW-2TS-SC protocol)}, \end{cases}$$

(10)

where β_1 and β_2 are power allocation coefficients to data x_1 and x_2, respectively, and satisfy conditions as [21]

$$\begin{align*}
\beta_1 + \beta_2 &= 1, \quad 0 \leq \beta_1 \leq 1, \quad 0 \leq \beta_2 \leq 1, \\
\beta_1 &\geq \beta_2, \\
\beta_1 < \beta_2, \\
\beta_1 &< \beta_2, \\
\beta_1 &> \beta_2.
\end{align*}$$

(11)

We remark that for the UTW-2TS-SC protocol as in (10) and (11), the selected secondary relay R_m performs the downlink NOMA operation to allocate powers to data x_1 and x_2 as $x = \sqrt{\beta_1} x_1 + \sqrt{\beta_2} x_2$ in which x_1 and x_2 are the desired data of the secondary sources S_k and S_l, respectively [21]. If the S_k is closer to the R_m, the R_m will allocate the lower power for the data x_1, where $k, l = \{1, 2\}$ and $l \neq k$ and vice versa. More specifically, in Case 1 ($d_{S_k, R_m} \leq d_{S_l, R_m}$), the S_k is the nearby user and the S_l is the distant user. Hence, the R_m uses the lower power allocation coefficient β_2 ($\beta_2 \leq \beta_1$) to transmit the data x_2 to the S_l and the higher power allocation coefficient β_1 to transmit the data x_1 to the S_k. In addition, we note that the secondary relay R_m in Case 2 is selected by $R_m = \arg\max_{r \in \{1, 2, \ldots, M\}} g_{S_k, R_r}$.

The coded data x in (10) will be broadcasted back to two secondary sources S_1 and S_2, and then the received signals at the secondary sources S_k are expressed as

$$y_{S_k} = \sqrt{p_{R_m, k}} h_{R_m, S_k} x + n_{S_k},$$

(12)

where n_{S_k} presents the Gaussian noises at the secondary sources S_k with the same variance σ^2.

For the UTW-2TS-DNC protocol with $x = x_1 \oplus x_2$ in (12), the received SINRs at the secondary sources S_k can be obtained from (12) to take x as

$$\gamma_{S_k}^{\text{UTW-2TS-DNC}} = \frac{P_{R_m} |h_{R_m, S_k}|^2}{\sigma^2} = \frac{Qg_{R_m, S_k}}{g_{R_m, PR}}.$$

(13)

The decoding method of the secondary sources S_k to take the desired data is performed by decoding operations of the network coding; i.e., the S_1 takes the data x_2 by XOR operations of its data x_1 with the compressed data x as $x_1 \oplus x = x_1 \oplus x_1 \oplus x_2 = x_2$.

For the UTW-2TS-SC protocol, the received signals at the secondary sources S_k are shown more clearly as

$$y_{S_k} = \sqrt{\beta_1 p_{R_m, k}} h_{R_m, S_k} x_1 + \sqrt{\beta_2 p_{R_m, k}} h_{R_m, S_k} x_2 + n_{S_k},$$

(14)

In (14), the secondary source S_k owns the data x_k and does not decode this data. In addition, the S_k can estimate the fading channel coefficient h_{R_m, S_k} from receiving the setup messages of the selected secondary relay R_m and takes the system parameters as the transmit power p_{R_m} and the power allocation coefficient β_k during the setup time, where $k = \{1, 2\}$, [37]. Hence, the S_k knows the parameters x_k, h_{R_m, S_k}, P_{R_m}, and β_k, which then can cancel out the self-interference component $\sqrt{\beta_k p_{R_m, k}} h_{R_m, S_k} x_k$ in (14) [38, 39]. The received signals at the S_k after subtracting the known self-interference components are obtained as

$$\tilde{y}_{S_k} = \sqrt{\beta_1 p_{R_m, k}} h_{R_m, S_k} x_1 + n_{S_k}.$$

(15)

The received SINRs at the secondary sources S_k can be computed to take the desired data x_1 as

$$\gamma_{S_k}^{\text{UTW-2TS-SC}} = \frac{P_{R_m, k} |h_{R_m, S_k}|^2}{\sigma^2} = \frac{Qg_{R_m, S_k}}{g_{R_m, PR}}.$$

(16)

3. Outage Probability and Throughput Analyses

In this paper, it is assumed that an outage event occurs when the received SINR is less than a threshold SINR γ_{th} [30, 40]. In addition, the data transmission in the secondary network is fixed to the delay-limited mode in which the secondary receivers such as the selected secondary relay R_m and the secondary sources S_1 and S_2 decode the desired data block by block without using buffers [30, 40]. Throughput has been considered to characterize the spectrum utilization of the communication systems [30, 40, 41] (known as the mean spectral efficiency) and is related to outage analyses as

$$TP_{Z}^{(i)} = \frac{1}{2} (1 - \text{OP}_{Z-S_k}^{(i)}) R_{th} + \frac{1}{2} (1 - \text{OP}_{Z-S_l}^{(i)}) R_{th},$$

(17)

where 1/2 denotes that the Z protocol operates in the two time slots, $Z \in \{\text{UTW-2TS-DNC, UTW-2TS-SC}\}$; R_{th} is the threshold data rate and is given by $R_{th} = \log_2(1 + \gamma_{th})$ (bits/s/Hz) [30, 38, 40, 41]; $\text{OP}_{Z-S_k}^{(i)}$ is the outage probability at the secondary source S_k in the case $I = \{l, k = \{1, 2\}\}$ and is defined as probability that the secondary source S_k cannot decode successfully the desired data.
3.1. The UTW-2TS-DNC Protocol

3.1.1. Case 1: If, i = 1, 2, ..., M. The outage probability of the secondary source S_i occurs when the secondary source S_i cannot successfully decode the data x_i of the opposite secondary source S_j. Due to the operation of the SIC technique at the selected secondary relay R_m which was set up in the initial phase, the outage probability of the secondary source S_i happens when (1) the R_m fails to decode the data x_j; or (2) the R_m decodes the data x_j successfully but does not decode the data x_i; or (3) the R_m decodes both x_j and x_i successfully, but the S_i cannot decode the DNC-coded data x to get the desired data x_i in the second time slot. We express the outage probability of the secondary source S_i by the mathematical expression

\[\text{OP}_{\text{UTW-2TS-DNC-S_i}}^{(1)} = \Pr \left\{ (y_{R_m}^{(1)} - y_{R_m}^{(2)}) \cap (y_{R_m}^{(1)} < y_{R_m}^{(2)}) \right\} \]

(18)

In (18), the probability \(\Phi_1 = \Pr \left\{ y_{R_m}^{(1)} < y_{R_m}^{(2)} \right\} \) is considered when the secondary relay R_m fails to decode the data x_j while applying the SIC technique. The probability \(\Phi_2 = \Pr \left\{ (y_{R_m}^{(1)} - y_{R_m}^{(2)}) \cap (y_{R_m}^{(1)} < y_{R_m}^{(2)}) \right\} \) is the decoding error of the data x_j at the secondary relay R_m. Finally, the probability \(\Pr \left\{ (y_{R_m}^{(1)} - y_{R_m}^{(2)}) \cap (y_{R_m}^{(1)} < y_{R_m}^{(2)}) \cap (y_{R_m}^{(1)} < y_{R_m}^{(2)}) \right\} \) measures the decoding error of the coded data x at the secondary source S_i. The event \(y_{R_m}^{(1)} < y_{R_m}^{(2)} \) occurs independently with the events \(y_{R_m}^{(1)} \geq y_{R_m}^{(2)} \) and \(y_{R_m}^{(1)} \geq y_{R_m}^{(2)} \); thus, we have an equivalent representation of (18) as

\[\text{OP}_{\text{UTW-2TS-DNC-S_i}}^{(1)} = \Phi_1 + \Phi_2 + \Pr \left\{ (y_{R_m}^{(1)} - y_{R_m}^{(2)}) \cap (y_{R_m}^{(1)} \geq y_{R_m}^{(2)}) \right\} \]

(19)

To analyze the probabilities \(\Phi_1, \Phi_2, \) and \(\Pr \{ \gamma_{\text{UTW-2TS-DNC}} < \gamma_{\text{th}} \} \), we define \(\gamma_{\text{UTW-2TS-DNC}} = \gamma_{\text{th}} / \lambda_{\text{th}} \), where \(X_1, X_2, Y_1, Y_2 \in \{ S_1, S_2, R_1, \ldots, R_M \} \), \(\gamma_{\text{UTW-2TS-DNC}} \neq \gamma_{\text{th}} \), and \(i = \{ 1, 2, \ldots, M \} \); then, by referring from [30] (eqs. 24-25), the CDF and PDF of the RV \(\gamma_{\text{UTW-2TS-DNC}} \) are obtained as

\[F_{\gamma_{\text{UTW-2TS-DNC}}} (z) = \frac{\lambda_{\text{UP}} z}{\lambda_{\text{UP}} + \lambda_{\text{S}} z}, \]

(20)

\[f_{\gamma_{\text{UTW-2TS-DNC}}} (x) = \frac{\lambda_{\text{UP}} x \lambda_{\text{S}} z}{(\lambda_{\text{UP}} + \lambda_{\text{S}} z)^2}. \]

(21)

For the selected secondary relay R_m from the S_i-S_j links \((m, i = \{ 1, 2, \ldots, M \}) \), the CDF of the RV \(G_{S_i R_m} / S_j \) is given as

\[F_{G_{S_i R_m} / S_j} (z) = \Pr \left\{ \frac{G_{S_i R_m}}{G_{S_j}} < z \right\} = \Pr \left\{ \frac{g_{S_i R_m}}{g_{S_j}} < z \right\} \]

(22)

Substituting the CDF of the RV \(G_{S_i R_m} \) in (4) and the PDF of the RV \(g_{S_j} \) into (22), we have a final result as

\[F_{G_{S_i R_m} / S_j} (z) = \int_0^\infty f_{g_{S_j}} (t) \times F_{g_{S_i R_m} / S_j} (zt) \, dt. \]

(23)

The probabilities \(\Phi_1, \Phi_2, \) and \(\Pr \{ \gamma_{\text{UTW-2TS-DNC}} < \gamma_{\text{th}} \} \) are solved by Lemmas 1 and 2 as follows.

Lemma 1. The probability \(\Phi_1 \) is solved as

\[\Phi_1 = 1 + \lambda_2 \lambda_4 \lambda_5 \sum_{p=1}^{M} \left(\frac{p}{M} \right)^{-1} \exp \left\{ -\lambda_4 \lambda_5 \right\} \left(\frac{1}{\lambda_4} - \frac{u_1 (p)}{\lambda_2 \lambda_3 \lambda_4} \right) \]

(24)

where \(u_1 = \gamma_{\text{th}} \alpha_2 / \alpha_1, u_2 = \gamma_{\text{th}} \alpha_3 / \alpha_2, u_3 (p), \) and \(u_4 (p) \) are functions versus count variable \(p \) and are defined, respectively, as

\[u_3 (p) = \lambda_1 + \rho \lambda_1 \lambda_2, \]

\[u_4 (p) = \rho \lambda_1 u_3 (p). \]

Proof. (proven in Appendix A).
Lemma 2. The probability Φ_2 is given in two cases of ϵ as follows:

For $\epsilon = 0$ (perfect SICs):

$$\Phi_2 = \frac{\lambda_3 \Phi_3}{\lambda_2 + \lambda_4 \Phi_3} - \lambda_2 \lambda_3 \sum_{p=0}^{M} \left(\frac{p}{M} \right) \Phi_3 \left\{ \frac{-1}{\lambda_2 \Phi_3(p) - \lambda_2 \Phi_3(p)} \right\} \times \left(\frac{\lambda_3 \Phi_3(p)}{\lambda_2 \Phi_3(p) - \lambda_2 \Phi_3(p)} \Phi_3 \left(\frac{(\lambda_3 + \lambda_4 \Phi_3) \times \Phi_3(p)}{\lambda_3 \Phi_3(p) + \Phi_3(p)} \right) \right) \right\}.$$

(25)

For $\epsilon = 1$ (imperfect SICs):

$$\Phi_2 = 1 - \lambda_2 \epsilon^{(\lambda_3 + \lambda_2 \epsilon) \Omega} \sum_{p=0}^{M} \left(\frac{p}{M} \right) \Phi_3 \left\{ \frac{-1}{\lambda_2 \Phi_3(p) - \lambda_2 \Phi_3(p)} \right\} \times \left(\frac{\lambda_3 \Phi_3(p)}{\lambda_2 \Phi_3(p) - \lambda_2 \Phi_3(p)} \Phi_3 \left(\frac{(\lambda_3 + \lambda_2 \epsilon) \times \Phi_3(p)}{\lambda_3 \Phi_3(p) + \Phi_3(p)} \right) \right) \right\}.$$

(26)

where $\Gamma(u, v)$ is the upper incomplete Gamma function ($\Gamma(u, v) = \int_{v}^{\infty} e^{-t} t^{u-1} dt$) ([42], eq. 8.350.2).

Proof. (see the proof and notations in Appendix B).

The last probability $\Pr \left\{ Y_{S_1, x}^{\text{UTW-2TS-DNC}} < Y_{th} \right\}$ in (19) is obtained by using formula (13) with $k = 1$ as

$$\Pr \left\{ Y_{S_1, x}^{\text{UTW-2TS-DNC}} < Y_{th} \right\} = \Pr \left\{ \frac{Qg_{S_1, S_2}}{g_{S_2, PR}} < Y_{th} \right\} = \Pr \left\{ \frac{G_{S_1, S_2}}{R_{S_2, PR}} < Y_{th} \right\} = \frac{F_{G_{S_1, S_2}/R_{S_2, PR}}(Y_{th})}{Q}.$$

(27)

Substituting (27) into (19), the outage probability of the secondary source S_1 is obtained by the closed-form expression

$$\text{OP}^{(1)}_{\text{UTW-2TS-DNC-S}_1} = \frac{(\Phi_1 + \Phi_2) \lambda_3 Q + \lambda_1 Y_{th}}{\lambda_3 Q + \lambda_1 Y_{th}}.$$

(28)

where Φ_1 and Φ_2 are given by closed-form expressions in Lemmas 1 and 2, respectively.

The secondary source S_2 expects to receive the desired data x_2 of the secondary source S_1. Hence, the outage probability of the secondary source S_2 occurs when (1) the selected secondary relay R_m cannot decode the data x_2 or (2) the S_2 fails to decode the data transmitted by the R_m after the data x_1 is decoded successfully. We formulate the outage probability of the secondary source S_1 as

$$\text{OP}^{(1)}_{\text{UTW-2TS-DNC-S}_2} = \Pr \left\{ \left(Y_{R_m, x_1}^{(1)} < Y_{th} \right) + \Pr \left\{ \left(Y_{R_m, x_1}^{(1)} > Y_{th} \right) \right\} \cap \left(Y_{S_2, x}^{\text{UTW-2TS-DNC}} < Y_{th} \right) \right\}.$$

(29)

In (29), the probability part $\Pr \left\{ \left(Y_{R_m, x_1}^{(1)} > Y_{th} \right) \right\}$ shows transmission errors of the data x_1 from the selected secondary relay R_m to the desired secondary source S_2. Because the event $Y_{S_2, x}^{\text{UTW-2TS-DNC}} < Y_{th}$ occurs independently, and with the help of (13) with $k = 1$, the outage probability of the secondary source S_2 is manipulated and solved as

$$\text{OP}^{(1)}_{\text{UTW-2TS-DNC-S}_2} = \Phi_1 + \Pr \left\{ \left(Y_{R_m, x_1}^{(1)} > Y_{th} \right) \right\} \times \Pr \left\{ Y_{S_2, x}^{\text{UTW-2TS-DNC}} < Y_{th} \right\} = \Phi_1 + \Pr \left\{ \frac{Qg_{R_m, S_2}}{g_{R_m, PR}} < Y_{th} \right\} = \Phi_1 + \frac{Qg_{R_m, S_2}}{g_{R_m, PR}}.$$

(30)

where Φ_1 is given exactly by Lemma 1.

Next, the throughput of the UTW-2TS-DNC protocol as in (17) is solved in Case 1 ($d_{S_2, R} \leq d_{S_1, R}$) by

$$\text{TP}^{(1)}_{\text{UTW-2TS-DNC-S}_1} = \frac{2}{\log_2(1 + Y_{th})} \left\{ 2 - \frac{\text{OP}^{(1)}_{\text{UTW-2TS-DNC-S}_1}}{\text{OP}^{(1)}_{\text{UTW-2TS-DNC-S}_2}} \right\} \times (2 - 2\Phi_1 - (1 - \Phi_1)) = \frac{\lambda_1 Y_{th}}{\lambda_3 Q + \lambda_1 Y_{th}}.$$

(31)

where Φ_1 and Φ_2 are taken from Lemmas 1 and 2, respectively.

3.1.2. Case 2: $d_{S_2, R} > d_{S_1, R}$. In this case, a selected secondary relay R_m must decode the data x_2 firstly. Because the system model of the UTW-2TS-DNC protocol in Figure 1 is
symmetric, we can model the outage probabilities in Case 1 as functions versus symmetric parameters as
\[\text{OP}_{\text{UTW-2TS-DNC}}^{(1)}(S_1, S_2) = \text{OP}_{\text{UTW-2TS-DNC}}^{(1)}(\lambda_1, \alpha_1, \lambda_2, \alpha_2), \]
and
\[\text{OP}_{\text{UTW-2TS-DNC}}^{(1)}(S_1, S_2) = \text{OP}_{\text{UTW-2TS-DNC}}^{(1)}(\lambda_1, \alpha_1, \lambda_2, \alpha_2). \]
Hence, in Case 2 \((d_{S,R} > d_{S,R})\), the outage probability of the secondary sources \(S_1\) and \(S_2\) can be inferred from Case 1 as follows:
\[\text{OP}_{\text{UTW-2TS-DNC}}^{(2)}(S_1, S_2) = \text{OP}_{\text{UTW-2TS-DNC}}^{(1)}(\lambda_2, \alpha_2, \lambda_1, \alpha_1), \]
\[\text{OP}_{\text{UTW-2TS-DNC}}^{(2)}(S_1, S_2) = \text{OP}_{\text{UTW-2TS-DNC}}^{(1)}(\lambda_2, \alpha_2, \lambda_1, \alpha_1), \]
where \(\text{OP}_{\text{UTW-2TS-DNC}}^{(1)}(\lambda_2, \alpha_2, \lambda_1, \alpha_1)\) and \(\text{OP}_{\text{UTW-2TS-DNC}}^{(1)}(\lambda_1, \alpha_1, \lambda_2, \alpha_2)\) are closed-form outage probability expressions of the secondary sources \(S_1\) and \(S_2\) in Case 1 with replacing \(\lambda_1 \leftrightarrow \lambda_2\) and \(\alpha_1 \leftrightarrow \alpha_2\).

The throughput of the UTW-2TS-DNC protocol as in (17) is obtained in Case 2 by
\[\text{TP}_{\text{UTW-2TS-DNC}}^{(2)} = \frac{\log_2(1 + \gamma_{th})}{2} - \left(2 - \text{OP}_{\text{UTW-2TS-DNC}}^{(2)} - \text{OP}_{\text{UTW-2TS-DNC}}^{(2)}\right), \]
where \(\text{OP}_{\text{UTW-2TS-DNC}}^{(2)}\) and \(\text{OP}_{\text{UTW-2TS-DNC}}^{(2)}\) are presented in (32) and (33), respectively.

3.2. The UTW-2TS-SC Protocol. Operation of the UTW-2TS-SC protocol is different to the UTW-2TS-DNC protocol in the time slot 2 (the last time slot) with power allocation coefficients \(\beta_1\) and \(\beta_2\) to decoded data \(x_1\) and \(x_2\). Similar to the UTW-2TS-DNC protocol for Case 1 \((d_{S,R} \leq d_{S,R})\) and Case 2 \((d_{S,R} > d_{S,R})\), the outage probability and corresponding throughput of the secondary sources \(S_1\) and \(S_2\) will be obtained briefly in the next subsections.

3.2.1. Case 1: \(d_{S,R} \leq d_{S,R}\). The decoding operation of the UTW-2TS-SC protocol is similar to that of the UTW-2TS-DNC protocol. One difference is that the secondary source \(S_1\) expects to decode the desired data \(x_2\) directly from the received signal \(y_{S_2}\) as in (14) where \(k = 1\) and \(l = 2\). Hence, the outage probability of the secondary source \(S_1\) (denoted as \(\text{OP}_{\text{UTW-2TS-SC-S1}}^{(1)}\)) is expressed in Case 1 \((d_{S,R} \leq d_{S,R})\) as
\[\text{OP}_{\text{UTW-2TS-SC-S1}}^{(1)} = \Pr \left\{ y_{S_1, x_1}^{(1)} < y_{th}\right\} + \Pr \left\{ y_{S_1, x_1}^{(1)} < y_{th}\right\} \cap \left\{ y_{S_1, x_1}^{(1)} < y_{th}\right\} \]
\[+ \Pr \left\{ y_{S_1, x_1}^{(1)} < y_{th}\right\} \cap \left\{ y_{S_1, x_1}^{(1)} < y_{th}\right\} \]
\[= \left(\Phi_1 + \Phi_2\right) \times \left(1 - \Pr \left\{ y_{S_1, x_1}^{(1)} < y_{th}\right\}\right) \]
where \(\Phi_1\) and \(\Phi_2\) are obtained from Lemmas 1 and 2.

In (35), the probability \(\Pr \left\{ y_{S_1, x_1}^{(1)} < y_{th}\right\} \cap \left\{ y_{S_1, x_1}^{(1)} < y_{th}\right\} \) directly calculates the decoding error of the data \(x_2\) at the secondary source \(S_1\).

Substituting (16) with \(k = 1\) and \(l = 2\) into the probability \(\Pr \left\{ y_{S_1, x_1}^{(1)} < y_{th}\right\} \) in (35) and performing similarly as (27), we have a result as
\[\Pr \left\{ y_{S_1, x_1}^{(1)} < y_{th}\right\} = \Pr \left\{ \frac{Q_{R_1} g_{R_2}}{g_{R_2}} < y_{th}\right\} \]
\[= \Pr \left\{ G_{R_1 R_2} < y_{th}, \beta \right\} \]
OP \text{UTW-2TS-SC}_1(\lambda_1, \alpha_1, \beta_1, \lambda_2, \alpha_2, \beta_2)$ and $\text{OP \text{UTW-2TS-SC}_2}(\lambda_1, \alpha_1, \beta_1, \lambda_2, \alpha_2, \beta_2)$. Because of the symmetric model of the UTW-2TS-SC protocol in Figure 1, the outage probability of the secondary sources S_1 and S_2 in Case 2 can be concluded from Case 1 as follows:

$$\text{OP \text{UTW-2TS-SC}_1}(\lambda_1, \alpha_1, \beta_1, \lambda_2, \alpha_2, \beta_2) = \text{OP \text{UTW-2TS-SC}_1}(\lambda_2, \alpha_2, \beta_2, \lambda_1, \alpha_1, \beta_1),$$

(39)

$$\text{OP \text{UTW-2TS-SC}_2}(\lambda_1, \alpha_1, \beta_1, \lambda_2, \alpha_2, \beta_2) = \text{OP \text{UTW-2TS-SC}_2}(\lambda_2, \alpha_2, \beta_2, \lambda_1, \alpha_1, \beta_1),$$

(40)

where $\text{OP \text{UTW-2TS-SC}_1}(\lambda_2, \alpha_2, \beta_2, \lambda_1, \alpha_1, \beta_1)$ and $\text{OP \text{UTW-2TS-SC}_2}(\lambda_2, \alpha_2, \beta_2, \lambda_1, \alpha_1, \beta_1)$ are closed-form outage probability expressions of the secondary sources S_1 and S_2 in Case 1 with replacing $\lambda_1 \mapsto \lambda_2$, $\alpha_1 \mapsto \alpha_2$, and $\beta_1 \mapsto \beta_2$.

The corresponding throughput of the UTW-2TS-SC protocol is obtained in Case 2 as

$$\text{TP \text{UTW-2TS-SC}} = \frac{\log_2(1 + y_{th})}{2} \cdot (2 - \text{OP \text{UTW-2TS-SC}_1} - \text{OP \text{UTW-2TS-SC}_2}),$$

(41)

where $\text{OP \text{UTW-2TS-SC}_1}$ and $\text{OP \text{UTW-2TS-SC}_2}$ are given in (39) and (40), respectively.

4. Results and Discussions

This section presents analysis and simulation results in terms of outage probabilities and throughputs of the protocols UTW-2TS-DNC and UTW-2TS-SC in the two-dimensional plane. These proposed protocols are considered in two cases of perfect SICs ($\epsilon = 0$, denoted by pSIC) and imperfect SICs ($\epsilon = 1$, denoted by ipSIC). The simulation results are performed by the Monte Carlo method to validate the analysis ones which are shown from exact closed-form expressions. Coordinates of the nodes S_1, S_2, and the cluster with M secondary relays R_i are set as $S_1(0, 0)$, $S_2(1, 0)$, $R_i(x_{PR}, y_{PR})$, and $R_i(x_{PR}, y_{PR})$, where $0 < x_{PR} < 1$ and $i = \{1, 2, \cdots, M\}$. The normalized distances are calculated from the coordinates as

$$d_1 = \sqrt{x_{PR}^2 + y_{PR}^2}, \quad d_2 = \sqrt{(1 - x_{PR})^2 + y_{PR}^2}, \quad d_3 = \sqrt{(x_{PR} - x_{PR})^2 + (y_{PR} - y_{PR})^2}, \quad d_4 = \sqrt{x_{PR}^2 + y_{PR}^2}, \quad d_5 = \sqrt{(1 - x_{PR})^2 + y_{PR}^2}.$$

It is assumed that the threshold SINR and the path loss exponent are fixed by $y_{th} = 3$ and $\eta = 3$, and Q (dB) on the x-axis is defined as $Q = 10 \times \log_{10}(I/\sigma^2)$ (dB). Markers denote simulated results, and solid lines present analyzed ones.

Figure 2 shows the outage probabilities of the secondary sources S_1 and S_2 in the protocols UTW-2TS-DNC and UTW-2TS-SC versus Q (dB) when $x_{PR} = 0.3$, $y_{PR} = 0$, $y_{PR} = 0.5$, $\Psi = 0$ (dB), $M = 3$, and interference allocation coefficients $\alpha_1 = \alpha_2 = 0.5$ [19, 30]. The normalized distances are calculated as $d_1 = 0.3$, $d_2 = 0.7$, $d_3 = 0.54$, $d_4 = 0.71$, and $d_5 = 0.71$; hence, the results are presented following Case 1.
Figure 3: Throughputs of the protocols UTW-2TS-DNC and UTW-2TS-SC versus Q (dB) when $\alpha_1 = \alpha_2 = 0.5$, $\beta_1 = 0.7$, $\beta_2 = 1 - \beta_1 = 0.3$, $\Psi = 0$ (dB), $x_R = 0.3$, $y_R = 0$, $x_{PR} = y_{PR} = 0.5$, and $M = \{3, 12\}$.

Throughput (bits/s/Hz)

Figure 4 presents the throughputs of the protocols UTW-2TS-DNC and UTW-2TS-SC versus Q (dB) when $x_R = 0.3$, $y_R = 0$, $x_{PR} = y_{PR} = 0.5$, $\Psi = 0$ (dB), $\alpha_1 = \alpha_2 = 0.5$, $\beta_1 = 0.7$, $\beta_2 = 1 - \beta_1 = 0.3$, and the number of intermediate secondary relays is set as $M \in \{3, 12\}$. Exact throughput curves of the UTW-2TS-DNC and UTW-2TS-SC protocols are obtained by theoretic analyses in (31) and (38). Simulation markers are carried out by (17) with separate outage probabilities for each protocol. From Figure 3, the throughputs of the UTW-2TS-DNC protocol are larger than those of the UTW-2TS-SC protocol with all the cases of SICs and M. In addition, the throughput of both protocols increase when the UTW-2TS systems use more secondary relays (M is increased). These contributions are based on observations from SINRs (13) and (16). With $0 \leq \beta_1$ and $\beta_2 \leq 1$, the SINRs in (13) of the UTW-2TW-DNC protocol are always larger than those in (16) of the UTW-2TW-SC protocol. Furthermore, with more cooperative secondary relays, the diversity capacity of both protocols will be increased by the relay selection methods.

Figure 4 presents the throughputs of the protocols UTW-2TS-DNC and UTW-2TS-SC versus Q when $Q = 10$ (dB), $\beta_1 = 0.7$, $\beta_2 = 1 - \beta_1 = 0.3$, $\Psi = -5$ (dB), $x_R = 0.3$, $y_R = 0$, $x_{PR} = y_{PR} = 0.5$, $M = 3$, and α_2 can be set as $\alpha_2 = 1 - \alpha_1$. In Figure 4, the throughputs of the protocols UTW-2TS-DNC
and UTW-2TS-SC achieve the large values at an approximate interference power allocation coefficient $\alpha_1 \approx 0.6$ for both cases (perfect SICs and imperfect SICs). The value $\alpha_1 \approx 0.6$ is to balance constraints such as interferences from the secondary network to the primary network, locations of the secondary relays, and perfect/imperfect SIC operations.

Figure 5 shows the throughputs of the protocols UTW-2TS-DNC and UTW-2TS-SC versus β_1 when $Q = 10$ (dB), $\alpha_1 = 0.6$, $\alpha_2 = 1 - \alpha_1 = 0.4$, $\Psi = -5$ (dB), $x_R = 0.3$, $y_R = 0$, $x_{PR} = y_{PR} = 0.5$, $M = 3$, and $\beta_2 = 1 - \beta_1$. As observed from Figure 5, the UTW-2TS-DNC protocol is not affected by the power allocation coefficients β_1 and β_2, and the UTW-2TS-SC protocol reaches the largest throughputs at approximate values $\beta_1 = 0.7$ and $\beta_1 = 0.8$ corresponding to perfect SICs and imperfect SICs, respectively. These values $\beta_1 = 0.7$ and $\beta_1 = 0.8$ are to equalize the SINR qualities between two hops from the selected secondary relay to the secondary sources.

Figure 6 shows the throughputs of the protocols UTW-2TS-DNC and UTW-2TS-SC versus α_1 and β_1 in the three-
Figure 6: Throughputs of the protocols UTW-2TS-DNC and UTW-2TS-SC versus α_1 and β_1 when $Q = 10$ (dB), $\Psi = -5$ (dB), $x_R = 0.3$, $y_R = 0$, $x_{PR} = y_{PR} = 0.5$, $M = 3$, $\alpha_2 = 1 - \alpha_1$, and $\beta_2 = 1 - \beta_1$.

Figure 7: Throughputs of the protocols UTW-2TS-DNC and UTW-2TS-SC versus x_R when $Q = 10$ (dB), $\alpha_1 = \alpha_2 = 0.5$, $\beta_1 = \beta_2 = 0.5$, $\Psi = -5$ (dB), $x_{PR} = y_{PR} = 0.5$, $M = 3$, and $y_R = 0$.
dimensional plane when $Q = 10$ (dB), $\Psi = -5$ (dB), $x_R = 0.3$, $y_R = 0$, $x_{PR} = y_{PR} = 0.5$, $M = 3$, and α_1 and β_2 are set as $\alpha_1 = 1 - \beta_1$ and $\beta_2 = 1 - \beta_1$. The value ranges of α_1 and β_1 are established between 0.1 and 0.9. The results from Figure 6 confirm the contributions from Figures 4 and 5.

Figure 7 presents the throughputs of the protocols UTW-2TS-DNC and UTW-2TS-SC versus x_R when $Q = 10$ (dB), $\alpha_1 = \alpha_2 = 0.5$, $\beta_1 = \beta_2 = 0.5$, $\Psi = -5$ (dB), $x_{PR} = y_{PR} = 0.5$, $M = 3$, and y_{PR} is fixed as $y_R = 0$. In this simulation, the normalized distances d_4 and d_5 are fixed at the same value 0.7 and the remaining normalized distances d_1, d_2, and d_3 are changed from 0.1 to 0.9 for d_1, 0.9 to 0.1 for d_2, and 0.6 to 0.5 and back to 0.64 for d_3. From Figure 7, these proposed protocols UTW-2TS-DNC and UTW-2TS-SC achieve the largest throughputs at asymmetric locations of the selected secondary relay as $x_R \approx 0.2$ ($d_1 = 0.2$, $d_2 = 0.8$) and $x_R \approx 0.8$ ($d_1 = 0.8$, $d_2 = 0.2$) because of decoding the received data sequentially (SIC operations). In addition, at the symmetric location $x_R = 0.5$ ($d_1 = d_2 = 0.5$), the throughputs of both protocols again have the lowest values.

Figure 8 presents the throughputs of the protocols UTW-2TS-DNC and UTW-2TS-SC versus y_{PR} when $Q = 10$ (dB), $\alpha_1 = \alpha_2 = 0.5$, $\beta_1 = 0.7$, $\beta_2 = 1 - \beta_1 = 0.3$, $\Psi = -5$ (dB), $x_R = 0.3$, $y_R = 0$, $M = 3$, and x_{PR} is fixed at $x_{PR} = 0.5$. In this case, the normalized distances d_1 and d_2 are fixed to 0.3 and 0.7, respectively, and the primary receiver (PR) is moving farther the secondary network characterized by changing the normalized distances d_3, d_4, and d_5 from 0.22 to 0.92 for d_4 and from 0.51 to 1.03 for d_3 and d_5. As shown in Figure 8, the throughputs of the protocols UTW-2TS-DNC and UTW-2TS-SC are enhanced when the value of y_{PR} increases because of low influence of the interference constraint to the sources and relays in the secondary network. Therefore, the secondary sources and relays can transmit with the maximum power, and interference cancelling and decoding capacity at the secondary relays and the secondary sources increase.

Figure 9 presents the throughputs of the protocols UTW-2TS-DNC and UTW-2TS-SC versus Ψ when $Q = 10$ (dB), $\alpha_1 = \alpha_2 = 0.5$, $\beta_1 = 0.7$, $\beta_2 = 1 - \beta_1 = 0.3$, $x_R = 0.3$, $y_R = 0$, $x_{PR} = y_{PR} = 0.5$, and $M = 3$. Considering the case of the imperfect SICs for both protocols, the throughput performances decrease when the residual interference powers increase. Furthermore, the throughputs of the protocols UTW-2TS-DNC and UTW-2TS-SC in the
perfect SICs are upper limitations (expectations) of the ones in the imperfect SICs when $\Psi \to -\infty$ (dB).

5. Conclusions
In this paper, we proposed and analyzed the underlay two-way relaying scheme with two secondary sources and multiple secondary relays, known as the UTW-2TS scheme. The UTW-2TS scheme with the SIC solution operated in only two time slots and under an interference constraint of the primary receiver. The secondary relays decode successively the data transmitted by two secondary sources and then encode these data by two techniques: the DNC enforced by XOR operations (known as the UTW-2TS-DNC protocol) and the SC enforced by power domain additions (known as the UTW-2TS-SC protocol). A selected secondary relay which subjects to maximize the decoding capacities and to minimize the collection time of CSI in the proposed protocols UTW-2TS-DNC and UTW-2TS-SC suffered the residual interferences from the imperfect SIC operations. Exact outage probabilities and throughputs were derived to evaluate the system performance of the proposed UTW-2TS-DNC and UTW-2TS-SC protocols. Simulation and analysis results provided discoveries of the performance improvements by increasing of the number of the cooperative secondary relays, the interference constraints, and the distances from the secondary network to the primary receiver. In addition, the proposed UTW-2TS-DNC and UTW-2TS-SC protocols achieved the best throughputs at optimal interference power allocation coefficients and optimal locations of the selected secondary relay. Considering the same power consumption, the UTW-2TS-DNC protocol performed better than the UTW-2TS-SC protocol. Finally, the analysis results of the outage probabilities and throughputs were validated by the Monte Carlo simulations.

Appendix
A. Proof of Lemma 1
Substituting (3) into the formula of Φ_1 as in (18), we have the expression

$$
\Phi_1 = \Pr \left\{ \frac{\alpha_1 Q g_{S,R_m} g_{S,PR}}{\alpha_2 Q g_{S,R_m} g_{S,PR} + g_{S,PR} g_{S,PR}} < \gamma_{th} \right\}
$$

$$
= \Pr \left\{ \frac{g_{S,R_m}}{g_{S,PR}} < \frac{\gamma_{th} \alpha_2 g_{S,R_m} + g_{S,PR}}{\alpha_1 Q g_{S,PR}} \right\}
$$

$$
= \Pr \left\{ \frac{G_{S,R_m}/S,PR}{G_{S,R_m}/S,PR} < \frac{\gamma_{th} \alpha_2}{\alpha_1 Q} \frac{g_{S,R_m} + g_{S,PR}}{g_{S,PR}} \right\}
$$

$$
= \int_0^{\gamma_{th}} f_{G_{S,R_m}/S,PR}(y) \times F_{G_{S,R_m}/S,PR}(y_1 + y_2)dy.
$$

(A.1)

From (23), we infer the CDF and the corresponding PDF of the RV $G_{S,R_m}/S,PR$ as

$$
F_{G_{S,R_m}/S,PR}(z) = \lambda_5 \sum_{p=0}^{\infty} \frac{(-1)^p}{\lambda_5 + p \lambda_2} = \frac{1}{\lambda_5 + \lambda_2 z}
$$

$$
f_{G_{S,R_m}/S,PR}(z) = \frac{\lambda_2}{\lambda_5 + \lambda_2 z}.
$$

(A.2)

$$
f_{G_{S,R_m}/S,PR}(z) = \frac{dF_{G_{S,R_m}/S,PR}(z)}{dz} = \frac{\lambda_2}{(\lambda_5 + \lambda_2 z)^2}.
$$

(A.3)

Substituting (23) and (A.3) into (A.1), we have the equivalent formula:

$$
\Phi_1 = \int_0^{\gamma_{th}} \frac{\lambda_2 \lambda_5}{(\lambda_5 + \lambda_2 z)^2} \sum_{p=0}^{\infty} \frac{p}{M} \left(\frac{(-1)^p}{\lambda_4 + p \lambda_1 \nu_1 + \nu_2} \right) dy
$$

$$
= \lambda_2 \lambda_5 \sum_{p=0}^{\infty} \left(\frac{p}{M} \right) \int_0^{\gamma_{th}} \frac{(-1)^p}{(\lambda_4 + p \lambda_1 \nu_1 + \lambda_2 \nu_2)} dy
$$

$$
= \lambda_2 \lambda_5 \sum_{p=0}^{\infty} \left(\frac{p}{M} \right) \int_0^{\gamma_{th}} \frac{(-1)^p}{(\lambda_4 + p \lambda_1 \nu_1 + \lambda_2 \nu_2)} dy.
$$

(A.4)

By performing variable transformations for the integral in (A.4) as $t = 1/(\lambda_2 + \lambda_4 \nu_2)$ and $y = \nu_1(t) + \lambda_2 \nu_1 \nu_2 - \lambda_5 \nu_2(t)$, where $\nu_1(t) = \lambda_4 + \lambda_1 \nu_1$ and $\nu_1(t) = \lambda_1 \nu_1$, Lemma 1 is proven completely.

B. Proof of Lemma 2
Substituting (3) and (6) into the formula of Φ_2 as in (18), the probability Φ_2 is expressed as

$$
\Phi_2 = \Pr \left\{ \left(\frac{G_{S,R_m}/S,PR}{G_{S,R_m}/S,PR} \gtrless \nu_1 \right) \cap \left(G_{S,R_m}/S,PR < \gamma_{th} \right) \right\}
$$

$$
= \Pr \left\{ \left(G_{S,R_m}/S,PR \gtrless \nu_1 \right) \cap \left(G_{S,R_m}/S,PR < \gamma_{th} \right) \right\}.
$$

(B.1)

In (B.1), we consider two cases of perfect SICs ($\varepsilon = 0$) and imperfect SICs ($\varepsilon = 1$) to solve the following:

Case $\varepsilon = 0$: formula (B.1) is expressed and manipulated as

$$
\Phi_2 = \Pr \left\{ \left(G_{S,R_m}/S,PR \gtrless \nu_1 \right) \cap \left(G_{S,R_m}/S,PR < \gamma_{th} \right) \right\}
$$

$$
= \int_0^{\gamma_{th}} f_{G_{S,R_m}/S,PR}(y) \times \left(1 - F_{G_{S,R_m}/S,PR}(y_1 + y_2) \right) dy
$$

$$
= F_{G_{S,R_m}/S,PR}(y_2) - \int_0^{\gamma_{th}} f_{G_{S,R_m}/S,PR}(y) \times F_{G_{S,R_m}/S,PR}(y_1 + y_2) dy.
$$

(B.2)

where $F_{G_{S,R_m}/S,PR}(y)$ is the CDF of the RV $G_{S,R_m}/S,PR$ at a value $y_5 = \gamma_{th}/(\alpha_2 Q)$ (see (A.2)).
By using the PDF of the RV $G_{\xi_5,\nu_5,\nu_3,PR}$ as in (A.3) and the CDF of the RV $G_{\xi_5,\nu_5,\nu_3,PR}$ as in (23), formula (B.2) is rewritten as

$$\Phi_2 = F_{G_{\xi_5,\nu_5,\nu_3,PR}}(v_5) - \lambda_2 \lambda_4 \lambda_5 \sum_{p=0}^{M} \left(\frac{p}{M} \right) (-1)^p \int_0^{v_5} dy
\left(\lambda_4 + p \lambda_4 v_2 + p \lambda_4 v_2 y \right) \left(\lambda_5 + \lambda_2 y \right)^2.$$

(B.3)

Solving (B.3) also by variable transformations as in (A.4), Φ_2 is presented as (25) in Lemma 2.

Case $\epsilon = 1$: formula (B.1) is performed as

$$\Phi_2 = \Pr \left\{ \left(G_{\xi_5,\nu_5,\nu_3,PR} \geq v_1 G_{\xi_5,\nu_5,\nu_3,PR} + v_2 \right) \cap \left(G_{\xi_5,\nu_5,\nu_3,PR} < v_5 + v_6 g_m \right) \right\}$$

$$= \int_0^{v_5 + v_6 g_m} \int_0^{v_1 + v_2} \left(1 - F_{G_{\xi_5,\nu_5,\nu_3,PR}}(v_1 y + v_2) \right) \times f_{G_{\xi_5,\nu_5,\nu_3,PR}}(y) dy dt.$$

(B.4)

Using the result of (B.2) for the inner integral of (B.4) and the PDF of RV g_m, we have the next result:

$$\Phi_2 = \int_0^{\infty} \omega \ e^{-\omega t} \left(\frac{\lambda_2 (v_5 + v_6 t)}{\lambda_2 + \lambda_2 (v_5 + v_6 t)} - \lambda_2 \lambda_4 \lambda_5 \sum_{p=0}^{M} \left(\frac{p}{M} \right) \frac{(-1)^p}{\lambda_2 v_3(p) - \lambda_2 v_4(p)} \right) \ln \left(\frac{\lambda_5 + \lambda_2 (v_5 + v_6 t) v_3(p)}{\lambda_5 v_3(p) + (v_5 + v_6 t) v_4(p)} \right) \right) dt$$

$$= \lambda_2 \lambda_4 \lambda_5 \sum_{p=0}^{M} \left(\frac{p}{M} \right) \frac{(-1)^p}{\lambda_2 v_3(p) - \lambda_2 v_4(p)} \int_0^{\infty} e^{-\omega t} \ln \left(\frac{\lambda_5 + \lambda_2 (v_5 + v_6 t) v_3(p)}{\lambda_5 v_3(p) + (v_5 + v_6 t) v_4(p)} \right) dt.$$

(B.5)

We solve sequentially the integrals I_1, I_2, and I_3 in (B.5) as

$$I_1 = 1 - \frac{\lambda_2 \lambda_4 \lambda_5}{\lambda_2 v_6} e^{(\lambda_2 + \lambda_2 v_6) \Omega/(\lambda_2 v_6)} \Gamma \left(0, \frac{\lambda_5 + \lambda_2 v_3(\Omega)}{\lambda_2 v_6} \right),$$

(B.6)

$$I_2 = \lambda_2 \lambda_4 \lambda_5 \sum_{p=0}^{M} \left(\frac{p}{M} \right) \frac{(-1)^p}{\lambda_2 v_3(p) - \lambda_2 v_4(p)} \int_0^{\infty} e^{-\omega t} \ln \left(\frac{\lambda_5 + \lambda_2 (v_5 + v_6 t) v_3(p)}{\lambda_5 v_3(p) + (v_5 + v_6 t) v_4(p)} \right) dt$$

$$= \lambda_2 \lambda_4 \lambda_5 \sum_{p=0}^{M} \left(\frac{p}{M} \right) \frac{(-1)^p e^{(\lambda_2 + \lambda_2 v_6) \Omega/(\lambda_2 v_6)}}{\lambda_2 v_3(p) - \lambda_2 v_4(p)} \int_0^{\infty} \frac{(-1)^p}{\lambda_5 v_3(p) - \lambda_5 v_4(p)} \Gamma \left(0, \frac{\lambda_5 + \lambda_2 v_3(\Omega)}{\lambda_2 v_6} \right).$$

(B.7)
where \(\Gamma(u, v) \) is the upper incomplete Gamma function ([42], eq. 8.350.2).

Substituting (B.6), (B.7), and (B.8) into (B.5), the probability \(\Phi_2 \) is analyzed for the case \(e = 1 \) as (26) in Lemma 2. Hence, the lemma is proven completely.

Data Availability

The data used to support the findings of this study are included within the article.

Conflicts of Interest

The authors declare that there is no conflict of interest regarding the publication of this paper.

Acknowledgments

This research is funded by Vietnam National Foundation for Science and Technology Development (NAFOSTED) under grant number 102.04-2019.13. Khuong Ho-Van acknowledges the support of time and facilities from Ho Chi Minh City University of Technology (HCMUT), VNU-HCM, for this study.

References

