Hindawi

Wireless Communications and Mobile Computing
Volume 2020, Article ID 8867157, 12 pages
https://doi.org/10.1155/2020/8867157

WILEY

Hindawi

Research Article

User-Edge Collaborative Resource Allocation and Offloading
Strategy in Edge Computing

Zhenquan Qin (), Xueyan Qiu, Jin Ye, and Lei Wang

School of Software, Dalian University of Technology, 116620, China

Correspondence should be addressed to Zhenquan Qin; qzq@dlut.edu.cn

Received 16 March 2020; Revised 11 May 2020; Accepted 25 May 2020; Published 12 June 2020
Academic Editor: Wei Wang

Copyright © 2020 Zhenquan Qin et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

The foundation of urban computing and smart technology is edge computing. Edge computing provides a new solution for large-
scale computing and saves more energy while bringing a small amount of latency compared to local computing on mobile devices.
To investigate the relationship between the cost of computing tasks and the consumption of time and energy, we propose a
computation offloading scheme that achieves lower execution costs by cooperatively allocating computing resources by mobile
devices and the edge server. For the mixed-integer nonlinear optimization problem of computing resource allocation and
offloading strategy, we segment the problem and propose an iterative optimization algorithm to find the approximate optimal
solution. The numerical results of the simulation experiment show that the algorithm can obtain a lower total cost than the

baseline algorithm in most cases.

1. Introduction

The rapid development of the Internet of Things (IoT) and
mobile devices has facilitated the development of emerging
applications such as machine learning [1] and face recogni-
tion [2]. Relying on these rapidly developing new IoT tech-
nologies and the Internet of Everything scenarios, the
process of urban informatization is greatly accelerated, and
smart cities have become a vision for development [3-5].
Smart cities can perform real-time analysis based on urban
big data, provide new models of efficient and sustainable
urban governance, and establish effective communication
between people and cities. In recent years, the topic of smart
cities has attracted widespread attention. With the introduc-
tion of various learning technologies, people hope to make
cities smarter by collecting, storing, and processing big data.

One problem is that most of the emerging IoT technolo-
gies, including various learning technologies, are computa-
tionally intensive. However, due to volume and heat
considerations, sensor nodes or other mobile devices that
collect big data for smart cities usually have limited process-
ing power, battery power, and storage space, making it diffi-

cult to meet the needs of all computing tasks. Cloud
computing provides a solution [6, 7]. Migrating computing
tasks from the device to the cloud server eliminates the limi-
tations of the device itself. However, the cloud server is
remotely isolated from the device in terms of topology and
geographical location, and multiple storage and forwarding,
as well as long-distance communications, cause huge trans-
mission and propagation delays [8]. Smart cities need to
establish eflicient communication with people, and high
latency will reduce the user experience. And for applications
with high real-time requirements, this high latency is intoler-
able, and even in extreme cases, high latency can endanger
user safety, such as autonomous driving [9], automatic navi-
gation boats [10], and health care [11].

As an emerging distributed cloud architecture, edge com-
puting provides a new solution for smart cities [12, 13].
Deploy servers near the demanders of the service, avoiding
the high latency of a centralized cloud. At the same time,
offloading all tasks to the edge server saves more energy
compared to placing all tasks locally on the device. More-
over, edge computing can effectively reduce the pressure
on the core network. For example, smart transportation is

https://orcid.org/0000-0002-5804-276X
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2020/8867157

an important part of smart cities. The intelligent transporta-
tion system analyzes the videos and videos acquired by a
large number of traffic cameras to generate highly efficient
traffic strategies. Traditional video surveillance systems
must upload all surveillance videos to the cloud before ana-
lyzed, which will increase the traffic load on the core net-
work. If edge computing is used, you can analyze at the
edge server and reduce network pressure and the energy
consumption of the entire monitoring system [14], which
gives new vitality to smart transportation.

However, edge servers often have limited computing
resources [15], considering the economic benefits and scal-
ability of deployment. One reason is that edge servers are
deployed in large numbers and close to users, and the eco-
nomic benefits of deployment need to be considered. So a
single edge server does not need and cannot have as many
resources as a cloud center. Then, the edge server cannot fully
process all tasks. If all tasks are transmitted to the edge server
without any difference, it will result in low processing effi-
ciency and long processing time for the task. So how to off-
load tasks based on demand is a question worth studying.

The process of migrating computing tasks from a mobile
device to an edge server or a cloud center is called offloading
[16-18]. The development of an offloading strategy is a clas-
sic and important issue in the field of edge computing. Off-
loading tasks to the edge server will inevitably lead to
higher latency than local execution while reducing power
consumption. Therefore, mobile devices need to choose the
appropriate offloading strategy to meet their needs, such as
minimizing task execution time [19-21], minimizing power
consumption [22, 23], balancing delays, and power con-
sumption [24, 25].

In many of the past work, resource allocation problems
have been discussed. Most of them focus on solving the allo-
cation of computing resources or the allocation of communi-
cation resources for edge servers [15, 22-24]. Some discussed
the computational resource allocation and transmission
power control of mobile devices [19, 25]. In fact, the resource
allocation of mobile devices and edge servers will affect each
other and work together to generate an offloading policy.
Therefore, it is necessary to study the relationship between
computing resource allocation and offloading decision
generation.

Based on the above, we summarize the motivation of the
work as follows: (1) The offloading decision should be rea-
sonable. The constraints of computing resources and energy
need to be considered to achieve a better task assignment. (2)
Delay and energy consumption are two important parame-
ters of the task. The allocation of computing resources has
an impact on latency and energy consumption. (3) A param-
eter should be developed based on the deadline to express the
real-time requirements of the task. (4) In heterogeneous edge
servers, the execution time of tasks is different from local exe-
cution. The task execution costs need to explicitly consider
the heterogeneity of edge servers.

In this paper, we proposed a collaborative computing
resource allocation scheme and an offloading strategy for
mobile devices and the edge server. Our contributions are
as follows:

Wireless Communications and Mobile Computing

(1) We propose an integrated framework for computing
resource allocation and computational task offload-
ing in a mobile edge computing network

(2) We propose a computation offloading scheme that
achieves lower execution costs by cooperatively allo-
cating computing resources by mobile devices and
the edge server

(3) Compared to the weighting factors of execution delay
and energy consumption based on user preferences,
we add the deadline to the definition of the weighting
factor to reflect the real-time requirements of the task

(4) We segment the complex problem and propose
Genetic-Algorithm-Based-Iterative (GABI) algo-
rithm to obtain an approximate optimal solution

(5) The paper is organized as follows. In Section 2, we
review the related works. Section 3 introduces the
system modeling and problem formulation. Section
4 gives the solution. The simulation results are given
and discussed in Section 5. Section 6 concludes this

paper

2. Related Works

For mobile edge computing, computing offloading is the key
technology. A lot of work has been done on the computation
oftloading technology to achieve the purpose of reducing cal-
culation delay [8, 19-21] or saving equipment energy [22, 23,
26]. In [8], Xiao and Krunz studied the trade-off between
users’ QoE and fog node power efficiency in fog computing
networks, focusing on users’ QoE measured by average ser-
vice response time. The author proposed a novel cooperative
strategy called offload forwarding, and further proposed a
distributed optimization algorithm based on distributed
alternating direction method of multipliers (ADMM) to
maximize the user’s QoE. Rodrigues et al. in [19] considered
computing and communication at the same time. To mini-
mize service latency, the author controlled processing delay
through virtual machine migration and improved transmis-
sion delay through transmission power control. In [20],
Kao et al. proposed a complete polynomial-time approxima-
tion scheme (FPTAS) Hermes to solve the formulated NP-
hard problem, thereby, minimizing application delay while
meeting the specified resource utilization constraints. Jia
et al. in [21] present an online task offloading algorithm that
minimizes the completion time of the application on the
mobile device. In addition to the line topology task graphs,
the authors further considered the general topology task
graphs. For concurrent tasks, the author used a load-
balancing heuristic to increase the parallelism between
mobile devices and the cloud. Some literature focuses on
the energy consumption of mobile devices. In [22], You
and Huang minimized the weighted sum of mobile energy
consumption by solving the convex optimization problem
under the constraint of calculating the waiting time. The
author discussed both the infinite and limited edge cloud
computing capabilities. For the latter, the author proposed

Wireless Communications and Mobile Computing

a suboptimal resource allocation algorithm to reduce com-
plexity. You et al. in [23] studied the resource allocation of
multiuser mobile edge computing systems based on time
division multiple access (TDMA) and orthogonal frequency
division multiple access (OFDMA), and by solving the con-
vex optimization problem and the mixed-integer problem,
the weighted total mobile energy consumption under the
constraint of computing the waiting time is minimized. In
[26], Zhang et al. proposed an offloading scheme that opti-
mizes energy with guaranteed delay. This scheme considers
the link to the status of the fronthaul network and the back-
haul network at the same time and uses an artificial fish
swarm algorithm for global optimization.

Time delay and energy are the main indicators to evalu-
ate the performance of offloading calculation. It is meaning-
ful to study the trade-off between them. The author in [15]
designed the QoE maximization framework. QoE is a cost
reduction achieved by offloading tasks to fog nodes or remote
cloud servers, where the cost of performing tasks includes
computing energy and computing latency. In [24], Zhang
et al. proposed an online dynamic task allocation plan to
study the trade-off between energy consumption and execu-
tion delay of the MEC system with energy harvesting func-
tion. An online dynamic Lyapunov-optimized offloading
algorithm (ODLOO) is proposed, which could determine
task allocation, reduce the execution delay by increasing the
running frequency of the local CPU, and save energy by
selecting a suitable data transmission channel. [25] proposed
an energy-aware offloading scheme, which can jointly opti-
mize the allocation of communication and computing
resources with limited energy and sensitive delay. To calcu-
late the mixed-integer nonlinear problem of shunting and
resource allocation, Zhang et al. proposed an iterative search
algorithm that combines internal penalty functions with DC
programming to find the best solution. [27] studied the joint
design of local execution and calculation offloading strategies
in a multiuser MEC system. Mao et al. proposed an online
algorithm based on Lyapunov optimization, which deter-
mines the CPU cycle frequency of local execution and the
transmit power and bandwidth of the computation load dis-
tribution. The author used simulation experiments to verify
that the proposed algorithm can balance the power con-
sumption of mobile devices and the quality of computing
experience. However, with the exception of [25], most of
the work that studied the trade-oft between energy consump-
tion and delay has not clearly defined the weighting factors
that weigh the two. Most of them described the weighting
factors as a task attribute that changes according to user
needs or verified the effectiveness of the proposed algorithm
by adjusting the weighting factors. In [25], the author defined
the weighting factor as the current residual energy ratio of
mobile devices, which is an innovative idea and also gives
some inspiration to this article.

The deadline is an important attribute for computing
tasks [23, 24, 27-30]. The deadline of the task represents
the delay tolerance of the task. In the work focusing on task
scheduling, the deadline is used as an evaluation index. As
in [31], the author formulated a task scheduling and oftload-
ing strategy so that more tasks can meet the deadline require-

ments, and the number of tasks that have exceeded the
deadline, that is, the error rate, is used as the evaluation
index. In most of the tasks that focus on calculating the off-
load, the deadline of the task is only a constraint, which does
not give full play to the attribute of deadline and cannot
express the real-time requirements of the task. In this paper,
inspired by the literature [25], the deadline is introduced into
the definition of the weighting factor.

Limited resources are a characteristic of edge computing
systems, which prompted us to study the problem of resource
allocation. Allocable resources include the communication
power, channel bandwidth, and computing ability of user
equipment and edge servers. Considering the allocation of
multiple resources at the same time complicates the problem.
The authors in [15] studied computing resource allocation,
formulated a computational offloading game to model com-
petition among IoT users, and effectively allocated the lim-
ited processing power of fog nodes. In [22], You and
Huang formulated the optimal resource allocation problem
as a convex optimization problem, considering the situation
of unlimited and limited cloud computing capabilities. The
authors in [23] further considered the OFDMA system,
whose optimal resource allocation is formulated as a
mixed-integer problem. Zhang et al. considered the alloca-
tion of communication and computing resources in [25],
including channel selection, user equipment computing
resource allocation, and communication power allocation.
In [32], Yu et al. considered the allocation of radio and com-
puting resources. They proposed a near-optimal algorithm
for scheduling subcarriers and CPU time slots, respectively,
and further proposed a joint scheduling algorithm to manage
subcarriers and CPUs coordinately, thereby, achieving the
goal of reducing energy consumption. In [33], Sun et al. stud-
ied the joint problem of network economics and resource
allocation in MEC and considered the incentive framework
that can maximize system efficiency in the Industrial Internet
of Things (IIoT). They proposed two types of dual auction
schemes with dynamic pricing, namely, a breakeven-based
double auction (BDA) and a more efficient dynamic pricing
based double auction (DPDA) to determine the matching
pair between the IIoT MD and the edge server, and Pricing
mechanism to achieve high system efficiency under local
constraints.

3. System Model and Problem Formulation

3.1. System Model. We consider a network system with N
mobile devices and an edge server as shown in Figure 1.
The channel bandwidth between the mobile device u;(i €
{1,2,---,N}) and the edge server is w. The propagation
delay of edge server and mobile device communication is
negligible because the distance between the two is often
only a single hop or a limited number of hops.

In this network, the mobile device ; with limited energy
E™* will generate M tasks that need to be completed in each
time slot. The jth (je{l,2,--,M}) task generated by
device u; in time slot ¢ (¢t € {1,2,---,T}) is represented as

_ U E deadline
Ty = (di’j,t, Cijs Cijur Tt ,si’j)t), where d; ;, represents the

Wireless Communications and Mobile Computing

Edge server

%»%
fé%
@

Device 2

Device 1 Device 3

Device N-1

Device N

FIGURE 1: Network system model.

amount of data for the task, c”, -« denotes the number of CPU

cycles required for the task if it is executed locally, ¢;’;, means
the number of CPU cycles required for the task to execute on
the heterogeneous edge server, and tfﬁdh“e is the tolerable
execution time. s;;, is the offloading strategies of task 7; ;,
=1 when the task is performed locally, if not, 5; ;, = 0.
In each time slot, after the mobile device generates the
tasks and allocates the local computing resources, the infor-
mation of the task and the local computing resource alloca-
tion scheme are transmitted to the edge server. The edge
server calculates the offloading policy and returns it to the
mobile device. The task is executed locally or offloaded
according to the offloading policy.

J

3.2. Local Computing. We define f i, as the CPU frequency
of the mobile device u;, which represents the local computa-
tion ability of the device. Note that this value could be chan-
ged to get a better offloading strategy. Then, the computation
execution time tf)’]i‘jc“te_U for the locally performed task 7; , is

U
U _ i,j,t
= (1)
it

We ignore the queue delay of local execution. Then, the

time consumption ¢, ¢ of task 7, local execution is

U execute” U
tl]t tl] t : (2)

The energy consumption can be expressed as
u u\u
Cijt = K(fi,j,t) Cijb> 3)

where « is the energy efficiency coefficient. It is related to the
chip architecture, and we assume that this value is constant.

3.3. Edge Computing. When the mobile device u; decides to
offload the task 7;;, to the edge server, it needs to obtain

the data uplink transmission rate

pihijs
O+ D keNsi (1 - Sk,j,t)pkhk,j,t

ri=wlog, | 1+ , (4

irf

where w is the channel bindwidth and p, is the transmission
power of the mobile device u;. h; and o are channel gain and
noise power. The summation term in the denominator repre-
sents interference between channels. Therefore, the transmis-
sion time of the uplink is

d..
trans _ b)t
poams = S0t (5)
ijit

The time task 7;;, consumes to execute on a heteroge-
neous edge server is

v:‘%

texecute E _ ot (6)

ij,t fE 4
it

where fft is the computing resource allocated by the edge
server to the task from u; in the time slot t. As with commu-
nication resources, computing resources are also allocated
periodically.

So, we get the total time consumption of edge computing

E _ ,trans execute” E
Gie=tije Tl (7)

We ignore the return time because many computation-
ally intensive applications have a much smaller amount of
data than the input data.

Wireless Communications and Mobile Computing

Energy consumption is
trans
1]t pl ijt * (8)

In general, the time consumption and energy consump-
tion constitute the execution cost of the task. The cost of locally
executed task GY, ¢ and offloaded task GE., are expressed as

the weighted sum of time and energy consumption

it

th = z;ttgj,z + (1 - “i,j,t)/))ei,l;,t>)
ij,t = “i,j,ttfj,t + (1 - ai,j,t)ﬁefj,t' (10)

B is a normalization factor used to eliminate the unit
difference between time and energy consumption, which
can be equal to the ratio of average time to average energy
consumption.

The weight factor a; ;, (e; ;, € [0, 1]) is the task’s trade-off
between time and energy consumption. By changing the
weighting factor, the user can achieve faster execution or
more energy-efficient execution. In this paper, we define the
weighting factor by the time consumption of the task

texecute U

_ Chjt
%ije = ¢deadline ’ (11)

l]t

The task is generated on the mobile device, and the dead-
line is established with the execution time on the mobile
device, so it is reasonable to perform the weighting factor
with the local execution time.

After adding the offloading decision s, ;,, the generaliza-

i,j,t>
tion of the cost of task 7; ;, is expressed as:

U E
Gt =5ijuGiju + (1=5:;0) G (12)
3.4. Problem Formulation. From what has been discussed
above, we formulate problems as follows:

N T M
min ZZZ[’Jngj,t + (l]i)Gf]t:| (13)
sff i t=1 j=1
st MgV S Vi (14)
N
0< Y fh<F5 vt (15)
i=1
si,j,tti(,]j,t + (1 - Si,j,t) it S tldjeidlme’ Vij,t, (16)
T M
ZZ[et (1=s,) W] E™ Vi it (17)
=1 j=1
s €{01), Vijt o (18)

Constraint (14) indicates that the computing resource
allocated to a local task cannot exceed the maximum CPU
frequency, and constraint (15) indicates that the computing

resources allocated by an edge server in each time slot cannot
exceed its maximum capacity. Constraint (17) ensures that
the mobile device is able to complete computing tasks before
all energy is consumed. Constraint (18) indicates that the off-
loading decision is a 0-1 variable.

The objective function is nonlinear and contains the mul-
tiplication of variables, so this is a complex mixed-integer
nonlinear optimization problem with binary variables. This
kind of problem is difficult to solve, so we will divide the
problem in the following paper, and iteratively use genetic
algorithm method to find the approximate solution and carry
out simulation experiments to prove the validity of the
solution.

4. Solution

4.1. Local Execution Cost. The cost ng)t of the local execution
calculation task is split, and the specific expressions of the
parameter weight factor, time consumption, and energy con-
sumption are brought in.

U _ U
Gz]t i,j,tti,j,t + (1 -

2
(C%t) iUJ‘t u (U2
R T — + 11— W ﬁKCi)j)t (fi,j,t) .

deadline
(fi,j,t) tz]t bjtTbpt

U
ai,j,t) ﬂei, it

(19)

After observation, we found that the value of Gg‘,t depends

is a function of fY,

only on fl]t, so GU. Pt

iyt
Lemma 1. The function Gz]z(fi[,]j,t) is unimodal.

Lemma 1 can be easily proved by the derivative and
monotonicity of the function. Simplify the formula (19)
and it looks like y =ax? + bx + c(1/x*), where a>0, b<0,
and ¢ > 0. The second derivative is d*y/dx® = 6¢(1/x*) + 2a.
In the positive interval, the second derivative is always posi-
tive, then, the first derivative is monotonically increasing.
The first derivative dy/dx = 2ax — 2¢(1/x*) + b is continuous
when x >0, and as x tends to zero and positive infinity, the
derivative tends to be negative infinity and positive infinity.
From the interval value theorem, there is a point that the first
derivative is zero, and the point is a minimum point.

From Lemma 1, we get the CPU frequency f .+ that min-

imizes the local execution cost, which is the ideal best, but we
still need to consider the constraints (14), (16), and (17).

In constraint (14), we have to consider the upper and
lower bounds of f gt And in constraint (16),

U

U Cijit
Lt = LU
fz,],t

U

deadline
< tz st 4

(20)

fU >
Lt tdeadline
i,j,t

For a single task, we can override the constraint (17) to
make it look simpler

_— o)
U 1,7,t
fijes T
ki

where E7% is a real-time value indicating the remaining bat-
tery power of the device while performing the task.

The CPU frequency of the mobile device f f;t fluctuates

within [f™", f**]. Then, we get the new bound of f Zt

ub

Ib Ciie
mm i,j,
fi’]t = max f’ tdeadline >
ijit
and the best value to get the lowest ng,z

fio Fius<Fi<fig,
fie= Fiw Fipe<fijo (23)
fife Fie<fis
4.2. Edge Execution Cost. We found that the problem of task

execution cost on edge servers could not be considered sepa-
rately like that on mobile devices.

E E E
Gije=%ijitije + (1- “i,j,t)ﬁei,j,t’

&
s E
=a;, (tfgf‘t”s + T;I]E + (1 - ocl-,j’z) ﬁei)j‘t.

it

(24)

For locally executed computing tasks, different tasks are
independent in terms of computing resource allocation. But
it is different at the edge, where all tasks share the computing
resources of one edge server. The task execution cost and the
computing resources allocated by the edge server are
inversely related. Therefore, it is meaningless to study the
minimum cost of a computing task separately, and the
resource allocation for all tasks needs to be considered.

We can consider the minimum cost of all tasks in a time
slot. The edge server allocates computing resources for newly
arrived tasks in each time slot, and tasks in different time
slots are independent of each other.

N M cE.
1n Z Z “z]t(:r]azm JZ—}];> +(1- ai,j,t)ﬁ i, (25)

i=1 j=1 it

st. 0<fE <FE Vi (26)

it =

Wireless Communications and Mobile Computing

N
0<) fh, <F~. (27)
i=1

Note that we have not defined time constraints and
energy constraints here. We will mention them in the next
section and use them as conditions for developing an offload
strategy.

Problem (25) is a nonlinear optimization problem. Our
goal is to obtain a global optimal solution. Here, we use the
genetic algorithm to get an approximate optimal solution.
Then, we can get the minimum edge computing cost ij’t

according to f ft, the calculation result of question (25).

4.3. Offloading Decision and Resource Allocation. The initial
allocation of computing resources is for all tasks in this time
slot. That is, before the initial oftload policy, the default off-
load policy is to offload all tasks, s =0. An obvious problem
is that due to deadline constraints and energy constraints,
offloading all tasks cannot be taken as the final offloading
decision, and the allocation of computing resources with
the default oftloading condition is not reasonable. Therefore,
in this section, we propose a Genetic-Algorithms-Based-Iter-
ative (GABI) algorithm to obtain reasonable offloading
decisions and resource allocation methods through iterative
calculations.

The first step is to filter based on constraints. We denote
the new offloading strategy s’ and assign initial values to it
s' =s. In the previous section, we mentioned that time con-
straint is one of the conditions for filtering. After obtaining
the calculation resource allocation result ffv we can get

the total time of edge execution tE If tfﬂ tf};jdh“e, then
!

s =1L

For energy constraints, the energy consumption of the
edge calculation is independent of the calculation resource
allocation, so the energy constraint is not added in the prob-
lem (25). Moreover, we have obtained local computational
resource allocations that satisfy energy constraints in the pre-
vious section, while the energy consumption of edge compu-
o= Lif
We use the matrix s to record the current value of

tations is generally less than local computation. So s’

ef. > el

i] t irj, t
s',sT =s'. Then, the process of filtering can be expressed as
Algorithm 1.

sT will be used later as one of the conditions for stopping
the iteration. The other condition is G,, which is the total task
execution cost calculated by bringing s” and f* into (12).

The second step is to filter tasks based on the execution
costs. After the computing resource allocation of the edge
server is obtained, the execution cost of the task on the edge
server can be calculated and further compared with the task’s
local execution cost. If a task is found to cost more to execute
on the edge server, we think it is better to perform it locally
on the user device. The second filtering is based on the first

filtering, so we define a new offloading decision matrix s

and initialize it, s" =s'. This step is shown in Algorithm 2.
After filtering, we get a new offloading strategy s'. If

s" = s, then, we think that a stable offloading strategy has

Wireless Communications and Mobile Computing

Input: task set 7, offloading strategy

Output: new decision s’

Iis s

2: for every task ;]t do

Get tm usmgf from (25). t£

Get ez]t ef]t =pi tztzutm

if tfjt > tde“dl’”e or e
e = 1.

end if

: end for

it

3
4
5: it
6
7
8

=p; (dz]t/rt]t)
. > e then

S

— ttmns n texecute E _

ijt i,jt (di]t/rtjt) (fj,t/fft)

ArGoriTHM I: Filtering Based on Constraints

Input: task set 7 , offloading strategy s'
Output: new decision s”

1" !
l:s «——s

2: for every task 7, ;, do

3: GetGl]t ijt tjttfjt-'—(l_ 1]t)ﬁef]t
— deadli

4 Get GzL;t th ((c t]t) /(fljl’ tzj? ")+

5 1fG1],>G,]tthen

6: 1]! =1

7 endlf

8: end for

deadl
(l]t/ftjttl]e? me)ttE]t

deadline
(1 - Cl]t/fljttl]t

(1] t/fl] tt;j]c?dlme
U \2
)ﬁKCi,j,t(f')

i,jt

)ﬁ l]t

ArLcoriTHM 2: Filtering Based on Cost

been obtained, and the GABI algorithm can return directly.
So we get the final offloading strategy s and the computing
resource allocation method f*.

But if the offloading strategy s" is different from the
default offloading strategy s, the obtained computing resource
allocation strategy cannot minimize the edge execution cost
because some allocated resources are not used. Therefore,
computing resources need to be reallocated.

Assign the value of s”' to s. Once again, the optimization
problem of minimizing the edge execution cost is solved.
This time, s is added to remove the locally executed task:

N M
HEHZZ(1]t)GF]t’ (28)
i=1 j=1
st. 0<fi, <F, Vi (29)
N
0<) fi, <F~. (30)
i=1

After the new resource allocation scheme f is obtained,
we get s’ using Algorithm 1, and get G, using s’ and fE, by
(12). At this time, compare G, and G;. If G, > G;, then
stop iteration, and the final offloading strategy is deter-
mined to be sT. Assign s” to s, then get the final computing

resource allocation method f* through (28), and the GABI
algorithm returns.

If G, < G,, the iteration continues: recording s’ with s’,
filtering based on cost, judging the iteration termination con-
ditions, iterating again, and so on.

The computing resource allocation and the offloading
decision is given in Algorithm 3. Algorithm 3 shows the
whole process of the GABI algorithm.

5. Simulation Result

In this section, we design simulation experiments to verify
the effectiveness of our proposed algorithm. We compare
the performance of our proposed method with the baseline
scheme, the probabilistic offloading scheme, and the energy-
aware offloading scheme. We consider an edge computing
network with one edge server and N mobile devices, where
N ranges from 3 to 9. We set the maximum computing power
of the edge server to 4 GHz, and the computing power of
mobile devices ranges from 0.2 GHz to 1 GHz. The initial
CPU frequency of the mobile device is randomly generated
between 0.5 and 1 GHz, which is used to calculate the nor-
malization factor 3 and the deadline of tasks. Mobile device
transmission power is 20 dBm.

The simulation process consists of 10 time slots in which
the mobile device generates 5 computational tasks. The
amount of task data is randomly generated between [300,

Wireless Communications and Mobile Computing

Input: task set 7

l: forall t € T do

repeat

"
S§——S§ .

: if G, > G, then
10: s——s'.

17: until s = s
18: return s, fE .
19:end for

Output: offloading decision s, computing resource allocation scheme f*

2: Initialization: s — 0, s’ «——s, s
Get G, according to (24)(12).

Get s' by calling Algorithm 1.

3
4
5
6: Calculate ff using genetic algorithms through (28).
7
8 Get G, using s through (24)(9)(10)(12).

9

T
11: Calculate f* using genetic algorithms through (28).
12: return s, f’E .
13: end if
14: sT —s.

15: Calculate G, using s” through (24)(9)(10)(12).
16: Gets' by calling Algorithm 2.

T "
——s§,§ «—s.

ArcoriTHM 3: Genetic-Algorithms-Based-Iterative(GABI) algorithm

1200] KB. The local computing resources required to com-
plete the task are randomly generated between [0.1, 1]
GHz. Considering the heterogeneity of devices, the required
computing resources performed on the edge server is [0.2,
1.2] times than that of local execution. The task deadline is
randomly generated in [0.5, 5] s, and the value is guaranteed
to be greater than the local task execution time calculated by
the initial CPU frequency of the mobile device.

The total bandwidth of the network is 2 MHz, which is
evenly distributed by all mobile devices. The path loss model
between the mobile device and the edge server is considered
as the lognormal distribution.

In Figure 2, we consider the impact of offloading strategy
on total cost, time, and energy consumption under different
mobile device quantities. “All local” and “All MEC” in
Figure 2 represent all tasks executed locally and all offloading
schemes. As shown, compared with two baselines, our solu-
tion maintains lower cost, medium execution time, and
power consumption in most cases. When there are fewer
mobile devices, the edge server allocates more resources to
each user, so the task execution time can be even lower than
the local execution, and the total task cost is lower. As the
number of users increases, the edge execution time becomes
longer, so the total cost of edge execution approaches or even
exceeds local execution, even though the energy consumed
by edge execution is still much lower than local execution.
The energy consumption of local execution tasks is several
times or even ten times that of edge execution, so even if
the time consumption is slightly lower, there is still a higher
total cost.

In Figure3, we compare the performance of our scheme
and the probabilistic offloading scheme. The idea of the prob-
abilistic offloading scheme is that the computing server has a

certain probability of being offloaded by the edge server.
Whether to offload is determined by probability, without
comparing the cost of tasks performed locally and edge. We
compared the cases with unloading probabilities of 0.2, 0.5,
and 0.8. The experimental results show that our proposed
scheme can always achieve the lowest task execution cost.
When the number of users is small, the computing resources
of the edge server are less competitive, and the total cost of
the solution with a high probability of oftfloading is lower.
This is consistent with the “ALL MEC” baseline solution in
Figure2 when the number of users is low. As the number of
users increases, the low-probability offloading solution grad-
ually achieves lower costs. In terms of time and energy con-
sumption, our solution is also at a relatively low level.

In Figure4, we compare the impact of the definition and
treatment of weighting factors in this article and in the liter-
ature [25]. The document [25] defines the weighting factor
a=a*rf, where r* is the ratio of the remaining energy of
the current user equipment to the maximum battery capac-
ity. In order to reflect the effect of the method in [25], we
have selected a special piece of data. In this simulation, the
remaining power of the user equipment is small. As a result,
at the beginning of the third time slot, the weighting factor of
the task calculated by the [25] method decreases rapidly, as
shown by the polyline on the way with the legend “Rest
Energy Defines « . In order to save energy, most tasks choose
to offload, even if the cost of edge execution is much higher
than local execution. The method in this paper does not focus
on energy perception, so in most cases, the strategy of keep-
ing the lowest cost is selected. When the local execution cost
of sending some tasks is low, choose not to offload.

In Figure 5, we consider the impact of local comput-
ing resource allocation on total cost, time, and energy

Wireless Communications and Mobile Computing

600 -

500 -

Time consumption

1500 -

1000

500

Number of users

Energy consumption

1500 -

1400

—_

(=1

(=3

S
1

800 ~

600 4 -

‘ ‘ I S
o g———%k .) .
r_——A»— &

4 5 6 7 8 9

Number of users

F1GURE 2: The impact of offloading strategy on total cost, time, and energy consumption under different mobile device quantities.

400 A
= 300
&2
200 A
N
100 -
[
0 T T T T T 1
3 4 5 6 7 8 9
Number of users
—o— GABI
--m- Alllocal
—&- AllMEC
P
s
2

FIGURE 3:

consumption under different user quantities. “fUmax”,
“Umin”, and “fUmid”, respectively, represent local com-
puting resource allocation with f
F™™)/2. “fUoriginal” stands for the CPU frequency preset

Number of users

GABI
Offload probability 0.2

max
i >

f

Time consumption

min
i

1500 -

, and (f™

Number of users

Offload probability 0.5
—¢- Oftload probability 0.8

+

1

Energy consumption

1400 ~

1200 4 - - oo

1000

800 ~

600

400 4"

200

Number of users

The impact of offloading strategy on total cost, time, and energy consumption under different mobile device quantities.

by the user equipment. Our approach to finding the best local
resource allocation scheme is feasible and effective. Com-
pared to the for baselines, our proposed method always finds
the lowest cost. Higher CPU frequencies result in faster

10 Wireless Communications and Mobile Computing

: : SN ; g

E 184, Ao N/l g

= ‘ F cod ‘ 2,

> £ / g
3 3 AR : : : 2
= & 164 ----i-fl S
3 S S ‘ ‘ ‘ o
= o ,I @
g S : : : 5

H 14_""'1'1""""'1 """ P [_E]

Time slot Time slot Time slot

- Alllocal —e— Deadline defines o
~-%- AIIMEC -8- Restenergy defines

FIGURE 4: In multiple consecutive time slots, compare the impact of the proposed scheme and the energy-aware offloading scheme on the total
cost, delay, and energy consumption.

‘ gt
2500 -l S 2500 -t S
' ' ' ' ' ' 2000 . . . A .
. :/'
S -/
2000 7 - q 2000 7 e
‘ ‘ ‘ ‘ ‘ . 8 ‘ ‘ ‘ ‘ ‘ .8 /{‘
21500 1 i B !
8 : : : : : - 3
S 1500 o - S 2 £ 1500 -
E - S
=) c>13
E 1000 5
1000 4 -« oe et 1000 -
500
500 —
A
0 0| T T T T T 1
3 4 5 6 7 8 9 3 4 5 6 7 8 9 3 4 5 6 7 8 9
Number of users Number of users Number of users
—e— Proposed local frequency allocation ----- Offload probability 0.5
- - fUmax —¢- Offload probability 0.8
fUmax

FiGure 5: The impact of local computing resource allocation on total cost, time, and energy consumption under different mobile device
quantities.

execution speeds, but at the same time result in higher gets lower execution time than “fUmin”, fully weighing the
energy consumption, as evidenced by the figure. Our algo- impact of time and energy on mission cost. It is noted that
rithm achieves less energy consumption than “fUmax” and the average allocation “fUmid” can approach the optimal

Wireless Communications and Mobile Computing

Time consumption

Total cost

Number of users

—o— GABI
--- Random
-m- Equal

FIGUure 6: The impact of edge computing resource allocation on
total cost and time consumption under different mobile device
quantities.

solution in many cases. The reason is that in most cases, the
value range of the user CPU is not extreme. The calculated
local optimal resource allocation plan is a value that can be
obtained in most cases and is very close to (fi™ + fi"")/2.
Although the preset CPU frequency of the user equipment
can also achieve better results, it is unstable.

In Figure 6, we compare the impact of edge server com-
puting resource allocation schemes on time consumption
and total cost under different user numbers. “Equal” and
“Random”, respectively, indicate that the edge server evenly
allocates and randomly allocates computing resources to
users. The edge server resource allocation scheme does
not affect the energy consumption of edge execution, but
it indirectly affects the oftload decision and total cost. As
shown in the figure, it is obvious that the random allocation
scheme is costly and unstable, and the method of the aver-
age allocation is close to the optimal solution in many
cases, but the proposed method can achieve the lowest cost
and time consumption.

6. Conclusions

In this paper, we investigate the resource allocation and off-
loading decisions of mobile devices and edge servers in edge
computing. To minimize the total cost of task execution, we
define weighting factors based on deadlines to consider the
impact of time and energy consumption on costs. We consid-
ered an edge computing network consisting of edge servers
and users and built mathematical models. For difficult
MINLP problems, we split the problem and iteratively opti-

11

mize it. The result is that an approximate optimal solution
is not a globally optimal solution. In future work, we will con-
sider designing heuristic algorithms to reduce complexity
and improve performance.

Data Availability

The simulation data used to support the findings of this study
are available from the corresponding author upon request.

Conflicts of Interest

The authors declare that there is no conflict of interest
regarding the publication of this paper.

Acknowledgments

The work was supported by “National Natural Science
Foundation of China” with No. 61842601 and 61902052,
“National Key Research and Development Plan” with
No. 2017YFC0821003-2, “Dalian Science and Technology
Innovation Fund” with No. 2019J11CY004, and “the Funda-
mental Research Funds for the Central Universities” with No.
DUT19RC(3)003.

References

[1] S. Wang, T. Tuor, T. Salonidis et al., “When edge meets learn-
ing: adaptive control for resource-constrained distributed
machine learning,” in IEEE INFOCOM 2018 - IEEE Conference
on Computer Communications, pp. 63-71, Honolulu, HI, USA,
April 2018.

[2] P.Hu, H. Ning, T. Qiu, Y. Zhang, and X. Luo, “Fog computing
based face identification and resolution scheme in internet of
things,” IEEE Transactions on Industrial Informatics, vol. 13,
no. 4, pp. 1910-1920, 2017.

[3] R.Kitchin, “The real-time city? Big data and smart urbanism,”
GeoJournal, vol. 79, no. 1, pp. 1-14, 2014.

[4] K. Su, J. Li, and H. Fu, “Smart city and the applications,” in
2011 International Conference on Electronics, Communications
and Control (ICECC), pp. 1028-1031, Ningbo, China, Septem-
ber 2011.

[5] R.E.Hall, B. Bowerman, J. Braverman, J. Taylor, H. Todosow,
and U. Von Wimmersperg, “The vision of a smart city,” Tech.
Rep., Brookhaven National Lab., Upton, NY, USA, 2000.

[6] K. Nowicka, “Smart city logistics on cloud computing model,”

Procedia-Social and Behavioral Sciences, vol. 151, pp. 266-281,

2014.

T. Clohessy, T. Acton, and L. Morgan, “Smart City as a Service

(SCaaS): a future roadmap for E-Government smart city cloud

computing initiatives,” in 2014 IEEE/ACM 7th International

Conference on Utility and Cloud Computing, pp. 836-841,

London, UK, December 2014.

[8] Y. Xiao and M. Krunz, “Qoe and power efficiency tradeoff for

fog computing networks with fog node cooperation,” in IEEE

INFOCOM 2017 - IEEE Conference on Computer Communica-

tions, pp. 1-9, Atlanta, GA, USA, May 2017.

S. Liu, L. Liu, J. Tang, B. Yu, Y. Wang, and W. Shi, “Edge com-

puting for autonomous driving: opportunities and challenges,”

Proceedings of the IEEE, vol. 107, no. 8, pp. 1697-1716, 2019.

g
)

©
s

12

(10]

(11]

(12]

(13]

(14]

(15]

(16]

(17]

(18]

(19]

[20]

(21]

(22]

(23]

[24]

T. Yang, H. Feng, C. Yang, Y. Wang, J. Dong, and M. Xia,
“Multivessel computation offloading in maritime mobile edge
computing network,” IEEE Internet of Things Journal, vol. 6,
no. 3, pp. 4063-4073, 2019.

A. M. Rahmani, T. N. Gia, B. Negash et al., “Exploiting smart
e-Health gateways at the edge of healthcare Internet-of-
Things: A fog computing approach,” Future Generation Com-
puter Systems, vol. 78, pp. 641-658, 2018.

A. Giordano, G. Spezzano, and A. Vinci, “Smart agents and fog
computing for smart city applications,” in Smart Cities. Smart-
CT 2016. Lecture Notes in Computer Science, vol 9704, E. Alba,
F. Chicano, and G. Luque, Eds., pp. 137-146, Springer, Cham,
2016.

Y. C. Hu, M. Patel, D. Sabella, N. Sprecher, and V. Young,
“Mobile edge computing: a key technology towards 5g,” ETSI
white paper, vol. 11, no. 11, pp. 1-16, 2015.

N. Chen, Y. Chen, Y. You, H. Ling, P. Liang, and
R. Zimmermann, “Dynamic urban surveillance video stream
processing using fog computing,” in 2016 IEEE Second Inter-
national Conference on Multimedia Big Data (BigMM),
pp. 105-112, Taipei, Taiwan, April 2016.

H. Shah-Mansouri and V. W. S. Wong, “Hierarchical fog-
cloud computing for iot systems: a computation oftloading
game,” IEEE Internet of Things Journal, vol. 5, no. 4,
pp. 3246-3257, 2018.

M. Aazam, S. Zeadally, and K. A. Harras, “Offloading in fog
computing for iot: review, enabling technologies, and research
opportunities,” Future Generation Computer Systems, vol. 87,
pp. 278-289, 2018.

P. Mach and Z. Becvar, “Mobile edge computing: a survey on
architecture and computation offloading,” IEEE Communica-
tions Surveys & Tutorials, vol. 19, no. 3, pp. 1628-1656, 2017.

X. Wang, Z. Ning, and L. Wang, “Offloading in internet of
vehicles: a fog-enabled real-time traffic management system,”
IEEE Transactions on Industrial Informatics, vol. 14, no. 10,
pp. 4568-4578, 2018.

T. G. Rodrigues, K. Suto, H. Nishiyama, and N. Kato, “Hybrid
method for minimizing service delay in edge cloud computing
through vm migration and transmission power control,” IEEE
Transactions on Computers, vol. 66, no. 5, pp. 810-819, 2017.

Y.-H. Kao, B. Krishnamachari, M.-R. Ra, and F. Bai, “Hermes:
latency optimal task assignment for resource-constrained
mobile computing,” IEEE Transactions on Mobile Computing,
vol. 16, no. 11, pp. 3056-3069, 2017.

M. Jia, J. Cao, and L. Yang, “Heuristic offloading of concurrent
tasks for computation-intensive applications in mobile cloud
computing,” in 2014 IEEE Conference on Computer Communi-
cations Workshops (INFOCOM WKSHPS), pp. 352-357,
Toronto, ON, Canada, April-May 2014.

C. You and K. Huang, “Multiuser resource allocation for
mobile-edge computation offloading,” in 2016 IEEE Global
Communications Conference (GLOBECOM), pp. 1-6, Wash-
ington, DC, USA, December 2016.

C. You, K. Huang, H. Chae, and B. H. Kim, “Energy-efficient
resource allocation for mobile-edge computation offloading,”
IEEE Transactions on Wireless Communications, vol. 16,
no. 3, pp. 1397-1411, 2017.

G. Zhang, W. Zhang, Y. Cao, D. Li, and L. Wang, “Energy-
delay tradeoff for dynamic oftfloading in mobile-edge comput-

ing system with energy harvesting devices,” IEEE Transactions
on Industrial Informatics, vol. 14, no. 10, pp. 4642-4655, 2018.

(25]

(26]

(27]

(28]

[29]

(30]

(31]

(32]

(33]

Wireless Communications and Mobile Computing

J. Zhang, X. Hu, Z. Ning et al., “Energy-latency tradeoff for
energy-aware offloading in mobile edge computing networks,”
IEEE Internet of Things Journal, vol. 5, no. 4, pp. 2633-2645,
2018.

H. Zhang, J. Guo, L. Yang, X. Li, and H. Ji, “Computation
offloading considering fronthaul and backhaul in small-cell
networks integrated with mec,” in 2017 IEEE Conference
on Computer Communications Workshops (INFOCOM
WKSHPS), pp. 115-120, Atlanta, GA, USA, May 2017.

Y. Mao, J. Zhang, S. H. Song, and K. B. Letaief, “Power-delay
tradeoff in multi-user mobile-edge computing systems,” in
2016 IEEE Global Communications Conference (GLOBECOM),
pp. 1-6, Washington, DC, USA, December 2016.

T. Zhu, T. Shi, J. Li, Z. Cai, and X. Zhou, “Task scheduling
in deadline-aware mobile edge computing systems,” IEEE
Internet of Things Journal, vol. 6, no. 3, pp. 4854-4866, 2019.

Y. Xing and H. Seferoglu, “Predictive edge computing with
hard deadlines,” in 2018 IEEE International Symposium on
Local and Metropolitan Area Networks (LANMAN),
pp. 13-18, Washington, DC, USA, June 2018.

Y. Wang, K. Wang, H. Huang, T. Miyazaki, and S. Guo,
“Traffic and computation co-offloading with reinforcement
learning in fog computing for industrial applications,” IEEE
Transactions on Industrial Informatics, vol. 15, no. 2,
pp. 976-986, 2019.

J. Meng, H. Tan, C. Xu, W. Cao, L. Liu, and B. Li, “Dedas:
Online task dispatching and scheduling with bandwidth con-
straint in edge computing,” in IEEE INFOCOM 2019 - IEEE
Conference on Computer Communications, pp. 2287-2295,
Paris, France, April-May 2019.

Y. Yu, J. Zhang, and K. B. Letaief, “Joint subcarrier and cpu
time allocation for mobile edge computing,” in 2016 IEEE
Global Communications Conference (GLOBECOM), pp. 1-6,
Washington, DC, USA, December 2016.

W. Sun, J. Liu, Y. Yue, and H. Zhang, “Double auction-based
resource allocation for mobile edge computing in industrial

internet of things,” IEEE Transactions on Industrial Informat-
ics, vol. 14, no. 10, pp. 4692-4701, 2018.

	User-Edge Collaborative Resource Allocation and Offloading Strategy in Edge Computing
	1. Introduction
	2. Related Works
	3. System Model and Problem Formulation
	3.1. System Model
	3.2. Local Computing
	3.3. Edge Computing
	3.4. Problem Formulation

	4. Solution
	4.1. Local Execution Cost
	4.2. Edge Execution Cost
	4.3. Offloading Decision and Resource Allocation

	5. Simulation Result
	6. Conclusions
	Data Availability
	Conflicts of Interest
	Acknowledgments

