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Weak signal detection is a significant problem in modern detection such as mechanical fault diagnosis. *e uniqueness of chaos
and good learning ability of neural networks provide new ideas and framework for weak signal detection field. In this paper,
Elman neural network is applied to detect and recover weak pulse signal in chaotic noise. For detection problem of weak pulse
signal under chaotic noise, based on short-term predictability of chaotic observations, phase space reconstruction for observed
signals is carried out. And Elman deep learning adaptive detection model (EDAD model) is established for weak pulse signal
detection, and a hypothesis test is used to detect weak pulse signal from the prediction error. For the recovery of weak pulse signal
under chaotic noise, a double-layer Elman deep neural network recovery model (DEDRmodel) is proposed, which is based on the
Elman deep learning network model and single-point jump model for weak pulse signal, and it is optimized with goal of
minimizing mean square prediction error of the Elman model. *e profile least squares method is applied to estimate parameters
of the DEDRmodel for difficult recovery of weak pulse signal because the DEDRmodel is essentially a semiparametric model with
parametric and nonparametric parts. In the end, simulation experiments show that the model built in this paper can effectively
detect and recover weak pulse signal in the background of chaotic noise.

1. Introduction

Weak signal is a weak amount that is difficult to detect. It is
small amplitude compared to background noise and is a
signal that is often annihilated by noise and has a low signal-
to-interference ratio [1, 2]. Weak signal detection has been
used for various methods to detect useful signals from
obseration signals, and it has broad application prospects in
the fields of radar, communication, automation, fault di-
agnosis, and seismic monitoring [3–7].

With the rapid development of science and technology, it
is urgent to detect and recover weak signals in engineering
applications. At the same time, with maturity and wide
application of chaos theory, the combination of chaos theory
and detection and recovery of weak signals has become a
research trend.

In 1990, Leung and Haykin first introduced chaos theory
into the field of sea clutter and then succeeded in extracting
weak target signals from chaotic noise background based on

chaotic characteristics using neural networks and MPSV
methods [8–12]. In recent years, many scholars have done a
lot of research on the weak signal under chaotic noise and
put forward many effective methods. For example, Wang
et al. studied a local tangent space projection method that
extracts weak harmonic signals from strong chaotic inter-
ference [13]. Liu et al. proposed a method to detect weak
harmonic signals from fractal noise by combining multiscale
fuzzy adaptive Kalman filtering with duffing chaotic oscil-
lators [14, 15]. Kurian and Leung proposed a method
combining dynamic reconstruction and the chaotic syn-
chronization enhancement model to detect weak signals in
chaotic clutter [16]. Du and Hou proposed the SVMmethod
for detecting weak harmonic signals in chaotic background
[17]. Xing et al. proposed a hybrid algorithm for weak signal
detection in the context of chaotic sea clutter [18]. Li et al.
proposed a local linear-periodic detection-Kalman filtering
hybrid algorithm to detect weak signal in strong chaotic
backgrounds [19]. Su et al. proposed a local linear-periodic
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graph detection-Kalman filtering hybrid algorithm for the
sinusoidal signal problem under strong chaotic background
[20]. Su et al. proposed a local linear autoregressive model
and a double local linear model to detect and recover weak
pulse signals in the background of chaotic noise [21]. *ese
methods generally can effectively detect target signals, but
often have problems such as low sensitivity, poor adapt-
ability, or high threshold value for SNR of detected weak
signals.

With the continuous research on neural networks and
deep learning, scholars combined neural network methods
based on chaos theory and phase space reconstruction,
which provides a new direction for improving the accuracy
of signal detection. Leung and Lo used an RBF network
predictor to introduce a detection technique for small sea
targets based on this dynamic model [9]. Chinese scholars
He et al. proposed a method for detecting signals submerged
under chaotic background using neural networks and
studied the antinoise interference of this method [22]. Zheng
et al. proposed an echo state network method for weak signal
detection in chaotic background and used genetic algorithm
to optimize its model parameters [23].

*e basic idea of the artificial neural network method is
to use the outstanding learning ability and good nonlinear
approximation ability of feed forward network and use
chaotic background signal generation mode to train feed
forward network, which makes it better than the traditional
linear prediction method in predicting highly complex
nonlinear time series. After training, the received signal is
subjected to single-step prediction, and the predicted value is
compared with actual received value to obtain a prediction
error, the prediction error is processed, and finally the
presence or absence of signal is obtained.

As a typical local regression network, Elman neural
network belongs to feedback neural network. It is very similar
to the forward neural network, but it has stronger computing
power. Its outstanding advantage is that it has strong opti-
mization calculation and associative memory function. Cao
and Wang [24] first proposed the use of Elman network to
detect transient signals and periodic signals under chaotic
background, but only by visual inspection of the detection
performance and no further recovery of the detection signal.
Based on this, our paper considers an adaptive detection and
recovery of Elman deep learning network based on weak
pulse signal in the background of chaotic noise. In the first
part, we reconstruct phase space of observed signal and
construct the Elman deep learning network to obtain one-step
prediction error. *e signal detection problem is converted
into a hypothesis test problem for prediction error and then is
combined with ACC value, ROC curve, and AUC value, and
dynamic threshold adaptive detection detects the presence of
weak pulse signal. In the second part, a double-layer Elman
deep neural network recovery model is constructed based on
pseudo-observation signal reconstruction, and parameters of
the model are estimated by using the least squares method to
recover the weak pulse signal. Specific idea is shown in
Figure 1:

*e structure of this paper is as follows: Section 2 de-
scribes weak signals for adaptive detection; Section 3

recovers weak pulse signals based on DEDRmodel; Section 4
presents simulation experiments and analysis; and Section 5
concludes the paper.

2. Detection of Weak Pulse Signals in the
Background of Chaotic Noise

2.1. Detection of Weak Pulse Signals. *e problem of
detecting weak pulse signals from the background of chaotic
noise can be abstracted into the following hypothesis test
problems:

H0: y(t) � x(t) + N(t) � x(t),

H1: y(t) � x(t) + s(t) + N(t) � x(t) + s(t),
(1)

where y(t) represents observed signal, x(t) represents
chaotic noise background signal, s(t) represents a weak
pulse signal and is independent of chaotic noise background
signal x(t), N(t) represents white noise with a mean of 0,
and x(t) represents the sum of chaotic noise background
signal x(t) and white noise N(t).

Since weak pulse signal s(t) is submerged in chaotic
noise background signal x(t), if the hypothesis test is di-
rectly performed by equation (1), it is impossible to detect
whether or not observation signal y(t) contains s(t).
*erefore, we must first remove the interference of chaotic
noise background signal x(t) and convert equation (1) into
the following hypothesis test problem:

H
∗
0 : y(t) − x(t) � N(t),

H
∗
1 : y(t) − x(t) � s(t) + N(t).

(2)

*at is, work to be done in this section is as follows: (1)
using the prior knowledge of chaotic background signal, a
single-step predictionmodel of observed signal is established
to obtain prediction error; (2) detecting whether there is a
weak pulse signal from prediction error.

2.2. Elman Deep Learning Neural Network Model. Elman
deep learning neural network is a typical dynamic recurrent
neural network. It is based on basic structure of BP net-
work, adding a receiving layer in hidden layer as a one-step
delay operator to achieve the purpose of memory so that the
system has the ability to adapt to time-varying charac-
teristics and enhance the global stability of the network. It
has more computational power than feed forward neural
network and can also be used to solve the problem of fast
optimization.

Elman neural network is generally divided into four
layers: an input layer, a hidden layer, a receiving layer, and
an output layer. *e connection between its input layer,
hidden layer, and output layer is similar to a feed forward
network. *e unit of input layer only serves as a signal
transmission, and the output layer unit plays a weighting
role. *e hidden layer unit has two kinds of activation
functions, linear and nonlinear. Usually, activation function
takes sigmoid nonlinear function.*e receiving layer is used
to memorize the output value of hidden layer unit before it
can be regarded as a delay operator with one-step delay. *e
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output of hidden layer is automatically connected to the
input of the hidden layer by the delay and storage of the
receiving layer. *is self-association method makes it sen-
sitive to historical data. *e addition of an internal feedback
network increases the ability of network itself to process
dynamic information to achieve dynamic modeling. Its
structure is shown in Figure 2.

In Figure 2, a set of input attributes is known as Y(t) �

(y(t), y(t − τ), . . . , y(t − (m − 1)τ))′, where t � n1, n1 +

1, . . . , n, n1 � 1 + (m − 1)τ. Each connection connected to a
neuron has a corresponding weight ω, where the connection
weight ω(1) is the connection weight matrix of the receiving
layer unit and the hidden layer unit, ω(2) is a connection
weight matrix of the input layer unit and the hidden layer
unit, and ω(3) is a connection weight matrix of the hidden
layer unit and the output layer unit. uc(t) and u(t) represent
the outputs of the receiving layer unit and the hidden layer
unit, respectively, yd(t + 1) represents the output of the
output unit, and 0≤ α< 1 is the self-joining feedback gain
factor.

Let ω(1)
q � (ω(1)

jq )j�1,...,Q � (ω(1)
1q , . . . ,ω(1)

Qq )′, ω(2)
q �

(ω(2)
iq )i�1,...,m � (ω(2)

1q , . . . ,ω(2)
mq)′, and ω(3) � (ω(3)

l )l�1,...,Q �

(ω(3)
1 , . . . ,ω(3)

Q )′.
As shown in the structure diagram, the mathematical

model of Elman neural network is

u(t) � fq ω(1)
q · uc(t) + ω(2)

q · Y(t)  
q�1,···,Q

′

� f1 ω(1)
1 · uc(t) + ω(2)

1 · Y(t) , . . . ,

fQ ω(1)
Q · uc(t) + ω(2)

Q · Y(t) )′,

(3)

uc(t) � αuc(t − 1) + u(t − 1), (4)

yd(t + 1) � g ω(3)
· u(t) . (5)

*e function g(•) is the activation function of output
neuron; the function f(•) is called the activation function of
hidden layer neurons. *e activation function often selects
sigmoid function [25], which is an “S” type differential
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Figure 1: Schematic diagram of detection and recovery of weak pulse signals in the background of chaotic noise.
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activation function. Its output is 0∼1, as shown in the fol-
lowing formula:

f(z) �
1

1 + e− z
. (6)

*e general expression obtained by (3)–(6) is

yd(t + 1) � g ω(3)
· fq ω(1)

q · uc(t) + ω(2)
q · Y(t)   

� g ω(3)
·

1

1 + e− ω(1)
q ·uc(t)+ω(2)

q ·Y(t) 
 

q�1,...,Q

⎛⎝ ⎞⎠.

(7)

*e Elman neural network learning process is shown in
Figure 3.

Let the actual output of t-th system be yd(t + 1); then,
the objective function of Elman neural network, i.e., the
error function, can be expressed as

E �
1
2

yd(t + 1) − y(t + 1) ′ yd(t + 1) − y(t + 1) . (8)

According to the gradient descent method, the partial de-
rivative of E(t + 1) for the weight is calculated and made 0, and
the learning algorithmof Elmanneural network can be obtained:

zE

zω(3)
� yd − y(  · g′(•) · u(t) � δ0 · u(t),

Δω(3)
� η3

zE

zω(3)
� η3 · δ0 · u(t) � η3 · yd − y(  · g′(•) · u(t),

zE

zω(2)
q

� yd − y(  · g′(•) · ω(3)
· u′(t)

� yd − y(  · g′(•) · ω(3)
· fq
′(•) · y(t) 

T

q�1,...,Q
,

Δω(2)
q � η2

zE

zω(2)
q

,

zE

zω(1)
q

� yd − y(  · g′(•) · ω(3)
· uω(1)′ (t),

zu(t)

zω(1)
q

� fq
′(•) ·

zuc(t)

zω(1)
q

⎛⎝ ⎞⎠

T

q

,

zuc(t)

zω(1)
q

� α
zuc(t − 1)

zω(1)
q

+ fq
′(•) · uc(t − 1) 

T
,

Δω(1)
q � η1

zE

zω(1)
q

,

δ0 � yd(t + 1) − y(t + 1)( g′(•),

(9)

where η1, η2, and η3 are the learning rates of ω(1), ω(2), and
ω(3), respectively.

*erefore, the gradient descent method of the mo-
mentum term is obtained as follows:

w(n + 1) � w(n) − Δw + β(w(n) − w(n − 1)), (10)

where w � (ω(1),ω(2),ω(3))′ and β is the momentum term
coefficient, which is generally 0.9.

2.3. Building a Single-Step Predictive Model. *e steps of
establishing a single-step prediction model for the observed
signals are as follows: (1) phase space reconstruction of the
observed signal; (2) establishing an Elman deep learning
network for the observed signal and obtaining a single-step
prediction error; and (3) dynamic threshold adaptive detection.

2.3.1. Phase Space Reconstruction. For the observed signal
y(t), t � 1, 2, . . . , n , a phase point in the reconstructed
phase space can be expressed as Y(t) � (y(t),

y(t − τ), . . . , y(t − (m − 1)τ))′, where t � n1, n1 + 1, . . . , n,
n1 � 1 + (m − 1)τ. *e Takens theorem [26] states that for
each point in the reconstructed phase space trajectory, there
is a smooth map f: Rm⟶ R such that y(t + 1) � h(Y(t)),
(t � n1, n1 + 1, . . . , n − 1). If you can find f or find the ap-
proximate mapping f of f, you can predict the next data point
y(t + 1). In this paper, the complex autocorrelation method
[27] is used to solve the delay time τ, and the Cao method [28]
is used to solve the embedding dimension m.

2.3.2. Establishing an Elman Deep Learning Adaptive De-
tection Model (EDAD Model). Establish an approximate
mapping of the observed signal y(t) after reconstructing the
phase space f:

y(t + 1) ≈ ht(Y(t)). (11)

*e single-step prediction value ht(Y(t)) is obtained,
and the prediction error e(t + 1) is also obtained:

e(t + 1) � y(t + 1) − ht(Y(t)). (12)

Substituting equation (9) into equations (3) and (5), the
prediction residual can be obtained as

e(t + 1) � y(t + 1) − yd(t + 1). (13)

…
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Figure 2: Schematic diagram of the Elman neural network.
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2.3.3. Dynamic 7reshold Adaptive Detection (DTAD).
Let e(n + 1) ∼ N(0, σ2), e(1), . . . , e(n) be a sample with an
overall capacity of n, with a hypothesis test:

H0: no to exist s(t)⟺H1: exist s(t). (14)

Construction statistic: T � (e(n + 1) − Ee(n + 1))/
Se(n+1)

. When H0 is established, T obeys the t-distribution
with degree of freedom n − 1. For a given 0< α< 1, a P

value� P |T|≥ |t0| , where t0 � (e(n + 1) − Ee(n + 1))/
Se(n+1)

. When P |T|≥ |t0| < α, the original hypothesis H0 is
rejected. At this time, it can be considered that the weak pulse
signal is included in the observed signal, and the threshold
value of the test tα/2(n − 1) can be obtained from the t-dis-
tribution table, and the dynamic threshold adaptive detection
can bemade according to the threshold value, therebymaking
the signal detection result more objective.

2.4. Detector Performance Evaluation. A hypothesis test is
performed according to Section 2.3 to determine whether
there is a weak pulse signal s(t) in the observation signal
y(t). *e flow of detecting weak pulse signals using
the Elman deep learning network model is shown in
Figure 4.

*e weak pulse signal has been detected using the Elman
deep learning network model in Section 2.3, but the detected
signal is only judged from the error graph by the naked eye,
which makes our judgment highly likely to cause mis-
judgment, so we envision finding ways to make an objective
diagnosis.

2.4.1. Accuracy. *e scientific definition of accuracy (Acc)
refers to the degree to which the average value of multiple
measurements under certain experimental conditions is
consistent with the true value, expressed as error. It is used to
indicate the magnitude of the systematic error. *e absolute
value of the measurement error is large, and its accuracy is
low. But the accuracy is not equal to the error.

Assuming that a signal is detected as 1 and no signal is
detected as 0, the four cases that occur are as shown in Table 1:

It can be seen from Table 1 that TP and TN are the
probabilities of correct prediction and can be obtained:

Acc �
TP + TN

TP + FP + TN + FN
. (15)

2.4.2. ROC Curve and AUC. Receiver operating character-
istic curve (ROC curve) is also called the sensitivity curve.
ROC curve is based on a series of different two-category
methods (demarcation value or decision threshold), with the
true-positive rate (TPR) as the ordinate and the false-pos-
itive rate (FPR) as the abscissa. *e true-positive rate (TPR)
is calculated as TPR � TP/(TP + FN), and the false-positive
rate (FPR) is calculated as FPR � FP/(FP + TN).

*e ROC curve evaluation method has a wide range of
application. In practical applications, the closer the ROC
curve is to the upper left corner, the higher the accuracy of
the test is. *e point closest to the ROC curve in the upper
left corner is the best threshold with the least error, with the
fewest false positives and false negatives.

Since the ROC curve does not clearly indicate which
classifier is better, the AUC is used here for further mea-
surement. AUC (area under the curve) is defined as the area
under the ROC curve. Obviously, the value of this area will
not be greater than 1. Since ROC curve is generally above the
line y� x, the range of AUC is usually between 0.5 and 1.
AUC can be used as a numerical value to directly evaluate
the quality of the classifier. *e value is larger, and the
performance is better. LetM andN be the number of positive
samples and the number of negative samples, respectively.
ranki indicates the sequence number of the i-th sample (the
probability score is sorted from small to large, ranked at the
i-th position), and i∈positive class indicates that only the se-
quence numbers of the positive samples are added together,
that is, the formula is obtained as

AUC �
i∈positive classranki − ((M ×(M + 1))/2)

M × N
. (16)

3. Recovery of Weak Pulse Signals in the
Background of Chaotic Noise

3.1. Double-Layer Elman Deep Neural Network Recovery
Model (DEDRModel). A single-point jump model for weak
pulse signals is established based on the characteristics of

Initialization
weight ω(i)

Yes

Hidden layer
Output uc (t)

Input y (t) Calculation u (t)
Step t output

yd (t + 1)

Output y (t + 1)

Calculation
E (y)

Update ω(i)

No

e (t + 1) = y (t + 1) – yd (t + 1) < 0.01?

Figure 3: Elman deep learning neural network learning process.
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weak pulse signals: s(t) � 
k
i�1aisti

(t) � α′ s(t), where

si(t) �
1, t � ti

0, else , s(t) �

(s(t1))′
⋮

(s(tk))′
⎛⎜⎜⎝ ⎞⎟⎟⎠, α� (a1,a2, . . . ,ak)′.

So to restore s(t), we only need to estimate α.
According to Section 2, if a weak pulse signal is detected,

the following model is established in combination with the
weak pulse signal:

x(t) � y(t) − a′ s(t),

x(t + 1) � gt(
X(t)) + ε(t).

⎧⎨

⎩ (17)

*e above model is called double-layer Elman deep
neural network recovery model (DEDR), where
X(t) � (x(t), x(t − τ), . . . , x(t − (m − 1)τ))′, ε(t) repre-
sents white noise with zero mean. It can be seen from
equation (17) that the model contains two parameters α and
gt(

X(t)). To recover s(t), only α needs to be estimated.
*erefore, the problem of recovering the weak pulse signal
in the background of chaotic noise is transformed into the
problem of estimating the parameters in the model.

3.2. Parameter Estimation of DEDR Model. When the
squared sum of the errors of the model is the smallest, the
value of α is estimated to be the optimal value, namely,

α � argmin
α



n− 1

t�n1

x(t + 1) − gt( X(t)) 
2
. (18)

As can be seen from equation (18), the value of α is
estimated to require a value of gt(

X(t)). However, from
equation (17), it is known that the value of gt(

X(t)) is
estimated to require a value of α. Here, the profile least
squares (PLS) method [29] is selected to estimate the values
of α and gt(

X(t)) simultaneously.
*e procedure for estimating the optimal value of

the parameter using PLS algorithm is as follows: (1) esti-
mating the value of gt(

X(t)) given the value of α; (2)
updating the value of α with gt(

X(t)) estimated in the
first step; (3) repeating steps (1) and (2) until the best es-
timate is obtained. *e specific calculation process is as
follows:

(1) Given the value of α, estimate the value of gt(
X(t))

(set α initial value to 0).
As can be seen from equation (3), xt+1 �

g(xt, xt− τ , . . . , xt− (m− 1)τ) + εt. *e analogy (18) for-
mula establishes the estimation equation for
gt(

X(t)):

gt(•) � argmin
t



n− 1

t�n1

x(t + 1) − gt( X(t)) 
2
. (19)

When α is given, the Elman deep neural network
model can be established by the momentum gradient
descent method and gt(

X(t)) can be calculated
according to equation (19).

(2) Update the value of α
Suppose that there is

R(a) �  x(t + 1) − gt(
X(t)) 

2

�  y(t + 1) − a′ s(t + 1) − gt(
X(t)) 

2

�  y(t + 1) − a′ s(t + 1) − ω3
·

1

1 + e− ω(1)
q ·uc(t)+ω(2)

q · y(t)− a′ s(t),...,y(t− (m− 1)τ)− a′ s(t− (m− 1)τ)( ) 
 

q�1,...,Q

⎡⎢⎣ ⎤⎥⎦

2

.

(20)

Assuming that a is the smallest solution of the above
equation, R′(a) � 0, where R′(•) represents the
derivative of R(•).
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Figure 4: Flowchart for detecting weak pulse signals using
Elmanneural network.

Table 1: Confusion matrix.

Actual
Prediction

1 0 Total

1 True positive
(TP)

False negative
(FN)

Actual positive
(TP+ FN)

0 False positive
(FP)

True negative
(TN)

Actual negative
(FP+TN)

Total
Predicted
positive
(TP + FP)

Predicted
negative
(FN+TN)

TP+ FP+ FN+TN
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R′(a) � 2 y(t + 1) − a′s(t + 1) − gt(
X(t))  · − s(t + 1) −

zgt(
X(t))

za
 

� 2 y(t + 1) − a′s(t + 1) − ω3
·

1

1 + e− ω(1)
q ·uc(t)+ω(2)

q · y(t)− a′ s(t),...,y(t− (m− 1)τ)− a′ s(t− (m− 1)τ)( ) 
 

q�1,...,Q

⎡⎢⎣ ⎤⎥⎦·

· − s(t + 1) + ω3
· − 1 + e

− ω(1)
q ·uc(t)+ω(2)

q · y(t)− a′ s(t),...,y(t− (m− 1)τ)− a′ s(t− (m− 1)τ)( ) 
 

− 2
 

q�1,...,Q

⎧⎨

⎩

· e
− ω(1)

q ·uc(t)+ω(2)
q · y(t)− a′ s(t),...,y(t− (m− 1)τ)− a′ s(t− (m− 1)τ)( ) 

· ω(2)
q · (− s(t), . . . , − s(t − (m − 1)τ))

⎫⎬

⎭.

(21)

For any given a near a(n), there is an approximation:

0 � R′(a) ≈ R′ a
(n)

  + R″ a
(n)

  a − a
(n)

 ,

R″(a) � 4 y(t + 1) − a′s(t + 1) − gt(
X(t))  − s(t + 1) −

zgt(
X(t))

za
  · − s(t + 1) −

zgt(
X(t))

za
 

′

− 2 y(t + 1) − a′s(t + 1) − gt(
X(t)) 

z2gt(
X(t))

za

� 4 y(t + 1) − a′ s(t + 1) − ω3
·

1

1 + e− ω(1)
q ·uc(t)+ω(2)

q · y(t)− a′ s(t),...,y(t− (m− 1)τ)− a′ s(t− (m− 1)τ)( ) 
 

q�1,...,Q

⎡⎢⎣ ⎤⎥⎦

· − s(t + 1) + ω3
· − 1 + e

− ω(1)
q ·uc(t)+ω(2)

q · y(t)− a′ s(t),...,y(t− (m− 1)τ)− a′ s(t− (m− 1)τ)( ) 
 

− 2
 

q�1,...,Q

⎧⎨

⎩

· e
− ω(1)

q ·uc(t)+ω(2)
q · y(t)− a′ s(t),...,y(t− (m− 1)τ)− a′ s(t− (m− 1)τ)( ) 

· ω(2)
q · (− s(t), . . . , − s(t − (m − 1)τ))

⎫⎬

⎭

· 2 1 + e
− ω(1)

q ·uc(t)+ω(2)
q · y(t)− a′ s(t),...,y(t− (m− 1)τ)− a′ s(t− (m− 1)τ)( ) 

 
− 3

 
q�1,...,Q

⎧⎨

⎩

· e
− ω(1)

q ·uc(t)+ω(2)
q · y(t)− a′ s(t),...,y(t− (m− 1)τ)− a′ s(t− (m− 1)τ)( ) 

· ω(2)
q · (− s(t), . . . , − s(t − (m − 1)τ))

· e
− ω(1)

q ·uc(t)+ω(2)
q · y(t)− a′ s(t),...,y(t− (m− 1)τ)− a′ s(t− (m− 1)τ)( ) 

+ − 1 + e
− ω(1)

q ·uc(t)+ω(2)
q · y(t)− a′ s(t),...,y(t− (m− 1)τ)− a′ s(t− (m− 1)τ)( ) 

 
− 2

 
q�1,...,Q

· e
− ω(1)

q ·uc(t)+ω(2)
q · y(t)− a′ s(t),...,y(t− (m− 1)τ)− a′ s(t− (m− 1)τ)( ) 

· ω(2)
q · (− s(t), . . . , − s(t − (m − 1)τ))

− 2 y(t + 1) − a′s(t + 1) − ω3
·

1

1 + e− ω(1)
q ·uc(t)+ω(2)

q · y(t)− a′ s(t),...,y(t− (m− 1)τ)− a′ s(t− (m− 1)τ)( ) 
 

q�1,...,Q

⎡⎢⎣ ⎤⎥⎦

· − 2 1 + e
− ω(1)

q ·uc(t)+ω(2)
q · y(t)− a′ s(t),...,y(t− (m− 1)τ)− a′ s(t− (m− 1)τ)( ) 

 
− 3

 
q�1,...,Q

⎧⎨

⎩

· e
− ω(1)

q ·uc(t)+ω(2)
q · y(t)− a′ s(t),...,y(t− (m− 1)τ)− a′ s(t− (m− 1)τ)( ) 

· ω(2)
q · (− s(t), . . . , − s(t − (m − 1)τ))

· e
− ω(1)

q ·uc(t)+ω(2)
q · y(t)− a′ s(t),...,y(t− (m− 1)τ)− a′ s(t− (m− 1)τ)( ) 

− − 1 + e
− ω(1)

q ·uc(t)+ω(2)
q · y(t)− a′ s(t),...,y(t− (m− 1)τ)− a′ s(t− (m− 1)τ)( ) 

 
− 2

 
q�1,...,Q

· e
− ω(1)

q ·uc(t)+ω(2)
q · y(t)− a′ s(t),...,y(t− (m− 1)τ)− a′ s(t− (m− 1)τ)( ) 

· ω(2)
q · (− s(t), . . . , − s(t − (m − 1)τ)).

(22)
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R″(•) is a Hessian matrix of R(•). *e above ob-
servation leads to a one-step iterative estimate:

a
(n+1)

� a
(n)

− R″ a
(n)

  
− 1

R′ a
(n)

 . (23)

(3) Cycle through steps 1 and 2 until the two consecutive
values obtained by equation (23) are equal or the
difference is very small and the value at this time is
the optimal solution.

3.3. Recovery of Weak Pulse Signals. *e process of esti-
mating the weak pulse signal in the background of chaotic
noise is shown in Figure 5. *e pseudocode is given in
Algorithm 1.

4. Simulation Experiment Results and Analysis

In order to verify the feasibility and effectiveness of the
Elman deep learning network proposed in this paper,
simulation experiments were carried out. In this paper, the
Lorenz system is used to generate the chaotic noise back-
ground signal, the detection threshold is measured by the
signal-to-interference ratio (SIR) [30, 31], and the mean
square error (MSE) and ROC curve are used to measure the
accuracy of the recovery result.

SIR � 10 log
psignal

pnoise
  � 10 log

σ2s
σ2c + σ2N

 ,

MSE �
1
n



n

i�1
(s(t) − s(t))

2
,

NMSE �
MSE
σ2s

,

(24)

where σ2x � (1/n)
n
t�1(x(t) − x(t))2, σ2x � 1/n

n
t�1(x(t) −

x(t))2, σ2N � EN2(t), s(t) and x(t) are the mean values of
s(t) and x(t), σ2s and σ2x are the energy of signal s(t) and
x(t), and σ2N is the variance of white noise N(t).

*e Lorenz system equation is as follows:

_η � σ(y − η),

_y � − ηz + rη − y,

_z � ηy − bz,

⎧⎪⎪⎨

⎪⎪⎩
(25)

where η, y, and z are time functions and the parameter
t � 0.01. Assuming that the initial condition t � 0.01 and the
sampling time t � 0.01 seconds, 10,000 data points are
generated by the fourth-order Runge–Kutta method, and the
first component c(t) is taken as the chaotic noise back-
ground as x(t). Round off the first 3,000 points (ensure that
the system fully enters the chaotic state) and select 4,000
consecutive sequences as the chaotic noise background,
denoted as x(t), t � 1, 2, . . . , 4000{ }. *e delay time s(t) �

a1s1(t) + a2s2(t) and the embedding dimension
s(t) � a1s1(t) + a2s2(t) of y(t) are determined by the
complex autocorrelation method and Cao’s method.

4.1. Experiment 1: Detecting the Presence of Weak Pulse
Signals. Consider a weak pulse target signal composed of
eight pulse signals, i.e., s(t) � 

8
i�1aisti

(t) � α′s(t), where

si(t) �
1, t � ti

0, else , s(t) �

(s(t1))′
⋮

(s(t8))′
⎛⎜⎜⎝ ⎞⎟⎟⎠, α �

(7.5, 6.8, 6.3, 5.5, 7.3, 4.8, 6, 7)′. Generate a time series of
length 4000, recorded as c(t). *e results of signal detection
using the Elman deep learning network are shown in
Figure 6.

Figures 6(a) and 6(b) show the time diagram of chaotic
noise background signal x(t) and observed signal y(t). It
can be seen from Figure 6 that the weak pulse signal has a
weak influence on the chaotic background signal, which
basically cannot be observed from the graph, so the em-
bedding dimension and delay time of x(t) and y(t) should
be the same using the same method. Figure 6(c) gives the
prediction error graph for y(t). It can be seen intuitively that
there is a significantly larger prediction error value, which
means that there may be weak signals. Judging by the
method of Section 2.3, there is indeed a weak pulse signal in

Establish EDAD model detection s (t)

Observation signal y (t)

s (t) exist?

Construct the DEDR model of x~ (t)

Estimate parameters of DEDR model 
with PLS

End

Calculate 
the values 

of Acc
and AUC

Dynamic
threshold 
adaptive
detection

Y

Update y (t)N

Recover weak pulse signal s (t)

Figure 5: *e flowchart of weak pulse signal recovery.
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the observed signal y(t), which is the same as the illustrated
result

4.2. Experiment 2: Model Performance Testing. From the
results of Experiment 1, it can be known that the Elman
model detects weak signals other than x(t) in y(t), so it is
necessary to detect whether the detected weak pulse signal
detection is true and effective. Figure 7(a) gives the error
function graph of the Elman deep learning model. *e error
of the graphic display is very rapid; after 500 iterations, the
error curve becomes very gentle, indicating that the neural
network at this time has achieved a good learning effect.
Figure 7(b) gives ROC curve of the model. *e ROC curve
converges quickly and approaches the upper left corner. It
can be seen that Elman deep learning network model works
very well. At the same time, SIR reaches − 85.21699, andMSE
is 0.018904, which is smaller than 0.1. It also shows that
Elman deep learning network has a good detection effect on
weak pulse signal. However, this is only a test result obtained
by subjective judgment of the graph, and the probability of
misjudgment is large.

Here, a dynamic threshold adaptive detection method is
considered. Figure 8 shows the dynamic threshold adaptive
detection map of the EDAD model; when we give a
threshold of 0.5, we can clearly detect that there are 8 pulse
signals.

4.3. Experiment 3: Recovery Experiment ofWeak Pulse Signal.
It is known from the results of Experiment 1 that there is a
weak signal other than x(t) in y(t), so the weak signal in
the observed signal y(t) can be estimated. It is assumed that
4000 data of the observation signal contain pulse signals of
different amplitudes at 8 times. *e sum of squared errors
of EDAD model is 0.018904, which is less than the
threshold δ � 0.1. *erefore, the DEDR model can be used
to recover the weak pulse signal based on the EDADmodel.
*e experimental results are shown in Table 2 and
Figure 9, where error � (|predictive value − actual value|/
actual value) × 100%.

*e results in Table 2 show that the error of the predicted
value and the true value is low, which is basically below
0.002%. *is indicates that the DEDR model has better

Inputs: observation signal Y(t), parameters m, τ, etc.
Outputs: optimal value of parameters α and gt(

X(t)), weak pulse signal s(t).
Begin
Phase space reconstruction after normalization of observation data
Set initial parameter values: α � (1, 2, 3, 4, . . .)′
While (|a(n + 1) − a(n)|> 0.01)

Checked by Section 2 for the presence of s(t);
Construct a DEDR model according to (18);
Estimating the value of gt(

X(t)) from (19);
Update the value of α using the profile least squares method;
Substituting the estimated value of α into the model and calculating s(t);

n + 1⟵ n

End while
Print optimal parameter α and gt(

X(t)), calculation s(t)

End
Note: s(t) has a weak effect on the phase space reconstruction. When iterating α, its delay time and embedding dimension are
unchanged.

ALGORITHM 1
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Figure 6: Weak signal detection: (a) chaotic noise background signal x(t) with white noise; (b) observation signal y(t); (c) prediction error
plot of y(t).

Wireless Communications and Mobile Computing 9



performance in recovering weak pulse signals in the back-
ground of chaotic noise, and the recovered weak pulse signal
has higher precision.

Figure 9 shows the detection and recovery results of
weak pulse signal. For the convenience of observation, the
predicted value is shifted to the right by 70 units, and SIR
reaches − 85.21699 dB. It can be seen from the results of
Table 2 and Figure 9 that the fitting effect between the true
value and the predicted value is very good.

4.4. Experiment 4: Detection and Recovery Experiments of
Pulse Signals of Different Intensities. Assuming that the
period of the weak pulse signal s(t) is constant, the intensity

of s(t) is controlled by changing the magnitude of a1, that is,
a1 � 6.5 × 10i, (i � 1, 0, − 1, − 2, − 3). Similarly, 4,000 points
of the observed signal are selected as samples, and the signal
is detected by the EDADmodel and recovered by the DEDR
model. *e experimental results are shown in Table 3:

It can be seen from the results shown in Table 3 that the
ability of the DEDR model to recover signals also changes
with the gradual change of the pulse signal intensity. When
the SIR is greater than − 85.21699 dB, the values of NMSE
and MSE are relatively small, and the effect of restoring
weak signals is ideal. However, when the SIR is less than
− 85.21699 dB, the value of NMSE is significantly increased.
At this time, the ability of the DEDR model to recover
weak signals is extremely weak. *is is because the pulse
signal is too strong to destroy the geometry of the chaotic
noise background signal, and if the pulse signal is too
weak, it will be blurred by some components of the chaotic
noise background signal. *erefore, when the SIR is higher
than − 85.21699 dB, the DEDR model has a better effect of
recovering the weak signal. At this time, both the NMSE
and MSE are relatively small, and it can be seen that the
DEDR model has a low SIR threshold for detecting weak
signals.
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Figure 7: Detection results of weak pulse signals: (a) error function diagram of Elman model; (b) ROC curve.
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Figure 8: Dynamic threshold adaptive detection map of the EDAD
model.

Table 2: Recovery result of weak pulse signal.

t Prediction value Actual value Error (%)
665 7.490204 7.5 0.001306
1299 6.791728 6.8 0.001216
1825 6.311972 6.3 0.001900
2034 5.50970 5.5 0.001649
2884 7.290640 7.3 0.001282
3043 4.789116 4.8 0.002267
3503 6.010884 6.0 0.001914
3542 6.991293 7.0 0.001244
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4.5. Experiment 5: Performance Comparison of Different
Models. *e proposed model is compared with the LM
model, SVM model, and RBF neural network model (RBF)

[32, 33]. Select s(t) �
4.5, t � 3001, 3002, . . . , 3050
0, else and

use the complex autocorrelation method and Cao’s method
to determine the delay time y(t) of y(t) and embedding
dimension m � 6. Use the EDAD model for signal detection
and the DEDR model for signal recovery and use SIR and
root mean square error RMSE (RMSE �

����
MSE

√
), Acc, and

AUC to judge the effect of the models. *e results are shown
in Figure 10 and Table 4:

As can be seen from Figure 10 and Table 4, RMSE is
0.000170, Acc is 1, AUC is 1, and SIR is − 85.21699dB. RMSE
value is on the order of 10e − 4, which is higher thanRMSE value
obtained by other models, and SIR value is much lower than the
SIR values of other models. Specific results are shown in Table 4.
*ese are sufficient to show that the DEDRmodel has a stronger
detection ability and is estimated to perform better.

5. Conclusions

Using the short-term predictability of chaotic time series and
sensitivity to small disturbances, combined with phase space
reconstruction, the Elman deep learning adaptive detection
model (EDAD) and double-layer Elman deep learning neural
network recovery model (DEDR) are constructed. *e model
built in this paper does not need to know prior knowledge of
dynamic equations of the chaotic system and pulse signal.
Weak pulse signal in the background of chaotic noise can be
detected under the condition that nonlinear mapping is
unknown. It is a simple and easy to understand and apply
model for detecting and recovering weak signals. From the
experimental results, the following conclusions can be drawn.
*e EDAD model can effectively detect weak pulse signals
from the background of chaotic noise, and Acc, AUC, and
DTAD can effectively and objectively judge whether signals
are detected.Weak pulse signal estimated by the DEDRmodel
has high precision, and the error between the predicted value
and true value is basically below 0.002%. It can be seen from
the experiments of different intensity pulse signal detection
and recovery that the model constructed in this paper can
achieve lower signal-to-interference ratio working threshold
and keep the prediction accuracy at a higher level in the
background of chaotic noise with less data. MSE can be as low
as 0.018904 when SIR is as low as − 85.21699 dB; it is intuitive
to show the model constructed in this paper has stronger
detection ability and better estimation effect. In the next step,
we will continue to improve the impact of prediction error of
the EDAD model on the construction of the detection and
recovery model, in order to achieve a lower signal-to-inter-
ference ratio threshold and to extend the detection and re-
covery of other weak signals.

Simulation results comparison diagram

5.0

5.5

6.0

6.5

7.0

7.5

8.0

Im
pl

us
e s

ig
na

l

1000 2000 3000 40000
t

True value
Predicted value

Figure 9: Simulation results.
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Figure 10: ROC curve with four different models.

Table 3: Different intensities of pulse signal detection and recovery.

Magnitude of a1 SIR (dB) NMSE MSE

1.00E+ 01 − 62.20406 6.242049e − 09 5.265298e − 08
1.00E+ 00 − 85.21699 1.681875e − 07 1.418697e − 08
1.00E − 01 − 128.64089 3.573093e − 04 3.013978e − 07
1.00E − 02 − 169.82155 1.479744e − 03 1.248195e − 08
1.00E − 03 − 257.76743 1.852916e+ 00 1.562973e − 07

Table 4: *e performance comparison of different models.

DEDR LM SVM RBF
SIR (dB) − 85.21699 − 77.59773 − 70.59773 − 38.2458
RMSE 0.000170 0.001077 0.002289 0.004533
Acc 1 0.862008 0.722250 0.755802
AUC 1 0.7479 0.7157 0.7077
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