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The traditional centralized network architecture can lead to a bandwidth bottleneck in the core network. In contrast, in the
information-centric network, decentralized in-network caching can alleviate the traffic flow pressure from the network center
to the edge. In this paper, a popularity-aware in-network caching policy, namely, Pop, is proposed to achieve an optimal
caching of network contents in the resource-constrained edge networks. Specifically, Pop senses content popularity and
distributes content caching without adding additional hardware and traffic overhead. We conduct extensive performance
evaluation experiments by using ndnSIM. The experiments showed that the Pop policy achieves 54.39% cloud service hit
reduction ratio and 22.76% user request average hop reduction ratio and outperforms other policies including Leave Copy
Everywhere, Leave Copy Down, Probabilistic Caching, and Random choice caching. In addition, we proposed an ideal caching
policy (Ideal) as a baseline whose popularity is known in advance; the gap of Pop and Ideal in cloud service hit reduction ratio
is 4.36%, and the gap in user request average hop reduction ratio is only 1.47%. More simulation results further show the
accuracy of Pop in perceiving popularity of contents, and Pop has good robustness in different request scenarios.

1. Introduction

With the rapid expansion of the Internet, diversified Internet
content services are deployed based on the publish-subscribe
[1] service model. This model enables the service provider
to publish or share content in a central server, while all its
subscribers can access the content independently through
the distributed networking connections. However, the
publish-subscribe model can lead to a bandwidth bottleneck
in the backbone network in the traditional Internet protocol-
(IP-) based network architecture. For a large-scale content
service, the subscribers’ considerable data transmission
volume will converge to the backbone network [2]. For alle-
viating this problem, information-centric networking (ICN)
[3, 4] is proposed. And as a crucial branch of ICN, the Named
Data Networking (NDN) [5–7] uses names instead of IP to
rout and forward packets. Compared with the IP network,
the requested content name is shifted from the application
layer to the network layer to provide packet caching and hit-

ting. Thanks to its support of content-centric in-network
caching [8, 9], NDN is promising for application in large-
scale content services [10–12]. Moreover, placing content
caching at the edge network can also reduce network latency.

However, the caching capacity of edge devices is around
3 to 4 orders of magnitude lower than that in the cloud.
Intuitively, the native caching policy is to cache every packet
that arrived at nodes. Unfortunately, this implementation
will result in very high content redundancy in the service
network and waste many edge caching resources. Besides,
the significant magnitude difference between the number
of contents and edge node caching capacity will cause any
caching eviction policy to become invalid. Because the fol-
lowing content will continuously replace the cached content
in the node, and any valuable content cannot be kept in the
node. Consequently, it is essential to distinguish popular
content and reduce content redundant as much as possible
in the edge caching process [13–15]. Moreover, since all of
the in-network caching are triggered by user behaviors,
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and the caching node can only passively cache arrived
packets. So, the caching nodes cannot obtain explicit global
knowledge about content popularity when making caching
decisions. These all urge the adaptive caching decision
mechanism to maximize caching utilization and reusability
in resource-constrained edge networks.

For tackling the above problems, it is essential to design
an in-network caching policy based on content popularity
awareness. It should properly consider the characteristics
of the user content requests and avoid additional overhead
in the network. In addition, it is necessary to keep the
caching redundancy as low as possible and achieve excellent
robustness to adapt to various request scenarios. Given the
above analysis, a popularity-aware in-network caching
policy, namely, Pop, is proposed to achieve optimal in-
network caching in the resource-constrained edge networks.
Specifically, Pop allows the node to perceive the popularity
of the current arrived content during the transmission pro-
cess and then decide whether to cache based on the net loca-
tion of the node. In the above process, there is no need to
add additional hardware and traffic overhead.

Our contributions are listed as follows:

(1) We designed a popularity-aware in-network caching
policy (Pop) for the edge network. It utilizes the
existing Pending Interest Table (PIT) as a recording
mechanism for current content request status. By
distinguishing the request probability of content
with different popularity, Pop naturally makes cach-
ing decisions and achieves distributed caching based
on content popularity

(2) We introduced Cached Tag in the header of the
returned packet to prevent the cached content from
being cached again by downstream nodes, effectively
reducing content redundancy in the edge network.
Tag reset mechanism will be triggered by cache hit;
it can effectively avoid popular content be incorrectly
cached far from the edge and also can increase the
utilization of edge caching space

(3) We conducted a comprehensive evaluation of Pop
through network simulation. Compared with four
existing policies and a self-designed ideal caching
policy (Ideal), we prove that Pop has excellent per-
formance. Besides, Pop also shows considerable
advantages in terms of network-level caching distri-
bution and content update responsiveness

(4) Complex and diverse network scenarios were simu-
lated, which proves that Pop has good robustness.
In large-scale and high-load scenarios, the perfor-
mance of Pop is always better than other policies
(except Ideal). In imbalanced-content request, Pop
maintains its superior performance in most cases
and only declines in a few extreme cases

The remainder of this paper is organized as follows.
Section 2 introduces the related work of in-network caching.
Section 3 introduces the system model and related assump-

tions. Section 4 introduces the details of the Pop in-
network caching policy. In Section 5, performance evalua-
tion of the Pop is showed. Section 6 discusses the variants
of Pop and the real deployments in edge environments.
Section 7 summarizes our work.

2. Related Work

Unlike traditional caching systems, the implementation of
in-network caching can be divided into caching eviction
process and caching decision process.

Caching eviction process is when the arrived content is
determined to be cached, but the caching space is full, then
it needs to decide which stale content should be evicted from
the node. Well-known caching eviction policies include
FIFO (First Input First Output), LFU (Least Frequently
Used), Random, and LRU (Least Recently Used). Among
them, LRU is the most widely used in ICN in-network cach-
ing research [16, 17]. In addition, LFF [18] (Least Fresh
First) is used in IoT networks; it aims to use the ARMA
model to predict the time of the next content update event
in the sensor, so that the predicted remaining time will be
set as the freshness of contents in caching nodes.

Caching decision process is when the content has
arrived; the node needs to decide whether to cache it into
caching space. Due to the limitation of node caching capac-
ity, when all of the arrived contents are cached, the cache hit
efficiency will be very low. As the native caching mechanism
of the NDN, it allows every node to cache every arrived con-
tent, called LCE [6] (Leave Copy Everywhere). It is proven
that results in high redundancy and low utilization in edge
storage resources. Ber [19] (Bernoulli random caching) is a
Probabilistic Caching policy that satisfies Bernoulli distribu-
tion, which allows content to be cached with a fixed proba-
bility on each node of the return path. Moreover, some
researchers began to construct more complex formulas for
optimizing caching probability. They introduced different
parameters, which lead the caching probability to change
dynamically according to node position and status. Pro-
Cache [20] (Probabilistic Caching) mainly introduces the
distance and the remaining storage space, so that the higher
caching probability will belong to the node close to the user
and with more caching space. The pCASTING [21] (Probabi-
listic Caching strategy for the Internet of Things) policy
applies to energy-constrained and wireless IoT networks. It
introduces the remaining power, remaining storage space,
and content freshness as caching probability parameters. It
leads the power consumption of IoT equipment in a balanced
way and effectively increases the working time of the entire
IoT network. LCD [22] (Leave Copy Down) allows the
returned (or cache hit) content to be cached only on its
next-hop node, so the caching location of the content can be
gradually moved to the user through multiple be requested.
However, its upstream nodes will have many times of content
eviction and redundancy in caching process.

On the other hand, other caching policies allow every
content to be cached on only one node, so that to minimize
network redundancy. The key to these policies is the selec-
tion of the caching node. The Ran (Random choice caching)
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policy does not consider any external features and randomly
selects one of the downstream nodes for caching. The Betw
[23] (Betweenness centrality caching) policy believes that
caching the content on the node with the largest betweenness
centrality can maximize future benefits. Hash [24, 25] (Hash-
routing caching) policy expands the range of caching nodes
from the return path to the entire network. It uses a hash func-
tion to map content to nodes in different net locations by con-
tent names, but it has high implementation complexity.

Besides, there are other policies consider in other ways.
For PPCS [26] (progressive popularity-aware caching
scheme), it designs from caching decision and eviction. Dur-
ing the first transmission, PPCS divides the larger content
into several smaller packets for distributed caching. If this
content is requested multiple times in the following time, it
can gradually push all packets of this content to the terminal
caching nodes by an intelligent caching scheme. Newberry
and Zhang [27] considered the in-network caching for the
Hadoop distributed file system. By comparing multiple
caching eviction policies, it is found that the size of the
packet capacity has a more significant impact on the perfor-
mance of the caching efficiency.

The above work has done much research on improving
the efficiency of the in-network caching from many aspects.
However, almost none of them considers the relationship
between content popularity and its request probability in
the tree-like network, nor did comparison with an ideal
caching policy to clearly show the gap of performance
between their policy and the ideal situation. Therefore, we
propose the Pop policy and design Ideal policy to compare
with it. We hope our work can bring a new view to the in-
network caching research and help improve its performance.

3. System Model and Assumptions

We argue that the popularity of content is the crucial factor
affecting the benefits of in-network. In Section 3.1, we
describe a typical network architecture that we considered.
In Section 3.2, we present the assumptions and characteris-
tics of user requests.

3.1. System Model. Typical Internet content services are
deployed in hierarchical network architectures, as shown in
Figure 1. In fact, all devices on the path from the cloud to
user can be used as caching nodes, but we focus on the nodes
in the edge environment. Obviously, it can alleviate the pres-
sure of the backbone network and get the low-latency
response from edge caching nodes.

3.2. Request Assumptions. Internet content services model
include diverse request scenario. We mainly consider the
following characteristics and make some assumptions based
on generality.

Request generation. We suppose the request generation
meets the Poisson distribution.

Content Popularity. Due to the content preference of
consumers, most requests tend to focus on a small amount
of content. Relevant research [28] has observed that the pop-
ularity of the requested contents on the web meets Zipf-like

law. We suppose the content popularity distribution meets
the Zipf-Mandelbrot law. When the total number of contents
isN , the popularity ranking of the content is k; the probability
that it be requested is

f k,N , q, sð Þ = 1/ k + qð Þs
HN ,q,s

: ð1Þ

Here, q and s are parameters that affect the distribution,
and HN ,q,s is given as follows.

HN ,q,s = 〠
N

i=1

1
i + qð Þs : ð2Þ

Request probability. In a tree-like network, requests will be
collected in upstream nodes. When we consider the probability
of a specific content has been requested over a period of time,
its popularity will lead to very different probability distribution
at every network level.

We consider the number of requests received by a node
within a period of time is n, and the popularity of the con-
tent is p. Then, the probability P that this node received this
content can be given as follows.

P = 1 − 1 − pð Þn: ð3Þ

The n is related to the user request frequency and the
network topology, as shown in Table 1. If we suppose a stan-
dard z-branches tree network, the average frequency of user
requests is x, and the total network level is K ; the n of level k
nodes can be given by (4)

n = zK−kx: ð4Þ

A specific example is in Figure 2. It shows that contents
with different popularity have different request probability
distributions at caching nodes. Take P = 0:9 (thin dotted line
in the figure) as a reference. 3.00% popularity content from
cloud to L4 can receive its request more than 90%

Edge

Cloud

User ···

Figure 1: Hierarchical network architecture, where cloud node is
the location of publishing server, and it interacts with users
through edge network.
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probability. In comparison, content with 0.30% popularity
from cloud to L2 can receive its request more than 90%
probability. As for content with a popularity of 0.03%, the
request probability has always been lower than 62%.

4. Popularity-Aware In-Network
Caching Policy

Identifying the popularity of contents and caching them to
the suitable network level is crucial for the popularity-
aware caching policy (Pop). This section will present a dem-
onstration of Pop first and then introduce the implementa-
tion of the key mechanisms in detail.

According to the analysis in Section 3.2, the popularity
of content will affect the request probability distribution in
each level node. So, we can distinguish the popularity of con-
tents according to the request records in caching nodes.

As a demonstration, we still use the standard binary tree
network to explain main idea of the Pop policy. We use LRU
as the eviction policy due to its excellent performance
(evaluation details in Section 5.2), and the processing of
caching decision is showed as Figure 3. Now, we consider a

user node sends three contents requests to the cloud. They
are high popularity content Ra, medium popularity content
Rb, and low popularity content Rc. These PIT tables (NDN
module, details in Section 4.1) will record three content
requests (Ra, Rb, and Rc), and their in-records are all
marked in the right sub-Face. After that, while waiting for
the cloud content return, the N1, N2, and N3 nodes will con-
tinue to receive content requests (R shown in Figure 3) from
the upper sub-Face. According to the analysis of request
probability, content popularity, and node location in Section
3.2. The N1 node has a great chance to receive Ra and Rb
content requests on the upper sub-Face. N2 node may
receive Ra request. The probability of the N3 node receiving
these content requests is extremely low.

Therefore, when Ra, Rb, and Rc are returned, each cach-
ing node will make the caching decision based on the PIT
table. We set the caching condition that the returned content
will be cached in the first node, which does not record its
request in both sub-Faces. According to the records shown
in Figure 3, node N1 will cache Rc, node N2 will cache Rb,
and node N3 will cache Ra. So far, the Pop policy has com-
pleted a distributed caching based on the content popularity
and caching node network level.

Besides, the mechanism for reducing caching redun-
dancy is in Section 4.2. The detail and the related algorithm
extend the above caching condition to a more generalization
and complex hierarchical network are in Section 4.3.

4.1. Request Recording Mechanism. We use NDN as the
underlying network. NDN allows establishing communica-
tion interfaces between nodes through various underlying
protocols, such as Ethernet, TCP, UDP, and Socket. They
are unified and abstracted as Face. The communication of
NDN is launched by the users, and their requests will be
encapsulated in a packet called Interest and routed to the
cloud. The content returned by the cloud will be encapsu-
lated in a packet called Data and routed to users. The PIT
(Pending Interest Table) is the native mechanism of NDN,
whose function is to record the name of Interest that the
node has forwarded but has no Data returned from the
upstream. Therefore, we can directly use PIT as the request
recording mechanism and avoiding the additional design.

As shown in Table 2, PIT mainly consists of three parts.
Entry is the Interest name that has been forwarded. In-
record is the downstream source Face ID. Out-record is
the upstream forwarding Face ID. The records in the table
indicate that the node has received Ra and Rb requests,
where Ra has been requested on both Faces 1 and 2, and
Rb only has requested on Face 2. Do not consider other
records. According to the above caching conditions, Ra will
be directly forwarded to Faces 1 and 2; Rb will be cached and
then forwarded to Face 2. And then, the node will immedi-
ately clear all Ra and Rb records in the PIT. The mainte-
nance of the PIT table is implemented by the Named Data
Networking Forwarding Daemon (NFD) [29].

4.2. Cached Tag Design of the Returned Data. Only based on
the above caching condition, it cannot avoid the returned

Table 1: 6-layer standard tree network request distribution.

Level
Number of received requests n

Binary tree Trinomial tree z-branches tree

L1 32x 243x z5x

L2 16x 81x z4x

L3 8x 27x z3x

L4 4x 9x z2x

L5 2x 3x zx

L6 x x x

0.0
Cloud L1 L2 L3 L4

Level of caching nodes

Re
qu

es
t p

ro
ba

bi
lit

y

L5 L6 User

0.2

0.4

0.6

0.8

1.0

p = 3.00%
p = 0.30%
p = 0.03%

Figure 2: An example about the request probability distribution of
content with different popularity in the binary tree network. The
popularity of the three contents is 3.00%, 0.30%, and 0.03%; the
frequency of single-user requests is 50. There is no caching
mechanism in the user node, so the probability is 0 in user.
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Data be repeated caching on the return path. We designed
the Cached Tag to solve this problem.

As shown in Figure 4, we denote the returned Data as C
and add the Cached Tag to its header field. When Data C
returns from cloud, its Tag is initialized to 0. As the Data
C hops to the user node along the return path, it will go
through the Tag detection process on each caching node.
At node N1, Data C does not meet the caching condition,
the value of Tag unchanged, and it is directly forwarded to
node N2. At node N2, Data C meets the caching condition;
the value of Tag is changed to 1, and then, it is forwarded
to node N3 after caching. After receiving Data C, the N3
node checks that the Tag of C is 1, so it directly abandons
the caching and forwards it to the user.

Besides, we also designed a Tag reset mechanism to opti-
mize the efficiency of content caching further. Specifically,
when the request triggers cache hits on the caching node,
the returned Data is allowed to reset the Tag value to 0,
thereby obtaining another caching opportunity. The Tag
reset mechanism will generate benefits from two aspects.

First, solve the problem of content caching mismatch.
The caching decision of Pop cannot be guaranteed 100%
accuracy. It may occur that the cached content and the
cached location do not match. As shown in Figure 5, a
mismatch content (with high popularity) is incorrectly
cached on a far node. Here, the Tag reset mechanism allows
mismatch content to be cached at the next cache hit. The
popularity-aware mechanism will smoothly cache it to the
matching node (edge node).

Second, use the invalid (stale or idle) caching resources
of edge nodes and optimize cache hit efficiency. The distri-
bution of content popularity is imbalanced. The amount of
high or medium popularity content is far less than the low.

Reflected in the caching results, strictly caching based on
content popularity will lead to a low caching utilization in
middle or edge nodes. Here, the reset mechanism allows
these contents on the far nodes to be cached to the middle
or edge nodes, reducing the number of hops for following
repeat requests.

The Tag reset mechanism will not impact the valid con-
tent in the caching nodes. The LRU caching eviction policy
is deployed in each node, and it will maintain the currently
popular content at the top.

4.3. Threshold-Based Adaptive Caching Decision Algorithm.
Given the complexity and heterogeneity of the real net-
work, Pop policy must adaptively complete the caching
decision process.

As shown in Figure 6, we introduce a threshold T to imple-
ment the Pop adaptive caching decision in the diversified nodes
of the nonstandard tree network. We abstracted Request_ratio,
which represents the ratio between Ncur (the number of sub-
Faces with this content request) and N (the total number of
sub-Faces). Request_ratio describes the popular degree of con-
tent on downstream nodes, and the value range is (0, 1]. The
higher the value, the more popular the content.

In Figure 6, the threshold T is set to 0.6. The (a) depicts a
3-branch caching node with three sub-Faces, and the (b)
depicts a 5-branch caching node with five sub-Faces. Based
on the unified threshold T , they can make the same caching
decisions on Ra and Rb.

Algorithm 1 is deployed on all caching nodes uniformly.
The input includes returned Data, PIT, number of sub-Faces
N , and the custom caching threshold T . When Data returns
from the upper Face of the node, the caching decision algo-
rithm is triggered. The algorithm first checks the CacheTag
in the Data (line 2). If ChaheTag! = 0, it proves the
upstream nodes have cached the Data, forward the Data
directly (line 2), and the process finishes. Otherwise, Data
will enter the caching decision process (lines 5-15).

For caching decision process, the algorithm decodes the
Data and obtains the content name. It then queries the
PIT according to the name and gets the N_cur (line 6). Next,
calculate Request_ratio (line 7). By comparing Request_ratio
and threshold T , the algorithm can obtain two decision

R

N1 N2 N3
Ra

RRRRRR

Rb

Cloud UserRaRb

Rc

Rc

Ra Rb Rc

Ra Rb

Ra Rb Rc

Ra

Ra Rb RcRequest 
records on 
PIT table

High-popularity

Requests

Mid-popularity

Low-popularity

Ra

Rb

Rc

R Others

Be cachedR

R:

U:

Figure 3: Demonstration of Pop in distinguishing the popularity of contents and caching them in opportune node. The user sends different
popularity requests to the cloud. When contents are returned, they are cached based on their popularity and caching node network level.

Table 2: Record of received Interest in PIT.

Entry In-record Out-record

/prefix/Ra Face 1 Face 0

/prefix/Ra Face 2 Face 0

/prefix/Rb Face 2 Face 0
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results. If the Request_ratio is greater or equal to T (line 8), it
proves that the content popularity is too high and does not
match this caching node, and the Data will be forwarded
directly (line 10). Otherwise, proving that the content popu-
larity meets the current node caching requirement. The algo-
rithm first sets the Data.CacheTag to 1 (line 13), then cache
it (line 14), and finally forwards it (line 15) to the sub-Faces.

5. Performance Evaluation

In order to verify the effectiveness of Pop, we used
ndnSIM [30–33] to perform a comprehensive simulation.

Section 5.1 introduces the parameter configuration and
indicators. Section 5.2 is the determination of the eviction
policy, and Section 5.3-5 analyzes the performance in dif-
ferent request scenarios.

5.1. Simulation Design. The parameter configuration of
ndnSIM is shown in Table 3. Please note that some param-
eters will change in follow simulation scenarios, and their
change range is marked with “{...}.”

For the evaluation of in-network cache policy, the main
performance metrics are designed as follows.

CCloud User

N2 N3N1 R

C C

Tag 0 Tag 1 Tag 1Set tag 0

CacheNo cache No cache

Figure 4: The process of returned Data with Cached Tag. The return Data with initial Cached Tag 0, no cache in N1, change Tag to 1 after
caching in N2, give up cache in N3.

Valid

Data

Invalid

Mismatch
Cache hit

1. Mismatch content copy to edge

2. Cache hit content copy to edge

Far node Middle node Edge node

Figure 5: Two cases of Cached Tag reset. The mismatch content and cache hit content will have additional chance to cache close to edge.

Node

Ra Ra Ra

Node

Ra

5 - branches 3 - branches 

Rb RbRa Rb

Ra

Rb

Ra

T

Ra

Rb

Ra Ra

Rb

T

Ncur Ncur
X

O

X

O

Request_ratio (T) = 0.6 X : Only forwardO : Cache & forward

Figure 6: Adaptive content caching based on Request_ratio. Set T = 0:6. In (a), Ra is not cached (2/3 > T), and Rb is cached (1/3 < T). In (b),
Ra is not cached (3/5 > T), and Rb is cached (2/5 < T).
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(1) Cloud Service Hit Reduction Ratio. This indicator
measures the in-network caching policy efficiency
in reducing the pressure of the cloud. We use HC
as the number of nonfirst requests cache hit on cloud
node and HE as the number of requests cache hit on
edge caching nodes. The value range of α is (0,1)

α = 1 − HC

HC +HE
= HE

HC +HE
: ð5Þ

(2) User Request Ave-Hop Reduction Ratio. This indica-
tor measures the efficiency of in-network caching

Input: Data - Packet of Data;
PIT - PIT table of NDN;
N - Number of sub-Face;
T - Threshold for caching content;

Output: Caching Decisions - (i). Cache & Forward; (ii). Only Forward.
//Deployed in all of caching nodes
1. While ( new Data is return ) {
2. if (Data.CacheTag != 0 ) {
3. Forward(Data) // This Data has cached in upstream node, just forward it
4. }else{
5. // N_cur is number of sub-Face which has requested this Data
6. N_cur = Search(http://Data.name, PIT)
7. Request_ratio = N_cur / N // Get Request_ratio
8. if (Request_ratio >= T){
9. // Data was requested on most sub-Face, it’s suitable for caching at downstream node
10. Forward(Data) // Forward Data
11. }else{
12. // Data was requested on few sub-Face, it’s suitable for caching at here
13. Data.SetCachedTag(1) // Set cached Tag = 1
14. Cache(Data) // Cache Data
15. Forward(Data) // Forward Data to downstream nodes
16. }
17. }
18. }

Algorithm 1: Pop caching decision algorithm.

Table 3: Simulation parameters.

Type Name of parameter Value

Network

Basic network topology Binary tree

Network level 5-level

Link capacity to cloud 1Gbps

Link capacity in edge 100Mbps

Propagation delay to cloud 500ms

Propagation delay in edge 1ms

Publish
Total number of contents 100,000 {20,000~ 100,000}
Content update cycle 5 s

Request

Number of user nodes 16 {16~ 81}
Request frequency 200/s {100~ 300}
Request generation Poisson

Content popularity Zipf-Mandelbrot

Zipf parameters (q&s) 1.0 and 1.0

Caching

Caching eviction strategy LRU {Random, LFU, FIFO, TTL}

Caching node capacity 50

Payload size (content size) 1024 Byte

Pop caching threshold T 0.6

Simulation Simulation duration time 201 s
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policies in improving the quality of user requests.Ave_
hops represent the average hops to complete the user
requests under caching policies, and Hops_to_Cloud
represents the total hops from the user to the cloud.
The value range of β is (0, 1/Hops_to_Cloud)

β = 1 − Ave Hops
Hops to Cloud : ð6Þ

(3) Single-Layer Contribution. This indicator measures
each layer caching nodes’ contribution in reducing
the pressure of the cloud. It can also be understood
as the probability of triggering cache hit on each
layer. Where l represents the level of nodes, HEl rep-
resents the total number of requests cache hit on
layer l. ∑HEl is the total number of requests cache
hit on the entire edge network

γ lð Þ = HEl

∑HEl
, l = 1, 2,⋯⋯ , n: ð7Þ

(4) Ideal In-Network Caching Policy. To test the Pop
accuracy in perceiving content popularity, we design
the Ideal policy as a comparison. In its implementa-
tion, the Data returned by the cloud will carry the
content popularity information. It allows the caching
nodes to make caching decisions based on the
known popularity information and achieve the ideal
caching performance. Through comparison, we can
see the gap between the Pop and the Ideal

5.2. Determination of the Eviction Policy. Before the Pop per-
formance evaluation, we need to determine the caching evic-
tion policy. Under the above default configuration, we have
performed the evaluation in four policies, included Random,
LFU, FIFO, TTL, and LRU. As shown in Figure 7, Random
and LFU all show the low reduction ratio; FIFO and TTL have
similar performance, and LRU has the best performance.

Therefore, based on the above comparison results, it can
find that the LRU caching eviction policy has appropriate
performance. So, in the following experimental scenarios,
Pop and other comparison policies will use LRU as the cach-
ing eviction policy.

5.3. Content Update. We thoroughly evaluated the perfor-
mance of the Pop in content update scenarios. By comparing
with other existing in-network caching policies (LCE, Prob-
cache, LCD, Ran) and Ideal policy, we prove the significant
advantages of Pop.

(1) In-Network Caching Benefit. As shown in Figure 8,
excepts for the Ideal policy, Pop has the best perfor-
mance in the reduction ratio of cloud service hit and
user request average hops

As Figure 8(a), the Pop reduced 54.39% of cloud service
cache hit. Compared with the native policy LCE, the perfor-
mance is improved by 21.32%. Compared with the subopti-
mal policy Ran, the performance is also improved by 9.7%.
The performance gap between Pop and Ideal is 4.36%. As
Figure 8(b), Pop has reduced 22.76% of user request average
hops. Compared with other existing policies, the improve-
ment range is 5.98%~ 10.11%, and the gap with Ideal was
only 1.47%.

It is worth noting that, due to the random selection of
caching nodes, the Ran has well performance in the reduc-
tion ratio of cloud service hit, but its performance on reduc-
tion of average user request hops is lower than all of the
other policies.

(2) Contribution of Each Layer. Furthermore, we counted
the contribution of each layer. Figure 9 shows the dis-
tribution of the single-layer contribution in different
in-network caching policies. Except for Ran, the con-
tribution distribution of other caching policies
decreases as the network level close to cloud (L1).
The Pop caching result is very close to Ideal, which
can reflect that Pop popularity awareness is accurate.
Ran randomly selects the caching nodes so that all of
the content is evenly cached on each layer nodes

(3) Responsiveness to Content Updates. Content updates
will make the cached contents stale and invalid; they
should be replaced by new contents quickly. In order
to evaluate the Pop performance under dynamic
scenarios, we show the responsiveness of different
in-network caching policies

As shown in Figure 10, it fully proves that Pop responds
very quickly to content updates (except for the Ideal). Specif-
ically, the average hops of each caching policy change peri-
odically. After every content update, the Ideal finishes new
content caching at first, thereby quickly reducing the average
hops. The Pop policy is second only to the Ideal. In the initial
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Figure 7: Comparison of cloud service hit and user request ave-
hop reduction ratio in eviction policies. LRU has the best
performance; its reduction ratio is 33.07% and 12.97%, respectively.
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stage, the Pop can quickly reduce the average hops at almost
the same speed as Ideal. However, in the following stages,
the reduction of the Pop was slightly insufficient. It shows
that Pop can accurately perceive most high or medium pop-
ularity content and quickly cache them directly to the appro-
priate nodes. However, for some low popularity content, its
perception ability may not be sensitive.

5.4. Large-Scale and High-Load. To test the Pop policy
robustness, we changed different simulation parameters
based on the above content update scenario. It can show
the Pop performance from three dimensions: the number
of published contents, the scale of the edge user, and the fre-
quency of user requests.

As shown in Figure 11(a), when the number of published
contents gradually increases (from 20,000 to 100,000), the
cache hit reduction ratio of LCE, LCD, Procache, and Ran
policies all dropped slightly. Only the Pop and Ideal policies
showed an upward trend. It proves that facing the explosive
growth of content volume, the in-network caching policy
based on popularity-aware has significant advantages.
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54.39% of cloud service cache hit and 22.76% of user request ave-hop.
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Figure 11(b) describes the cache hit reduction ratio in
the different number of user nodes. All caching policies have
the downward trend. However, within this experiment
range, the Pop cache hit reduction ratio remains between
42% and 55%. Compared with other policies (except Ideal),
it still has the best performance.

Figure 11(c) is an evaluation of different user request fre-
quencies. Except the Ideal policy, the cache hit reduction
ratio of other caching policies all meet the downward trend.
Besides, it is worth noting that Pop performance is better
than Ideal when the request frequency is 100.

The above three sets of simulation experiments verify the
Pop excellent performance and robustness in large-scale and
high-load content update scenarios. It also shows the consider-
able potential of deploying Pop in real networks in the future.

5.5. Imbalanced-Content Request. We considered the
imbalanced-content request scenario to test the Pop perfor-
mance degradation under extreme conditions.

In the experimental design, we divided the imbalance
degree of user request into 16 levels, represented as L0 ~ L
15. We still use the default network topology and parameter
configuration, but some adjustments have been made to the
published contents and user node request process. Specifi-
cally, the 100,000 published contents are divided into 16
groups on average. Each group has 6,250 contents and has
an independent popularity distribution. Correspondingly,
we also created 16 different request processes on each user
node, and each process is only allowed to request one group
of contents. When the imbalance level is L0, each user node
starts 16 request processes, and the requested content pool is
100,000. When the content request level is L15, each user
node can only start one content request process, and the
requested content pool capacity is 6250. The requested con-
tent pool capacity is no overlapping part.

As shown in Figure 12, for the convenience of observa-
tion, the cache hit reduction ratio is normalized to Ideal pol-
icy. We can find that the Pop policy can still guarantee a high
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Figure 11: Cloud service hit reduction ratio in large-scale and high-load scenarios.
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reduction ratio in most imbalanced levels. Specifically, the
Pop policy has the best performance at the L0 ~ L9 levels.
At L10 ~ L13 levels, the hit reduction ratio remains in the
top three. Nevertheless, under the extreme conditions of L
14 and L15, its performance drops rapidly.

In the real content request scenario, requests for high
popularity content have commonalities. It generally does
not happen that all users have an independent content inter-
est. The above evaluation results show that Pop can be
applied to most request cases.

6. Discussion

This section will discuss the content that was considered
during the research but not described above.

6.1. Variant. Under the Pop policy, high popularity content
will be forwarded to downstream nodes for caching, and
low popularity content will be cached on upstream nodes.
However, in a tree network, the number of upstream nodes
is much smaller than that of downstream nodes. In the
above mechanism, similar high popularity content will be
cached in many downstream nodes. It will increase the
redundancy of the edge network. An opposite variant is to
cache the high popularity contents on the upstream caching
nodes and store low popularity content in downstream
nodes. This variant can effectively avoid the redundancy of
high popularity contents, but the requests will be satisfied
on the farther caching node.

Moreover, caching high popularity contents at the
upstream caching nodes will making them to be another
“network center.” A large number of requests will be con-
verged to the upstream nodes, and the bandwidth bottleneck
that existed in the cloud will be transferred to these nodes. It
goes against the original intention of in-network caching that
distributes the cloud pressure to the entire network to achieve
more efficient resource utilization and service response.

In fact, the in-network caching is essentially a technology
that uses “space” to exchange “efficiency.” The deployment
of caching policy is inevitable to increase the content redun-
dancy of the network. In the design of caching policy, we

should focus on reducing the redundancy of the request
path, not the redundancy of the entire network.

6.2. Real Deployment. Given much research on the IoT and
edge computing [34–40], introducing containerization and
serverless platform to the edge environment maybe is the
best practice to implement Pop.

First, due to the compatibility between NDN and IP net-
work, Pop can be easily deployed on traditional edge servers.
Secondly, the number of requests will change over time; it
requires that the resources used for caching be dynamically
adjusted according to the actual workload. By using the
container-based serverless platform can solve this problem
very well. It can automatically control the number of con-
tainers and effectively weighing the balance between service
quality and resource utilization. Finally, in the design of
Pop, the information used in the caching decision algorithm
can be obtained by itself and does not need to communicate
with other external nodes. Therefore, it is possible to use
stateless functions to implement Pop and dramatically sim-
plifies its deployment.

In addition, the caching capacity of caching nodes and
the threshold of caching decisions can be considered dynam-
ically adjusted according to the current workload. In this
way, load balancing and caching efficiency of the entire edge
network node may be achieved.

7. Conclusions

We propose a popularity-aware in-network caching policy
(Pop). The design of Pop makes full use of the PIT table
and the distribution of request probability in the tree-like
network. At the same time, the design of the Cached Tag
in the Data header ensures low content redundancy in the
edge network, and the Tag reset mechanism effectively opti-
mizes the performance of Pop caching.

For the further work, we will comprehensively evaluate
the performance of Pop and prove that it has obvious advan-
tages over other existing in-network caching policies in
many aspects. In addition, through the design of multiple
scenarios, we have proven that the Pop policy has good
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11Wireless Communications and Mobile Computing



robustness. We also discussed the significance of in-network
caching and the possibility of introducing containerization
and serverless platform to the implementation of Pop.
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