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In a vehicular ad hoc network (VANET), roadside units (RSUs) are installed at roadside and intersections to process
vehicle-to-infrastructure communication, collect and analyse intelligent vehicle traffic data, send information to vehicles, and
achieve early warning of safe driving of vehicles. Owning to the high cost of implementing and maintaining RSUs, it is of vital
importance to determine where and how many RSUs to deploy. Optimal RSU deployment requires both a small number of
RSUs and the maximum coverage of vehicle running process, which constitutes a conflicting multiobjective problem.
Nevertheless, existing works do not explicitly utilize multiobjective algorithm to solve the RSU deployment problem. Therefore,
a multiobjective differential evolution approach is proposed in this work to solve the problem. Firstly, to conquer the complexity
of urban road RSU deployment, the static model is established. Secondly, in the proposed multiobjective differential evolution
with discrete elitist guide (MODE-deg), the sigmoid function is applied to discrete individual values. Finally, elitist individuals
are selected based on crowding distance ranking and nondominated ranking to generate new individuals, which further improve
the convergence speed and population performance. Experimental results show that MODE-deg can generate the optimal
nondominant solution set with good convergence and diversity, in contrast to other multiobjective evolutionary algorithms in
five test functions of ZDT.

1. Introduction

With the progress of science and technology, the exponential
growth of vehicles has led to traffic jams and accidents. In
2003 ITU telecommunication standardization sector ITU-T
automobile communication standardization conference,
experts from various countries proposed that vehicular ad
hoc network (VANET) [1] is expected to reduce the loss
caused by traffic accidents by 50%. VANET is widely used
in vehicle navigation system, route planning, and other
aspects by continuously collecting road vehicle operation
conditions. For example, through the analysis of the volume
of traffic flow, VANET can generate the optimal route for
the vehicle, such that the vehicle can reach the destination

in the shortest time. At the same time, VANET data is not
only used for the reasonable setting of traffic light time but
also used for the statistics of the number of vehicles on the
road every day. In the VANET, on-board unit (OBU) [2]
installed on the vehicle and road-side unit (RSU) [3]
deployed on the roadside are two core components. Both
OBU and RSU have wireless communication modules that
support the wireless information transmission of vehicles
when moving. Through the wireless communication module,
the vehicle and the road test unit can exchange information.
RSU could process vehicle requests, allow vehicle access to
the network, and forward vehicle information. The modes of
VANET are mainly divided into two types: vehicle-to-vehicle
(V2V) communication [4] and vehicle-to-RSU (V2R).
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V2V communication refers to real-time transmission of
observed data between vehicles in the process of vehicle
driving. More explicitly, vehicles communicate directly
through OBU, and vehicles must be within the communica-
tion range of both sides. However, as the vehicle drives out
of the range under certain circumstances, the V2V commu-
nication link will be disconnected, which may result in data
transmission delay or even transmission failure. On the
other hand, V2R is the real-time communication [5, 6]
between the OBU installed in the vehicle and the RSU
deployed on the roadside. When the vehicle enters the com-
munication range of the RSU, the RSU communicates with
the vehicle in real time and then sends the obtained vehicle
information to the Internet platform. The platform analyses
the data and then sends it to passing vehicles via RSU.
Therefore, the RSU plays a very important role in improving
traffic patency and safety. The RSU allows data communica-
tion with the vehicle within its communication range and for-
wards vehicle information to other vehicles within its range.
Thus, the deployment of RSUs could be categorized as:

(1) Deploy RSU at the intersection with large traffic flow

The number of vehicles varies greatly by region. In
highly developed cities, the downtown is prosperous, and
the traffic flow is relatively large. The RSU is deployed at
the intersection which must be passed by vehicles, and pass-
ing vehicles have to communicate with the RSU. Therefore,
deploying RSU at intersections with heavy traffic can
improve the utilization rate of RSU.

(2) Deploy RSU in different sections

Deploying RSU in slow traffic areas such as the commu-
nity and schools can the improve RSU utilization. However,
when the RSU is deployed on highways, the vehicle speed is
fast, and the vehicle topology changes rapidly. Therefore, the
deployment of RSU should be tailored on the situation of
different scenarios.

Some excellent works have emerged to study the RSU
deployment with diverse objectives. In particular, Wang et al.
[7] utilized the linear programming to solve the RSU deploy-
ment in centrality, with the goal tomaximize the total centrality
of RSU deployment location candidates under a given budget
constraint. In order to achieve the maximum effective traffic
coverage ratio under given conditions, Cai et al. [8] proposed
a two-layer improved greedy algorithm to deploy roadside
cable connection units and UAV auxiliary positioning system.
More explicitly, Kim et al. [9] abstracted urban area maps into
grid maps and proposed three different RSU deployment strat-
egies: static, mobile but uncontrollable, and fully controllable,
and polynomial running time approximation algorithm was
used. Shareeda et al. [10] proposed a genetic algorithm based
on RSU positioning to find the optimal or near-optimal solu-
tion. Lamb and Agrawal [11] proposed a technique for select-
ing context-important locations, which checks intersection
vehicle statistics in the area passed by commuters most fre-
quently and selects the most commonly used intersection loca-
tion. Jian and Yang [12] proposed a significance ranking model

for RSU positioning and three calculation strategies for signifi-
cance degree and studied the influence strategies of RSU
quantity and OBE market penetration on traffic monitoring
evaluation measures. Ni et al. [13] constructed a maximization
model of total revenue based on RSU deployment by designing
a clustering algorithm based on linear programming to realize
RSU deployment. Chi et al. [14] proposed a RSU layout
method based on cross priority and applied three different
algorithms, greedy, dynamic, and hybrid, to realize the optimal
deployment of RSU in cities. Cao et al. [15] proposed an
optimized deployment scheme based on the large-scale vehicle
trajectory data, where K-nearest neighbours and branch-and-
bound algorithms were proposed to obtain the optimal deploy-
ment of RSU. In a word, the above research work mainly
applies the algorithm to realize the deployment of RSUs.

Other excellent works have focused on RSU communica-
tion and location. Cao et al. [16] analysed the one-
dimensional RD problem, combining greedy thought with
dynamic programming. On the other hand, in line with
the requirements of minimum deployment cost and low
delay of RSU, Trullols et al. [17] proposed the maximum
coverage method for information transmission in intelligent
transportation system, in which the dissemination points
and heuristic algorithm were used to realize the communica-
tion of vehicles. Lochert et al. [18] proposed a road network
infrastructure support unit layout optimization method
based on genetic algorithm, by estimating travel time savings
from active communication infrastructure location vectors
via simulation that separates mobile and network problems
from application behaviour. Ou et al. [19] proposed a
connection-oriented maximum coverage RSU deployment
approach, which improves the communication performance
of urban areas by deploying fewer RSU. Eftekhari et al. [20]
proposed a new binary planning approach, in which RSU are
deployed alongside roads to maximize the transmission of
information to vehicles. Anbalagan et al. [21] proposed the
memetic-based RSU placement algorithm to reduce commu-
nication delay and increase the coverage area between
devices in IoV. Sankaranarayanan et al. [22] proposed an
optimized travel time model based on RSU to estimate the
travel time of the section and used genetic algorithm to
calculate the optimal number of RSU and place them in
the correct position. In summary, optimizing the transmis-
sion of information [23] between vehicles and RSUs is the
main work of the authors above.

The aforementioned works imply that, due to the high
cost of deployment and maintenance as well as the limited
communication radius, RSUs are not conducive to large-
scale implementation. Therefore, the deployment location
and number of RSUs are extremely important. Existing work
regarding RSU deployment schemes can be roughly divided
into three categories: mathematical models, heuristic algo-
rithms with game theory, and graph theory. Although
greedy algorithm, genetic algorithm, and other ones are used
in aforementioned works [7–22] to solve the RSU deploy-
ment problem, multiobjective optimization algorithm is
not leveraged to solve multiple conflicting ones. The deploy-
ment of RSU often involves multiple conflicting objectives,
thus facilitating the utilization of multiobjective evolutionary
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algorithm to solve this issue. Thus, the main contributions of
the paper are as follows.

(1) RSU Deployment Model. To conquer the complexity
of RSU deployment on urban roads, this paper estab-
lishes a static model, which can achieve the maxi-
mum coverage of road crossings, while ensuring
the minimum number of RSU

(2) Population Dispersion. For the RSU deployment
problem, the sigmoid function is applied to deal with
individual values in the population. The individual
dimension value is set to 1 when the RSU is deployed
at the intersection and 0 otherwise

(3) Elitist Guide. Before the crossover operation of
MODE-deg algorithm, firstly, the population is
sorted in descending order according to the crowd-
ing distance of the population; secondly, the popula-
tion is sorted in nondominant order according to the
Pareto level of the population; finally, the sorted elit-
ist individuals are selected as the base vector and
terminal vector. Since the elitist retains the genes of
the excellent individuals, the population convergence
rate can be accelerated

In the remainder of the paper, we briefly introduce sev-
eral of differential evolution algorithm and multiobjective
evolution algorithm in Section 2. Thereafter, in Section 3,
we describe the proposed the RSU deployment model and
the MODE-deg algorithm in details. Section 4 presents sim-
ulation results of MODE-deg and compares them with three
other elitist MOEAs (NSGA-II, MOEA/D, and MOEA/D-
arg). Meanwhile, MODE-deg is applied to solve the RSU
deployment problem in urban highway scenarios. Finally,
we outline the conclusions.

2. Preliminary

In real life, we often encounter some optimal decision prob-
lems, which can be modelled as a global optimization prob-
lem. That is, in a given feasible region and a predefined
objective function on the set, the maximum or minimum
value of the function in the range of the set is solved.

A multiobjective optimization problem (MOP) is a
mathematical problem involving simultaneous optimization
of multiple objective functions. The various subobjectives of
MOP [24] are contradictory. The improvement of one sub-
objective may cause the performance degradation of another
or several subobjectives; that is, it is impossible to achieve
the optimal value of multiple subobjectives at the same time,
and only coordination and compromise can be carried out
among them, such that each subobjective can achieve the
optimization as far as possible. The essential difference
between multiobjective and single-objective optimization
problem is that its solution is not unique, with a set of opti-
mal solutions composed of many Pareto optimal solutions.
Thus, each element in the set is called Pareto optimal solu-
tion or noninferior optimal solution.

The basic idea of multiobjective optimization algorithm
is to optimize the function through the evolution of popula-
tion. The mathematical properties of function are continu-
ity, differentiability, convexity, and other properties, and
only the value of the objective function can be calculated.
Therefore, the multiobjective optimization algorithm can
solve the multiobjective problem well.

Differential evolution (DE) algorithm [25] was proposed
by Rainer Storm and Kenneth Price in 1997 on the basis of
genetic algorithm (GA) and other evolutionary ideas, which
a classical multiobjective evolutionary algorithm (MOEA)
that aims at finding a finite number of solutions to approx-
imate the real solution set. The core operation of DE mainly
includes three parts: mutation, crossover, and selection.

In particular, mutation is a linear operation of multiple
individuals selected from NP populations to create a mutant
vector individual, and there are many mutation mechanisms
of DE. In equation (1) and equation (2), X is the vector popu-
lation, V is the mutant vector population, i is the ith vector
individual, G is the g generation population, and best is the
optimal individual in theG generation population, respectively.
The randomly chosen indexes from r1, r2, r3 ∈ f1, 2⋯NPg
are mutually different integers, and F is the mutation operator.

2.1. Mutation.

DE/rand/1 : Vi gð Þ = Xr1 gð Þ + F · Xr2 gð Þ − Xr3 gð Þð Þ, ð1Þ

DE/best/1 : Vi gð Þ = Xbest gð Þ + F · Xr2 gð Þ − Xr3 gð Þð Þ:
ð2Þ

2.2. Crossover.

U ji g + 1ð Þ =
V ji g + 1ð Þif rand 0, 1ð Þ < Cr or j = Randi 0, Dð Þ,
Xji g + 1ð Þ else:

(

ð3Þ

In equation (3), rand ð0, 1Þ is a random number from 0
to 1, Cr is a crossover constant, D is the individual vector
dimension, j is a certain dimension of the individual vector,
and Randi ∈ ð1, DÞ are a random integer between 0 and D,
respectively.

2.3. Selection.

Xi g + 1ð Þ =
Vi gð Þ if f gð Þ < f Xi gð Þð Þ,
Xi gð Þ else:

(
ð4Þ

To decide a member of generation g + 1, the trial vector
yields compared to the target vector using the greedy crite-
rion. If the trial vector yields a smaller cost function value
than the target vector, then the trial vector is selected as
the next generation; otherwise, the old value x is retained.
After many generations of evolution, the optimal solution
is finally obtained.
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A MOP is mathematically described as:

min F xð Þ = f1 xð Þ, f2 xð Þ,⋯, f k xð Þ½ �: ð5Þ

In equation (5), x = ðx1, x2, x3 ⋯ xdÞ ∈Ω. The dimen-
sion of candidate solutions is d.

More especially, the decision space is Ω = fx ∈ RjhjðxÞ
≤ 0, j = 1, 2,⋯, kg, Rk is called the objective space, F : Ω
⟶ Rk consists of k real-valued objective functions, and
hðxÞ is a continuous function, respectively.

For Pareto dominance relation, if the optimal solution
optimization problem is solved with the minimum target
value of the vector, and xb is greater than or equal to the
objective function value of xa for all objective functions, then
xa dominates xbðxa ≺ xbÞ.

If there is a group variable x∗ that is not dominated by
any variable, x∗ is said to be a nondominated solution. The
solutions in Pareto optimal solution set (PS) do not domi-
nate each other; then, such a set of solutions is called Pareto
optimal solution set of multiobjective problems, PS = fx∗∈
Ωj∄x ∈Ω, FðxÞ < Fðx∗Þg. The set corresponding to PS in
the target space is called Pareto-optimal front (PF),
PF = fFðxÞjx ∈ PSg.

In different evolutionary mechanisms, MOEA can be
divided into three categories: dominated MOEA [25–29],
which selects all nondominant individuals by nondominant
ranking and maintains population diversity by crowding dis-
tance ranking; decomposition-based MOEA [30–32], which
decomposes the MOP into n scalar optimization subprob-
lem and solves them in a cooperative way; and indicator-
based MOEA [33, 34], which utilizes evaluation indicators
to guide the search process and solution selection process,
to achieve better convergence and diversity.

3. MODE-deg

This paper studies the deployment of RSU in urban road
intersections to achieve optimal deployment of RSU. RSUs
are typically deployed at traffic light intersections. By
deploying as few RSUs as possible, we can achieve as much
intersection coverage as possible, and RSU covers not only
intersections but also the corresponding sections, which
improves the ability of vehicles to obtain traffic informa-
tion in a timely manner and ensures vehicle safety and
smooth roads.

In Figure 1, the RSU deployment is mainly used at each
intersection, since the RSU deployment at the intersection
can maximize its communication radius R and improve the
utilization rate of RSU. As the premise of discussing the
problem is the joint communication mode, only some inter-
sections deploy RSUs, while others on the opposite. When a
vehicle passes an intersection where RSU is deployed, it can
communicate with RSU on vehicle-road; otherwise, it can
communicate with RSU on vehicle-road.

3.1. Deployment Plan.We take the urban area within the city
wall of Xi’an as the research object and establish a static
model. There are n intersections set C = ðc1, c2, c3 ⋯ cnÞ in
urban area, and Dn∗n is the adjacency matrix vector.

Furthermore, the elements di,jð1 ≤ i ≤ n, 1 ≤ j ≤ nÞ are the
distance from the intersection i to the intersection j, and X
is the set of intersections where the RSU is currently placed.
The mathematical model is as follows.

min f1 = 〠
n

i=1
xi,

min f2 = 1 − Csj j
m

,

s:t:xi ∈ 0, 1f g,∀s, i ∈ 1, 2, 3⋯ nf g, 0 ≤ 〠
n

i=1
xi ≤ n,

ð6Þ

where

Dn∗n =

d1,1 ⋯ d1,n

d2,1 ⋯ d2,n

⋯ ⋱ ⋯

dn,1 ⋯ dn,n

2
666664

3
777775, di,j =

0 i = j,
−1 i and j are not on the same street,
w i and j are on the same street:

8>><
>>:

ð7Þ

In equation (6), a total of FL RSU side units are deployed
in this scenario, and whether to deploy RSU is determined
according to the value of sigmoid SðxiÞ. If SðxiÞ is greater than
or equal to 0.5, then RSU is deployed at Ci; otherwise, Ci does
not deploy RSUs. In equation (6), Cs is the number of all inter-
sections covered by RSU communication radius,M is the total
number of intersections, and f2 is the percentage of streets that
are not covered, respectively. Equation (7) is the adjacency
matrix of the intersection. Given i = j, the distance is 0. When
intersection i and intersection j are not on the same street, the
distance is -1; otherwise, the distance is w,w > 0.

For the RSU problem of urban road deployment, the
RSU deployment vector belongs to Ω. Equation (6) includes
two discontinuous objective functions, the set of these two
functions is within the range of Rk, and f1 is the sum of all
deployed RSUs. In equation (6), after the deployment of
RSU, the maximum coverage of the intersection is trans-
formed into the minimization problem. If RSUs are
deployed less, then the value of f2 is larger and vice versa.
If more RSUs are deployed, the value of f2 is smaller.

Road intersection

Road intersection for
possible RSU deployment

Figure 1: RSU deployment scenario.
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The two goals are contradictory, namely, the improvement of
either goal would cause the decrease of the performance of the
other goal, and thus, equation (6) would not reach the optimal
value together. It concludes that equation (6) is a two-objective
optimization problem, and thus, the problem can be solved by
multiobjective evolutionary algorithm.

Traditional multiobjective evolutionary algorithms solve
the continuous problem; that is, the values in the initial pop-
ulation are random real ones, and the values in the new pop-
ulation are also real numbers. In this work, RSU deployment
xi is 1 when RSU is placed at an intersection and 0 otherwise
when RSU is not placed. The individual value in the optimal
RSU deployment problem population is 0 or 1. Then, the
algorithm needs to discrete X.

Xij gð Þ =
0, S xð Þ < 0:5,
1, S xð Þ ≥ 0:5,

(
ð8Þ

S xð Þ = 1
1 + e−x

, X ∈ R: ð9Þ

In equation (8), when SðxÞ is less than 0.5, XijðgÞ is equal
to 0 (RSU is not deployed at the intersection j); otherwise,
SðxÞ is greater than or equal to 0.5, and XijðgÞ is equal to 1
(RSU is deployed at intersection j). In equation (9), the indi-
vidual x is XijðgÞ, and SðxÞ ∈ ð−1, 1Þ.
3.2. Fast Nondominated Sorting Approach. Fast nondomi-
nant sorting stratifies individuals according to the objective
function values of all individuals and sets Pareto levels for each
individual. The lower the number of Pareto levels of an indi-
vidual is, the smaller its fitness value will be, and the greater
the probability of inheritance to the next generation will be.
All individuals in the same Pareto level are the same as the vir-
tual fitness value. In the same nondominant level, the popula-
tion diversity of the same dominant level can be improved by
judging the crowding degree around the individual.

Assuming the population is P, for each individual p, we
calculate np and Sp. In particular, domination count np is
the number of solutions which dominate the solution p,
and Sp is a set of solutions which the solution p dominates,
respectively. All individuals in the population are traversed
to calculate the NP number and Sp set of all individuals.

(1) All population P in the first nondominated front
would have their np as zero, and the individuals with
np = 0 are placed in the F1 set

(2) P = P − F1, we continue to find the nondominated
solution set of the remaining solutions in P; that is,
perform np =NP − 1 operation on the individually
dominated individual Sp in F1 and place the individ-
ual NP = 0 to F1

(3) Repeat the second step until P is empty

Thus, all fronts are fF1, F2 ⋯ Fng.

3.3. Crowding Distance Sorting. The density of solutions can
be expressed as average distance of two points on either side
of this point along each of the objectives. The crowding-
distance is calculated by sorting the population according
to each objective function value in ascending order of mag-
nitude. The crowding distance of the solutions with smallest
and largest function values is assigned an infinite distance
value. The density of solutions can make more efficient use
of high-quality solution sets and ensure the diversity and
stability of the population.

Then, crowding distance is defines as

di = 〠
m

k=1
f i+1k − f i−1k

�� ��: ð10Þ

When selecting the next generation of individuals for the
population, individuals with lower rank are selected, other-
wise selecting the solution that is located in larger crowding
distance region. In this way, the algorithm can keep
approaching PF and keep the diversity of individuals in
the population.

After merging the parent population and the newly gen-
erated population, the offspring population is selected by
elitist guidance strategy through fast nondominated sorting
and crowding distance calculation. Since (2) uses the best
individual of each generation as the basis vector, it is easy
to fall into the local optimal solution, and thus, we tend to
select an individual from the top 100p% individuals
(Xp

bestðgÞ, P ∈ ½5, 20�) in the population as the basic vector
Xr1ðgÞ and replace the best individual with individual
Xp
bestðgÞ. The top 40% of the population is selected as

Xr2ðgÞ. In order to maintain diversity, an individual Xr3ðgÞ
is randomly selected from the population. The improved
mutation operation not only accelerates the convergence rate
but also increases the diversity of the population, and as shown
in equation (11).

Vi gð Þ =Xp
best gð Þ + F · Xr2 gð Þ − Xr3 gð Þð Þ: ð11Þ

3.4. MODE-deg Algorithm. Algorithm 1 is the overall MODE-
deg framework, Algorithm 2 calculates the sums of the RSU
deployment, and Algorithm 3 generates elitist NP individ-
uals, respectively.

Lines 1-2 count the number of RSU deployment. In lines
3-4, if intersection i deploys RSU, then add i to interS set. Line
5 calculates total for intersection. In lines 6-10, if intersection i
is in the same street as intersection j and is less than or equal
to RSU’s communication distance, add j to InterS.Finally, in
lines 12-14 calculate intersection coverage rate.

In Algorithm 3, the first line executes a fast nondomi-
nated sorting to produce the Pareto rank. Line 2 calculates
the crowding distance of the population. In line 3, two
columns of the Pareto rank and the crowding distance are
added to the population. Line 4 sorts by crowding distance
in descending order. Line 5 is sorted in an ascending order
with the Pareto rank as the keyword. Finally, in line 6,
NP elite individuals are selected as the next generation
parent population.
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# X,parent population; Q, ofspring population; Gm, the maximum generation; NP, number of population; D, individual dimension;
01 Begin
02 Setg = 0 ; F = 0:5 ; CR = 0:3;
03 Create a random initial population Xi,0ðgÞ = fxiji = 1, 2,⋯,NPg:
05 For g =1 to Gm
06 The vectors population is assigned to 1 or 0 as in (8)
07 Algorithm 2 calculates the fitness function
08 Algorithm 3 generates elitist individuals according to the crowding distance sorting and the fast non-dominated sorting
09 For i =1 to NP
10 Use (11) to create a mutant vector
11 Use (3) to create a crossover vector
12 Use (4) to select a selection vector
13 End for
14 X =Q ∪ X

The population are 2NP after combining the parent population and the selection population
15 End for
16 End

Algorithm 1: MODE-deg outline.

# N, individual dimension; InterS, covering the number of intersections; Dði, jÞ, the distance from intersection i to j.
Input: Individual xi
Output: Objf unction , The object function value is the number of RSU deployment and the number of intersections coverage rate
1 InterS =∅
2 objf unctionð1Þ = sumðxiÞ;
3 if xiðiÞ == 1
4 InterS = InterS ∪ fig;
5 N = sizeðxÞ;
6 for j = 1 : N
7 if dði, jÞ > 0&&dði, jÞ < = 500
8 InterS = InterS ∪ fjg;
9 end if
10 end for
11 end if
12 A = uniqueðuÞ;
13 B = 1 − numelðAÞ/N ;
14 objf unctionð2Þ = B;
15 Output objective function value

Algorithm 2: Calculating the RSU deployment objective function value.

Input: objf unction, objective function value and the population P
Output: X, NP elite individuals
1 FrontValue = NonDominateSortðobjf unctionÞ;
2 CrowdDistance = CrowdDistancesðobjf unction, FrontValueÞ;
3 X = ½X FrontValue′transpositionCrowdDistance′transposition�;
4 X = sortrowsðX,−3Þ;
5 X = sortrowsðX, 2Þ;
6 X = Xð1 : NP, :Þ;
7 Output X

Algorithm 3: Generating the elitist NP individuals.
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Figure 2: Continued.
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4. Simulation Results and Discussions

In this section, MODE-deg is applied to minimize a set of
5 scalable benchmark functions of dimensions D = 30 or
10. First, we state five test functions and inverted genera-

tional distance (IGD) indicators to measure the perfor-
mance of the MOEA algorithm. Next, we compare
MODE-deg with three elitist MOEAs: NSGA-II, MOEA/D,
and MOEA/D-arg. Finally, the validity of MOEA/D-deg
is verified.
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Figure 2: Mean IGD convergence comparison.

Table 1: Comparison between MODE-deg and other MOEAs based on IGD.

Problem IGD MOEA/D-arg MOEA/D NSGA-II MODE-deg

ZDT1

Mean 7.54E-03 9.16E-03 5.30E-03 4.36E-03

Std 8.33E-04 1.09E-03 4.18E-04 2.28E-04

Rank 3 4 2 1

ZDT2

Mean 6.22E-03 9.03E-03 5.10E-03 4.54E-03

Std 4.20E-03 1.11E-02 3.26E-04 2.63E-04

Rank 3 4 2 1

ZDT3

Mean 9.44E-03 5.76E-02 5.63E-03 4.82E-03

Std 7.20E-04 6.57E-02 3.00E-04 2.81E-04

Rank 3 4 2 1

ZDT4

Mean 2.15E-01 3.49E-01 4.83 3.45E-02

Std 1.13E-01 1.46E-01 3.38 5.36E-02

Rank 2 3 4 1

ZDT6

Mean 2.33E-03 2.20E-03 3.30E-03 2.96E-03

Std 3.33E-04 1.93E-04 6.53E-04 3.77E-04

Rank 2 1 4 3

Total final 13 16 14 7

Rank 2 4 3 1
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4.1. Performance Metric. The IGD is used to assess both con-
vergence and diversity, and formula is expressed as:

IGD P,Qð Þ = ∑v∈Pd v,Qð Þ
Pj j , ð12Þ

where jPj is a set of points evenly distributed on the true
Pareto front, jPj is the number of distribution points on
the PF, jQj is the optimal Pareto optimal solution set
obtained by the algorithm, and dðv,QÞ is the minimum
Euclidean distance between individual jvj in P and popula-
tion jQj, respectively. The smaller the value is, the better
the algorithm’s convergence is. However, when the diversity
of the algorithm is poor and most individuals in the popula-
tion are concentrated in a narrow area, it can be seen from
the equation that dðv,QÞ of many individuals will be large,
so the diversity performance of the algorithm can be evalu-
ated. Therefore, IGD evaluates the comprehensive perfor-
mance of the algorithm by calculating the average value of

the minimum distance between the point set on the real
Pareto frontier and the acquired population in the target
space point set.

4.2. Hypervolume. Hypervolume (HV) is the volume of the
region in the target space enclosed by the PS obtained by
the algorithm and the reference points. The higher the HV
value is, the better the comprehensive performance of the
algorithm is. δ is the Lebesgue measure used to measure vol-
ume, jsj is the number of a dominant solution set, and Vi is
the HV of the reference point and the ith solution in the
solution set, respectively. The formula is expressed as:

HV = δ
[sj j
i=1

vi

 !
: ð13Þ

HV has the following advantages: convergence and
diversity are evaluated simultaneously, and no PF or
reference set is required. Nevertheless, benefits never come
without the cost, e.g., high computational complexity. Mean-
while, the selection of reference points determines the accu-
racy of the HV evaluation metrics.

4.3. Results and Discussion. We firstly compare the mean
IGD-metric values of MODE-arg algorithm with other three
MOEAs in five test functions of ZDT. Taking the urban traf-
fic map of Xi’an as the research object, we apply four MOEA
algorithms to test MODE-deg on ZDT problems and the
RSU deployment problems, respectively. For simplicity, we
only study two objective optimization problems.

The experiments are carried out in a desktop PC with
Intel Core (TM) i7-4970 4 CPU 3.60GHz and 16GB
RAM. In the parameter setting, the population size of NP
is 100 for the ZDT problems and 40 for the RSU deployment
problems, respectively. Furthermore, individual dimension
is 30 or 10 for the ZDT, individual dimension is 43, the
max generation is 500, and each problem is set as 20. In
the control parameters, CR is 0.3, F is 0.5, T is 20 in
MOEA/D, and Tr (replacing the number in the neighbour-
hood in MOEA/D-arg) is exponential growth, respectively.

Figure 3: Urban traffic map of Xi’an.
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Figure 2 is the IGD convergence comparison between
MODE-deg, MOEA/D, MOEA/D-arg, and NSGAII. As can
be seen from Figure 2, in Figures 2(a)–2(c), MODE-deg
has the fastest convergence rate on ZDT1, ZDT2, and
ZDT3 test functions, and the optimal solution set is also
superior to MOEAs. In Figure 2(e), MODE-deg has the fast-
est convergence rate in the early stage, and PS is close to
other MOEAs on ZDT6. In Figure 2(d), MODE-deg has a
fast convergence rate in the early stage, and PF is inferior
to MOEA/D and MOEA/D-arg on ZDT4.

The mean IGD-metric values of MODE-deg in 20 inde-
pendent runs on ZDT are given in Table 1. Table 1 shows
that MODE-deg ranks first among the four algorithms,
which indicates that MODE-deg can generate good PF with
good convergence and diversity on the five test functions.

4.4. Applications to Solve RSU.We take the urban traffic map
of Xi’an as the research object and as shown in Figure 3. The
lines in the map are urban roads with 43 main intersections.
And we place RSUs at the intersections and use the above
four algorithms, respectively, to solve the nondominated
solution set.

In Figure 4, the abscissa axis is the number of deployed
RSUs, and the ordinate is 1- (RSU coverage rate). The non-
dominant solution set of MODE-deg and NSGAII is supe-
rior to that of MOEA/D and MOEA/D-arg, and the
coverage of MODE-deg and NSGAII is the same when RSUs
are less than 9. When MODE-deg and NSGAII deploy 9-12
RSUs, they have different coverage rates. In particular, when
MODE-deg deploys 12 RSUs, the algorithm achieves 100%

coverage. The nondominant solution set of the four algo-
rithms is shown in the following table.

As shown in Table 2, MOEA/D and MOEA/D-arg can
only obtain the number and coverage of partial RSUs. When
MOEA/D-arg is deployed with 11 RSUs, coverage of more than
80% can be achieved; when MOEA/D-arg is deployed with 17
RSUs, coverage of more than 90% can be achieved but not
100%. MOEA/D deployments with 15 RSUs can achieve more
than 90% coverage, while algorithms cannot achieve 100%
coverage. MODE-deg and NSGA-II deploy eight RSUs to
achieve 80% coverage. In particular, MODE-deg can achieve
100% coverage with 10 RSUs, while NSGA-II can achieve more
than 90% coverage with 10 RSUs.

In Table 3, the program is run 30 times for each algo-
rithm, and the population has evolved 300 generations.
Among the four algorithms, the HV value of MODE-deg is
the largest, which proves that the optimality of nondomi-
nant solution set obtained by this algorithm is better.

More especially, the time complexity of MODE-deg
algorithm and NSGA-II is Oðmn2Þ, where the number of
objective function is m and n is the population size. How-
ever, when selecting Xp

bestðgÞ individuals in the MODE-deg
algorithm, the population is sorted from high to low in the
descending order of crowding distance and the ascending
order of Pareto ranks (Algorithm 2), and thus, the running
time of MODE-deg is longer than NSGA-II. The time com-
plexity of MOEA/D is OðmntÞ, where the neighbourhood
size is t and the running time is the shortest. It follows that
MOEA/D-arg is an improvement of MOEA/D algorithm,
which changes the neighbourhood substitution of offspring

Table 3: Running time and HV comparison between MODEs.

MOEA/D-arg MOEA/D NSGA-II MODE-deg

HV 0.48148 0.34821 0.59597 0.61322

The elapsed time (s) 28.3395 1.4574 1.5364 1.7696

Table 2: RSU deployment nondominant solution set and coverage rate.

MODE-deg NSGA-II MOEA/D MOEA/D-arg
RSU Coverage RSU Coverage RSU Coverage RSU Coverage

1 18.6% 1 8.6% 1 — — —

2 30.2% 2 0.2% 2 7.9% — —

3 41.8% 3 41.8% 3 37.2% — —

4 51.1% 4 51.1% 4 46.5% — —

5 60.4% 5 60.4% 5 51.2% — —

6 69.7% 6 69.7% 6 58.1% — —

7 76.7% 7 76.7% 7 62.8% 7 53.5%

8 83.7% 8 83.7% 8 65.1% 8 62.8%

9 90.6% 9 88% 9 69.8% 11 81.4%

10 95.3% 10 93% — — 13 86.0%

11 97.6% 11 96.3% — — — —

12 100% 12 97.8% — — — —

13 — 13 100% 15 90.7% 17 90.7%
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individuals into global substitution, improving the individ-
ual utilization rate but sacrificing the running time. More-
over, the time complexity of MOEA/D-arg is Oðmn2tÞ, and
its running time is the largest.

In Figure 5, the red marks are the RSU locations in the
map, and a total of 12 RSUs are deployed to achieve 100%
intersection coverage of main roads.

5. Conclusion

This paper studies the problem of RSU deployment in cities
and proposes a new algorithm named MODE-deg. After the
individual is normalized to 0 or 1, nondominated ordering is
performed on individuals, and crowding distance is calcu-
lated, and excellent individuals are selected for guidance to
accelerate the convergence speed. The performance of
MODE-deg algorithm is evaluated by comparing with other
three multiobjective evolutionary algorithms on five test
problems. Experimental results show that MODE-deg
algorithm produces good convergence and diverse Pareto
set, which can accelerate the convergence speed. Finally,
MODE-deg and the other three MOEDs are applied to the
established RSU model, showing that MODE-deg can
achieve greater coverage with fewer RSUs. In the future, we
will study how to improve the communication success rate
of mobile vehicles in the coverage area.
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