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Research on educational quality has gotten a lot of attention as the current higher education teaching reform continues to deepen
and grow. The key to improving education quality is to improve teaching quality, and teacher evaluation is an important tool for
doing so. As a result, educational management requires the development and refinement of a system for evaluating teaching quality.
Traditional approaches to assessing teaching quality, on the other hand, are problematic due to their limitations. As a result, a
scientific and reasonable model for evaluating the teaching quality of college undergraduate teachers must be developed. We
present a unique model for evaluating the quality of classroom teaching in colleges and universities, which is based on improved
genetic algorithms and neural networks. The basic idea is to use adaptive mutation genetic algorithms to refine the initial
weights and thresholds of the BP neural network. The teaching quality evaluation findings were improved by improving the
neural network’s prediction accuracy and convergence speed, resulting in a more practical scheme for evaluating college and
university teaching quality. We have conducted simulation experiments and comparative analysis, and the mean square error of
the results of the proposed model is very low, which proves the effectiveness and superiority of the algorithm.

1. Introduction

The goal of teaching quality evaluation [1–4] is to promote
teaching reform, improve teaching quality, reduce student
burden [5–7], develop students’ intelligence [8], and help stu-
dents evaluate and solve problems. We must achieve the
unity of ideology, science, and feasibility when evaluating
the quality of teaching, and we must do so in an objective,
fair, and rational manner, rather than subjectively guessing
or mixing personal feelings [9, 10]. In colleges and universi-
ties, teaching quality is often assessed through four channels:
student evaluation, expert evaluation, peer evaluation, and
instructor self-evaluation, with the final evaluation results

synthesized. However, certain issues remain in the process
of developing, utilizing, and evaluating the teaching quality
assessment system’s evaluation outcomes [3, 4], such as eval-
uation theory research [11], evaluation method usage, evalu-
ation method update, and evaluation data analysis. These
issues have a direct impact on educational institutions. In
the future, quality assessment and knowledge extraction will
be critical [12].

The indicators in the evaluation system generally involve
teaching attitude [13], proficiency in teaching content, and
basic teaching skills [14–16], etc. However, the comprehen-
sive quality of teachers is not only reflected in the above
aspects but also includes teachers’ knowledge level, teaching
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research ability, teaching design ability, and teachers’ innova-
tion ability, etc. But at present, these evaluation indexes
which can fully reflect the comprehensive quality and per-
sonality of teachers are seldom involved in the evaluation sys-
tem, so they should be fully considered in the establishment
of the evaluation index system.

The indicators in the evaluation system [17] of the differ-
ences in the degree of influence of the evaluation results
should be assigned different weights, but many colleges and
universities still use the same weight method, or subjectively
determined a weight distribution table to establish the evalu-
ation system, and then use this evaluation system to evaluate.
Therefore, the reasonable allocation of weight is the key step
to perfect the evaluation system.

Teaching quality and teaching quality evaluation systems
must be synchronized in colleges and universities; the current
situation necessitates the construction of a teaching quality
evaluation system; its positioning determines for teachers
that teaching quality evaluation cannot be done solely
through the theory of teaching evaluation; more attention
must be paid to the cultivation of students. They can also
address the needs of social development in the real world.
As a result, assessing teaching quality is an important aspect
of teaching management. We will use intelligent technology
to make the evaluation of teaching quality more scientific
and quantitative based on the above knowledge. At the same
time, the study content of this paper serves as a diagnosis,
feedback, and incentive, allowing for the early detection of
difficulties in the teaching process and timely feedback to
teachers in order to improve and improve teaching quality.
Furthermore, scientific evaluation will apply appropriate
pressure to teachers, motivating them to actively enhance
the quality of their instruction and talent development.

The following are the main innovation points of this
paper:

(1) This research develops a model for evaluating college
classroom teaching quality based on an improved
genetic algorithm and a neural network, resulting in
a novel way for evaluating college teaching quality.
At the same time, it is expected to provide a valuable
reference basis for the teaching management depart-
ment to obtain scientific teaching quality evaluation
work plans and programs, as well as provide reason-
able judgments for the promotion and evaluation of
teachers’ professional titles, and make teaching man-
agement more scientific, institutionalized, and
standardized

(2) This research uses an adaptive mutation genetic tech-
nique to optimize the BP neural network’s initial
weights and thresholds. Because the BP neural net-
work’s initial weights and threshold value are so crit-
ical, utilizing a better genetic algorithm to optimize
the initial weights and threshold value, reduce the
BP neural network’s training duration to satisfy the
weight termination conditions and time threshold,
and increase the neural network’s teaching quality
to the prediction accuracy assessment findings

2. Related Work

2.1. Genetic Algorithm. The basic idea of genetic algorithm
[18–20] is to simulate the evolutionary process of the popu-
lation, which is to conduct organized random information
exchange and recombination for individuals [21, 22]. In the
string structure of the previous generation, adaptive bits
and segments are selected to recombine to generate a new
generation of population, namely, “survival of the fittest.”
As an additional addition, occasionally, new bits and seg-
ments are added to the string structure to replace the original
ones, known as “mutations.” After the three genetic opera-
tions of selection, crossover, and mutation, the population
is constantly updated, the population’s good degree is con-
stantly enhanced, and the global optimal solution is
approached. The process of the standard genetic algorithm
is shown in Figure 1.

2.2. BP Network. Compared with the other intelligent models
[23], the back propagation neural network, also known as the
feedforward neural network [24–26], is a very simple predic-
tion model, and it has a three-layer feedforward hierarchical
network with input, hidden, and output layers [27, 28]. The
topology of the three-layer feedforward neural network is
shown in Figure 2. When a set of input modes is presented
to the network, the BP network will learn the set of input
modes in the following order: first, the hidden layer unit
receives the input mode from the input layer. An input mode
is generated and delivered to the output layer after the hidden
layer unit processes the input mode layer by layer. Forward
propagation is the term for this phenomenon. The output
findings are then compared to the predicted values. If the
expected values are not met, error back propagation is used.
Error signals are decreased by altering the connection
weights of neurons at each layer, and the error is returned
along the original path. As part of a “memory training” pro-
cess, forward propagation and back propagation alternate.
The system repeats these two stages, learning until the differ-
ence between the output value and the expected value is
within a certain range, at which point the system stops learn-
ing. The fresh sample is now fed into the trained network,
and the associated output value is calculated.

For the hidden layer, there are

yj = f net j
� �

, j = 1, 2,⋯,m, ð1Þ

net j = 〠
n

i=0
vijxi, j = 1, 2,⋯,m, ð2Þ

where f ðxÞ is

f xð Þ = 1
1 + e−x

, ð3Þ

f ′ xð Þ = f xð Þ 1 − f xð Þ½ �: ð4Þ

When the network output is not equal to the expected
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output, the output error E exists, which is defined as follows:

E = 1
2 d − oð Þ2 = 1

2〠
l

k=1
dk − okð Þ2: ð5Þ

Expand the above error definition to the hidden layer,
then:

E = 1
2〠

1

k=1
dk − f netkð Þ½ �2 = 1

2〠
l

k=1
dk − f 〠

m

j=0
WjkY j

 !" #2
:

ð6Þ

It can be seen from the above formula that the network
input error is a function of the weights wjk and vij of each
layer, so adjusting the weights can change the error E. Obvi-
ously, the principle of adjusting the weight is to continuously
reduce the error, so the adjustment of the weight should be
proportional to the negative gradient of the error, that is,

Δwjk= − η
∂E
∂wjk

, ð7Þ

Δvij = −η
∂E
∂vij

: ð8Þ

The negative sign in the equation represents the gradient
descent, and the constant η ∈ ð0, 1Þ represents the propor-
tional coefficient, which reflects the learning rate during
training. It can be seen that the BP algorithm belongs to the
δ learning rule class.

3. Methodology

3.1. Adaptive Mutation Genetic Algorithm. The calculation
equation of adaptive mutation probability P is as follows:

P = P1 + P2ð Þ
2 = P0 P0 − Pminð Þ ∗m/Mð Þ + P0 ∗max F XKð Þ/�F� �� �

2 ,

ð9Þ

where M is the maximum evolutionary algebra, m is the
current evolutionary algebra, P1 is inversely proportional to
the evolutionary algebra, P2 is inversely proportional to the
average fitness value, P0 is the assumed initial mutation prob-
ability, Pmin is the minimum value of the mutation probabil-
ity range, and �F is the average fitness value of the current
group, which is the maximum fitness value of the current
group.
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Figure 1: Schematic diagram of genetic algorithm.
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Figure 2: Schematic diagram of genetic algorithm.
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3.2. Adaptive Mutation Genetic-BP Model

3.2.1. Network Construction. All continuous functions can be
mapped using a feedforward neural network with a single
hidden layer. Two hidden layers are only required for learn-
ing discontinuous functions. As a result, a multilayer feedfor-
ward neural network requires no more than two hidden
layers. In general, the initial step in creating a multilayer feed-
forward neural network is to create a hidden layer. If the hid-
den layer has a big enough number of nodes and the network
performance does not improve, the training cost will rise as
the number of hidden layers grows. As a result, this post tries
to employ a hidden layer initially. Because the input layer gets
data from the outside, the number of nodes is determined by
the size of the problem’s input vector. The transfer function
used by the input layer is generally a linear function, that is,
f ðxÞ = x. The trial-and-error method is one of the methods
to determine the number of hidden layer nodes. After this
procedure has found the initial value, experiments can be
carried out by raising the number from small to small and
analyzing the outcomes to identify the best number. The trial
and error approach has three ways to determine the initial
value, and the calculation equation is as follows:

m =
ffiffiffiffiffiffiffiffiffi
n + l

p
+ α, ð10Þ

m = log 2n: ð11Þ

3.2.2. Adaptive Mutation Genetic Algorithm. A genetic algo-
rithm’s goal is to find network weights and thresholds that
minimize the network’s sum of squared errors over all evolu-
tionary generations, while the fitness function evolves in the
direction of increasing its value, making the fitness function
the inverse of each individual learning error. The following
are the learning error and fitness function calculation equa-
tions:

E =
∑p

k=1∑
l
j=1 ykj −o

k
j

� �
2 , ð12Þ

fitness = 1
E
, ð13Þ

where E is the learning error, p is the number of training
samples that is 2000 sets of evaluation data, l is the number of
output nodes 1, and ykj − okj is the error of the k-th sample rel-
ative to the j-th output node.

The mutation operation is the process by which the genes
of some people in a populationmutate with a certain probabil-
ity. The adaptive mutation probability mutation operation is
used in the model. Although bad individual shapes will appear
to some extent, the genetic operation method of mutation will
retain some favorable mutations, increase the diversity of the
genetic algorithm population, and cause it to jump out of the

local optimal solution in time, search for the global optimal
solution, and avoid premature phenomena.

3.3. Teaching Quality Evaluation Model. First, by analyzing
existing problems in teaching quality evaluation, we can
improve them and establish a more complete and more
appropriate index system. Collect teaching quality evaluation
sample data, select evaluation indicators according to the
teaching characteristics of teachers, and divide the collected
teaching quality evaluation data into training samples and
test samples. Second, determine the learning rate, the num-
ber of hidden layer neurons, the maximum number of itera-
tions, the minimum error accuracy, the transfer function, the
number of training, and other parameters of the BP neural
network method. By inputting samples into the evaluation
model, iterative training is continuously carried out until
the triggering algorithm stops. Then, for teaching quality
evaluation, enter the test sample to see if the training impact
of the enhanced genetic algorithm-optimized BP neural net-
work model fulfills the requirements. Enter the next phase if
the prediction result meets the stop criteria; otherwise, return
to the previous stage and retrain the network. Finally, to
obtain the teaching quality evaluation result, input the sam-
ple into the teaching quality evaluation model.

4. Experiments and Results

4.1. Experimental Environment. The experimental system
software environment used in this article is shown in Table 1.

When updating parameters, lr means the learning rate is
0.0001. The experiments with all the algorithms were per-
formed on a computer equipped with a single NVIDIA
GTX1080 GPU (8GB).

4.2. Data Collection. Teaching quality evaluation consists of
four parts: leader evaluation, expert evaluation, peer evalua-
tion, and student evaluation. The methods of obtaining teach-
ing quality evaluation data are as follows: (1) Leadership
Evaluation. Take random lectures and evaluate the teacher’s
teaching and student learning. (2) Expert Evaluation. The Aca-
demic Affairs Office and each college will determine the eval-
uation courses, respectively, and the expert group will conduct
inspection courses. (3) Peer Evaluation. Organize experienced
teachers to evaluate peer teachers and adopt the methods of
listening, evaluating, and discussing lectures to improve the
teaching strategies and methods of the assessed teachers and
improve their teaching ability. (4) Student Evaluation. Every
semester, students evaluate the teaching quality of their own
class teachers. Teachers’ teaching quality evaluation is usually
arranged in the middle of the semester and before the final
exams in each semester. Our data set consists of 2 data from
different universities, named Data1 and Data2, respectively.

4.3. Evaluation Index.We use the mean square error to eval-
uate the proposed algorithm, and its calculation equation is
as follows:

MSE = 1
mp

〠
p

p=1
〠
m

j=1
y∧pj − ypj
� �2

, ð14Þ
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where m is the number of output nodes, p is the number
of training samples, ŷpj is the expected output value of the
network, and ypj is the actual output value of the network.
Compared with the standard BP neural network error, the
reduction of the output error of other samples will not
directly lead to the increase of iteration times after the weight
modification. The setting of cumulative error is to reduce the
global error of the whole training set, rather than the error of
a specific small sample. Therefore, the mean square error is
more reasonable than the cumulative error.

4.4. Experimental Results. The results of the training of the
teaching quality evaluation model based on the proposed
method and the traditional BP method are compared, and
the results are shown in Tables 2 and 3.

Compared with the prediction results of the traditional
BP algorithm for 6 groups of samples, the error between
the output value of the teaching effect measured by our
method and the real value is relatively small. To see if BP
neural network has better approximation ability and more
accurate prediction effect based on improved genetic algo-
rithm and neural network of institutions of higher learning
in classroom teaching quality evaluation model of ability to
predict on the teaching quality evaluation prediction, thus,
more scientific and accurate evaluation of college teaching
quality and teaching effect showed the effectiveness of the

model. Figures 3 and 4 also show the MSE and ACC compar-
ison curve during the training process, and Figure 5 shows
the training loss curve.

Table 1: Parameters of the experimental environment.

Type Parameter

OS Windows 10

CPU Intel Core I5

RAM 8.00GB

Development tools Pycahrm

Table 2: Comparison of the results of the experiment on Data1.

Sample number
BP Ours

Prediction MSE Prediction MSE

1 11.02 7.25% 10.23 5.22%

2 15.62 6.12% 16.21 4.36%

3 14.20 5.26% 14.69 4.12%

4 11.98 6.21% 12.01 5.36%

5 12.17 4.31% 13.01 3.33%

6 12.36 6.25% 11.98 4.11%

Table 3: Comparison of the results of the experiment on Data2.

Sample number
BP Ours

Prediction MSE Prediction MSE

1 10.03 7.15% 11.24 5.11%

2 16.11 6.31% 15.99 5.08%

3 13.11 5.11% 13.89 3.93%

4 10.19 6.32% 11.88 4.99%

5 12.33 3.89% 11.09 4.11%

6 12.12 5.91% 11.23 3.99%
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Figure 3: Mean square error of the proposed method and BP on
Data1.
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Figure 4: Acc of the proposed method and BP on Data1.
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Figure 5: Loss of the proposed method and BP on Data1.
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5. Conclusion

In recent years, improving the quality of higher education
teaching has been a top concern, and teacher evaluation is
an important measure of educational and instructional qual-
ity. As a result, educational administration requires the
development and refining of a system for measuring teaching
quality. Traditional teaching quality evaluation approaches,
on the other hand, have been rendered ineffective due to their
limitations. As a result, a scientific and fair teaching quality
evaluation model must be developed to assess the teaching
quality of college undergraduate teachers. We present a
unique approach for measuring the quality of classroom
teaching in colleges and universities, which is based on
improved genetic algorithms and neural networks. The basic
idea is to use adaptive mutation genetic algorithms to modify
the initial weights and thresholds of the BP neural network.
Because the BP neural network’s initial weight and threshold
are so crucial, the improved genetic algorithm is used to opti-
mize the BP neural network’s initial weight and threshold in
order to reduce the time it takes for the BP neural network to
find the weight and threshold that meets the training termi-
nation condition. Improving the neural network’s prediction
accuracy and convergence speed to the teaching quality eval-
uation findings resulted in a more practical scheme for eval-
uating college and university teaching quality.

Data Availability

The data used to support the findings of this study are
included within the article.
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