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Firmware is software embedded in a device and acts as the most fundamental work of a system. Disassembly is a necessary step to
understand the operational mechanism or detect the vulnerabilities of the firmware. When disassembling a firmware, it should
first obtain the processor type of running environment and the image base of firmware. In general, the processor type can be
obtained by tearing down the device or consulting the product manual. However, at present, there is still no automated tool
that can be used to obtain the image base of all types of firmware. In this paper, we focus on firmware in ARM and propose
an automated method to determine the image base address. Firstly, by studying the storage rule and loading mode of the
function address, we can obtain the function offset and the function address loaded by LDR instruction, respectively. Then,
with this information, we propose an algorithm, named Determining image Base by Matching Function Addresses (DBMFA),
to determine the image base. The experimental results indicate that the proposed method can successfully determine the image
base of firmware which uses LDR instruction to load function address.

1. Introduction

From mobile phones, smart bands, smart watches to routers,
switches, solid-state disks, wireless sensor, etc., embedded
systems have spread all over society [1, 2]. Recently, there
have been many incidents related to security of firmware in
embedded systems. For instance, NSA developed malware
that infects hard disk firmware; Stuxnet targets SCADA
systems and is believed to be responsible for causing sub-
stantial damage to Iran’s nuclear program [3, 4]; Heart-
bleed vulnerability exists in the firmware of embedded
systems, and many vendors release new versions of firm-
ware to mitigate Heartbleed vulnerability [5]; at Recon
BRX 2018, two researchers from Northeastern University
reversed the firmware of Xiaomi’s IoT devices and found
vulnerabilities in the Xiaomi ecosystem [6]. The security
issues of firmware in embedded systems are getting more
and more attention [7–9], including firmware emulation

[10–12], firmware testing [13], and uncovering vulnerabil-
ities [14]. In order to improve the security of the embedded
system, it is necessary to perform reverse engineering on
the firmware [15].

When disassembling firmware, the disassembly tools
such as IDA Pro need to know the processor type and image
base. Correct image base allows the disassembler to establish
accurate cross-references, which are important for firmware
analysts to understand the firmware. At the same time,
correct image base helps to understand the memory layout
of the firmware as a whole, and the wrong image base leads
to the instruction that references the immediate values to
addressing failed [16].

To determine the image base of firmware, many
researchers have put a great deal of effort and several manual
solutions have been proposed.

Skochinsky [17] proposed a general principle for deter-
mining the image base of a file with an unknown format.
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They suggested that some kinds of hints, such as self-
relocating code, initialization code, and string tables, can be
used.

Basnight et al. [16, 18] presented two methods for infer-
ring an image base. The first method uses immediate values
in instructions to infer a reasonable image base. And the sec-
ond method uses a hardware debugger to halt a programma-
ble logic controller to obtain a memory dump. Then, the
image base can be found by manually analyzing common
instruction patterns in the memory dump.

Dacosta et al. [19] noted that, when the case values in a
switch-case statement of a C program are sequential and
dense, the memory addresses of case are usually stored in a
jump table; this fact can be used to infer the memory address
of nearby code and eventually obtain the image base.

All the above methods require the intuition and experi-
ence of reverse engineers, and the success and effectiveness
highly depend on the human factor. To address this prob-
lem, Zhu et al. proposed several methods to automatically
determine the image base of ARM-based firmware [20–23].
However, these methods cannot determine the image base
of all types of firmware, and some of them are time-
consuming.

1.1. Contributions. According to statistics, about 63% of
embedded devices are based on ARM architecture [24].
Hence, we focus on the firmware under ARM architecture
in this paper. By studying the binary function in firmware
and the loading method of its address, we propose a method
for determining the image base of the firmware that loads
the function address using LDR instruction. The method is
divided into three steps. The first step is to identify all the
binary functions and output their offsets. The second step
is to identify all the function addresses in the firmware that
might be loaded by LDR instructions. The third step is to
determine the image base by using the binary function offset
and the function address loaded by LDR instruction. The
experimental results indicate that the proposed method is
effective for firmware which uses LDR instruction to load
function address. The method proposed in this paper can
improve the efficiency of reverse engineering.

1.2. Roadmap. The rest of this paper is organized as follows.
Section 2 introduces the binary function and the method of
loading the function address and introduces the FIND-LDR
algorithm to identify LDR instruction in the firmware and
calculate its loaded address. Section 3 introduces the princi-
ple of determining the image base and gives the DBMFA
(Determining image Base by Matching Function Addresses)
algorithm for determining image base. Section 4 analyzes the
experimental results with the real firmware as the test set.
Finally, this paper is concluded in Section 5.

2. Binary Functions in Firmware and
Their Addresses

2.1. Binary Functions in Firmware. Disassembling the binary
file, we can obtain some binary functions which roughly cor-
respond to functions in a high-level language [25]. When

compiling a function, the compiler usually adds some
instructions at the beginning to create and initialize stack
frame and save registers. These instructions are called pro-
logue. Similarly, it also adds some instructions at the end
of the function to clear stack frame and restore registers.
These instructions are called epilogue. The binary function
which is compiled from function in high-level language
includes prologue, body, and epilogue [26–28].

We compile the C source code shown in Figure 1 into a
binary file and then disassemble the binary file using IDA
Pro; the results are shown in Figure 2. The binary function
corresponding to the add function is divided into 3 parts,
the prologue of which is the STMFD instruction, and the
epilogue of the function is the LDMFD instruction.

Base on the above analysis, we write an IDA Pro script to
obtain all binary functions in a firmware and output the off-
set of prologue of binary functions [26]. The script is shown
in the appendix.

2.2. Binary Function Address Loaded by LDR Instruction. In
ARM-based firmware, the compiler typically uses the LDR
instruction to load the function address into the register.
The C code snippet that defines a function pointer is shown

int add (int a, int b)
– {

}

int c = a + b;
return c;

printf (“Hello ARM! \n”);

Figure 1: Function of C source code.
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sub_8968

======== S U B R O U T I N E =======

STMFD SP!, {R3–R5, LR}

SP!, {R3–R5, PC}LDMFD

MOV

MOV
ADD

ADD
BL

LDR
R4, R0

R0, R4, R5
puts
R5, R1
R0, PC, R0 ; “Hello ARM!”

R0, = (aHelloArm = 0×8980)

Epilogue

Body

Prologue

Figure 2: Binary function of ARM.

int (⁎p) (int, int);
int add (int a, int b)

int main (int argc, char⁎ argv [])

– {

}

– {

}

int c = a + b;
return c;

return 0;

p = add;
printf (“sum = %d\n”, p (3, 5));

Figure 3: Source code.
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in Figure 3. And the corresponding disassembly code is
shown in Figure 4, where the assignment operation uses
LDR instruction to load the function pointer, as shown in
the red box. The compiler and disassembler in this article
are arm-linux-gcc 4.3.2 and IDA Pro 6.8, respectively.

Next is an example of LDR instruction loading function
address in real firmware. The disassembly code of ABB
NETA-21 firmware uImage is shown in Figure 5.

The loading process of function address is detailed as
follows. Take the LDR instruction at the memory address

. text : 000082A4

. text : 000082A8

. text : 000082AC

. text : 000082B0

. text : 000082B4

. text : 000082B8

. text : 000082BC

. text : 000082C0

. text : 000082C4

. text : 000082C8

. text : 000082CC

. text : 000082D0

. text : 000082D4

. text : 000082D8

. text : 000082DC

. text : 000082E0

. text : 000082E4

. text : 000082E8

. text : 000082EC

. text : 000082F0

. text : 000082F4

. text : 000082F8

. text : 000082FC

. text : 00008300

STMFD

LDMFD

ADD
SUB

SUB

STR
STR

STR

LDR
LDR

LDR
LDR
LDR
MOV
MOV
MOV

MOV
MOV
MOV

MOV
MOV

BX

BX

BL

SP!, {R4, R11, LR}

SP!, {R4, R11, LR}

SP, SP, #0×C

R2, = 0×826C

R11, SP, #8

SP, R11, #8

R0, #3

R3, #0

R1, #5

R3

LR

LR, PC

R3, R0
R0, R4
R1, R3
printf

R0, [R11, #var_10]
R1, [R11, #var_14]
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R4, = aSumD ; “sum = %d\n”

Figure 4: Disassembly code.

ROM : C005D000
ROM : C005D000

ROM : C005D014

ROM : C005D000 0D C0 A0 E1
ROM : C005D004 00 D8 2D E9
ROM : C005D008 04 B0 4C E2
ROM : C005D00C 04 00 90 E5
ROM : C005D010 00 68 9D E8
ROM : C005D014 80 FF FF EA

ROM : C0082EE8 3F 70 C7 E3
ROM : C0082EEC D0 22 9F E5
ROM : C0082EF0 0C 30 97 E5

ROM : C00831C4 00 D0 05 C0 off_C00831C4
ROM : C00831C8 18 4E 43 C0 off_C00831C8

MOV R12, SP
SP!, {R11, R12, LR, PC}

SP, {R11, SP, LR}
sub_C005CE1C

R11, R12, #4
R0, [R0, #4]

STMFD
SUB
LDR
LDMFD
B

R2,
R3, [R7, #0×C]

; End of function sub_C005D000

BIC
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LDR

R7, R7, #0×3F

DCD
DCD unk_C0434E18

...

...

sub_C005D000

ROM : C00831C8

= sub_C005D000

sub_C005D000

Figure 5: uImage of ABB NETA-21 (base address set to 0xC0008000).
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Figure 6: Encoding format of LDR instruction.

Input: binaryFile
Output: The addressees loaded by LDR instruction in ARM state.
function Find_ARM_LDR(binaryFile)

bin[fileSize] ⟵ binaryFile
offset ⟵0

while(0 ≤ offset < fileSize-3) do
if (bin[offset +2] ==0x9F && bin[offset+3] ==0xE5)

PC ⟵ offset +8
immed_12 ⟵ bit[11,…,0]
address ⟵ PC&0xFFFFFFFC + (immed_12)
Rd ⟵ Memory[address, 4]
Output: Rd

end if
offset ⟵ offset +4

end while
end function

Algorithm 1: FIND-ARM-LDR algorithm.

Input: binaryFile
Output: The addressees loaded by LDR instruction in Thumb state.
function Find_Thumb_LDR(binaryFile)

bin[fileSize] ⟵ binaryFile
offset ⟵0
while(0 ≤ offset < fileSize) do

opcode ⟵ bin[offset+1]
opcode ⟵ opcode & (11111000)2
if( opcode == (01001000)2)

PC ⟵ offset +4
immed_8 ⟵ bit[7,…,0]
address ⟵ (PC & 0xFFFFFFFC) + (immed_8∗4)
Rd ⟵ Memory[address, 4]
Output: Rd

end if
offset ⟵ offset +2

end while
end function

Algorithm 2: FIND-Thumb-LDR algorithm.
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0xC0082EEC in Figure 5 as an example, the machine code
for LDR instruction is D0 22 9F E5. Since this firmware is
stored in the little-endian format, the actual machine code
is E5 9F 22 D0. The format of LDR instruction used to load
immediate values to a register in ARM state is LDR <Rd>,
[PC, #immed_12], and the corresponding instruction encod-
ing format is shown in Figure 6(b) [29].

Analysis of the encoding format of the LDR instruction
and machine code yields Rd = ð0010Þ2 = R2, immed 12 =
ð0010 1101 0000Þ2 = 0x2D0. The access address of the LDR
instruction in the ARM state is ðPC&0xFFFFFFFCÞ + imme
d 12. Because an ARM processor uses three-stage pipeline
technology, the value of PC equals the address of the current
instruction plus 8 in the ARM state (i.e., PC = Current + 8).
Then, the access address of the LDR instruction is given by

address = PC&0xFFFFFFFCð Þ + immed 12
= Current + 8ð Þ&0xFFFFFFFCð Þ + immed 12
= 0xC0082EEC + 8ð Þ&0xFFFFFFFCð Þ + 0x2D0
= 0xC0082EF4&0xFFFFFFFCð Þ + 0x2D0
= 0xC0082EF4 + 0x2D0
= 0xC00831C4:

ð1Þ

Thus, the address accessed by LDR instruction is
0xC00831C4, as shown in Figure 5. The four bytes at the
beginning of the memory address 0xC00831C4 are 00 D0
05 C0. Since the firmware is stored in the little-endian for-
mat, the actual address is 0xC005D000, which is, in fact,
the address loaded by the LDR instruction. As shown in
Figure 5, 0xC005D000 is the entry address of the binary
function sub_C005D000.

The syntax and loading process of the LDR instruction in
the Thumb state is similar to which in the ARM state;
Figure 6(a) shows the corresponding encoding format.

Based on the above analysis, we introduce the FIND-
Thumb-LDR algorithm and FIND-ARM-LDR algorithm
[23] to scan all LDR instructions in the firmware and output
its loaded addresses.

Note that the addresses loaded by LDR instructions are
not all function addresses; they may correspond to string
addresses, structure addresses, etc. However, the nonfunc-
tion entry addresses have no effect on the final determina-
tion of image base.

3. Determination of Image Base

The script described in Section 2.1 can obtain a set of binary
function offsets in firmware, and the FIND-LDR algorithm
described in Section 2.2 can obtain a set of memory
addresses loaded by the LDR instruction in firmware. The
address of some binary functions in the firmware is loaded
into the register, usually for the assignment of the function
pointer variable. If the function addresses are loaded by
LDR instruction, there is a correspondence between some
elements in the offset set of the binary function and some
elements in the memory address set loaded by the LDR
instruction, and the corresponding relationship between
two sets can be used to determine the image base.

The set of binary functions obtained by the script in
Section 2.1 is recorded as F, and the corresponding function
offset set (o1, o2,⋯, onÞðoi < oi+1ð1 ≤ i ≤ n − 1Þ) is recorded
as O, where n is the number of binary functions in the firm-
ware. The memory addresses obtained by the FIND-LDR
algorithm after removing the duplicate element are recorded
as A = ða1, a2,⋯, amÞ, wherem is the number of addresses in
set A.

As shown in Figure 7, if a binary function with offset oi
loaded into memory location aj, assuming that the image
base is base, then

oi + base = aj: ð2Þ

Therefore, the image base of the firmware is base =
aj − oi.

The address of some binary functions in set F will be
loaded by the LDR instruction, and some of the addresses
in set A are the binary function addresses, so some of the
elements in set O and some of the elements in set A match
formula (1). When base is a particular memory address,
the number of elements that satisfy formula (1) in set O
and set A is the maximum, this memory address is consid-
ered to be the image base of the firmware.

In a 32-bit system, the memory range is large (0~232-1).
We can obtain an image base by enumerating memory
addresses in the range, but this method is less efficient.
Therefore, we designed an algorithm to efficiently calculate
the image base. The main idea of the algorithm is detailed
as follows. First, we can determine the minimum value of
image base is 0, and the maximum value of the image base

ith function

ith function

0xFFFFFFFF

0x00000000

aj

base = aj – oi

oi

Map

Firmware Memory

Figure 7: Mapping firmware into memory.
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in a 32-bit system is 0xFFFFFFFFFF-fileSize, where fileSize is
the size of the binary file. Second, subtract each element oi in
set O by each element aj in set A. If the difference is in the
range of image base, i.e., 0-0xFFFFFFFFFF-fileSize, it is
saved; otherwise, it is discarded. Then, count the number
of occurrences of each difference, sort in descending order
by the number of occurrences, and output the results.

Assume base is a particular memory address, and set O
and set A have k pairs of elements that conform to oi +
base = aj. When subtracting each element in set O with the
jth element in set A, a set is obtained.

aj − o1, aj − o2,⋯,aj − on
� �

: ð3Þ

So that each element aj in set Aminus each element oi of
set O obtains a matrix M.

a1 − o1 a1 − o2 ⋯ a1 − on

a2 − o1 a2 − o2 ⋯ a2 − on

⋮ ⋮ ⋮

aj − o1 aj − o2 ⋯ aj − on

⋮ ⋮ ⋮

am − o1 am − o2 ⋯ am − on

2

666666666664

3

777777777775

: ð4Þ

We have assumed that there is k pair of elements to
satisfy formula (1), but the specific index of k pair of ele-
ments is unknown. Suppose ðax, oyÞ is one of k pairs of
elements. Element M½x,y� on the xth row yth column of
matrix M stores the value of ax − oy. Then, we count the
number of occurrences of each element in matrix M, sort
in descending order according to the number of occur-

rences of the elements, and output the result. Then, the
most frequent occurrence of the element is the candidate
image base. The practical significance of the candidate image
base is that there is a correspondence between the most
elements in set A and set O when the image base is this mem-
ory address. That is, the most binary function addresses in set
F are loaded into registers. Based on the above analysis, we
propose the Determining image Base by Matching Function
Addresses (DBMFA) algorithm. For statistical purposes, the
algorithm first initializes all elements of matrix M to -1.

The time complexity of the DBMFA algorithm is O
ðn ∗mÞ where n is the number of binary function offsets
and m is the number of addresses in set A.

The first memory address in the algorithm output (that
is, the address with the most occurrences) is considered a
candidate image base. If there exists one and only one candi-
date image base whose number of occurrences is much
greater than those of the other candidate image bases, such
candidate image base is considered to be the correct image
base. Otherwise, the outputs do not contain the correct
image base because the DBMFA algorithm cannot be
applied successfully to the binary file.

4. Experimental Results and Analysis

Since there is no common test set that can be used in our
experiments, we collected multiple firmware from some
embedded devices, such as digital video cameras, smart
watches, MP3 players, solid-state drives, and satellite phones,
from the Internet, and created a test set to evaluate the valid-
ity of our algorithms. The DBMFA algorithms described
above were written in python. The experiments were
performed on a personal computer with an Intel i7-2600
3.40GHz processor and 18GB memory running Microsoft
Windows 7 SP1.

Input: Set of binary function offsets in firmware O = ðo1, o2⋯,onÞ
Set of addresses loaded by LDR instructions A = ða1, a2⋯,amÞ
Size of the binary file fileSize

Output: Descending order of elements and the number of occurrences
function DBMFA(O, A, fileSize)

Initialize each element in matrix M to -1
max ⟵0xFFFFFFFF - fileSize
for all aj ∈ Ado

for all oi ∈ Odo
if 0 < aj - oi && aj - oi < max

M[j, i] ⟵ aj - oi
end if

end for
end for
Count the number of occurrences of each element in matrix M
Sort the number of occurrences in descending order
Delete the initial value -1 and the number of occurrences in the sort result
Output: Descending order of elements and the number of occurrences

end function

Algorithm 3: DBMFA algorithm.

6 Wireless Communications and Mobile Computing



4.1. Experimental Results. In the experiment, we choose the
test set as the experimental object and then performed the
method described in Section 2.1 to obtain the binary func-
tion offset in the firmware and performed the FIND-LDR
algorithm to identify the address loaded by the LDR instruc-
tion. Table 1 shows the experimental results. Note that the
column “Function” lists the number of binary functions,
the column “ARM_LDR” and column “Thumb_LDR” are
the number of addresses loaded by LDR instruction identi-
fied by the FIND-LDR algorithm in ARM and Thumb state,
respectively. The column “ALL_LDR” lists the numbers of
addresses identified by the FIND-LDR algorithm after dupli-
cate elements are removed. The column “Match” lists the
most frequent occurrence of the element in matrix M, i.e.,
the number of image base appears in matrix M. The “Base”
column is the image base determined by the DBMFA algo-
rithm. The symbol N/A means that the proposed algorithm
is not available for this firmware, and the reasons for this are
discussed in Section 4.3. “Time” column is the execution
time of the DBMFA algorithm.

4.2. Case Studies. Take the firmware uImage of ABB NETA-
21 as a case. According to the experiment results of Section
4.1, 7549 binary functions were identified in the firmware.
The FIND-LDR algorithm identifies 14611 addresses loaded
by LDR instruction in ARM state and 2221 addresses loaded
by LDR instruction in Thumb state. The total is 16723 dedu-
plicated addresses.

The results of the DBMFA algorithm are shown in
Figure 8(a). As you can see from the figure, the peak point
is X = 0xC0008000, Y = 226. That is, the memory address
0xC0008000 in matrix M appears 226 times, and its number
of occurrences is much greater than other candidate image
bases. Hence, 0xC0008000 is the image base. The practical
significance is there are 226 pairs of data meeting oi + base
= aj at memory address 0xC0008000.

To verify whether the experimental results are correct,
we load uImage file using IDA Pro and set the processor type
to “ARM little-endian” and the image base to 0xC0008000.

Then, IDA Pro can identify most binary functions, and some
of the addresses loaded by the LDR instructions point to
binary functions and display as function names. This means
that the memory address 0xC0008000 is the correct image
base while verifying that the 7549 binary functions in the
firmware have 226 function addresses loaded into the regis-
ter via the LDR instruction.

Figure 8(d) shows the experimental results obtained for
the firmware samples tintin_fw.bin from Pebble smart
watch. We can see that there is no sharp point in curve,
which indicates that the algorithm proposed in this paper
does not apply to this file.

Figure 8(c) is the experimental results of the SBH52_
firmware.bin from Sony SBH52, which shows that its image
base is 0x8040001. As we all know, image base of ARM firm-
ware is 4 bytes aligned, but why this image base is
0x8040001? The reason is that 1564 LDR addresses in
Thumb state are identified in the SBH52_firmware.bin firm-
ware, while only 4 LDR addresses in ARM state are identi-
fied. When executing the BX Rm instruction, if the least
significant bit (LSB) of the target address is 1, the processor
switches to Thumb state. Otherwise, it switches to ARM
state. For example, when the LSB of register Rm is 1, the
execution of instruction “BX Rm” makes the processor
switch to the Thumb state. This instruction is equivalent
to the assignment PC = Rm&0xFFFFFFFE. In fact, the
actual entry address of the Thumb function in memory
is Rm&0xFFFFFFFE, while the value of target address is
Rm&0xFFFFFFFE+1. Therefore, all entry addresses of the
Thumb function are odd.

Some of the 1564 LDR addresses mentioned above are
Thumb function addresses, and where the function address
is its true value plus 1. This results in one-byte difference
between the results and the true image base. The correct
image base for the firmware SBH52_firmware.bin should
be 0x8040000.

4.3. Reasons for Image Base Determination Failures. From
Table 1, we can see that for some firmware, the image base

Table 1: The experimental results.

Model File Function ARM_LDR Thumb_LDR ALL_LDR Match Base
Time
(s)

ABB NETA-21 uImage 7549 14611 2221 16723 226 0xC0008000 233

Advantech_EKI-2748FI 3551 3176 7350 879 8195 113 0x400000 41

Emerson TopWorx
ES-03001

ES-03001-1.ffd 1668 2177 440 2599 84 0x1000FFD4 8

Pebble tintin_fw.bin 1522 0 3152 3152 N/A N/A 8

Phoenix 400 PND-4TX-IB 2985563_321.fw 6856 9867 897 10728 187 0x20800F28 116

Samsung gear fit wingtip_in.bin 11619 0 4334 4334 N/A N/A 99

Schneider 140CRA31200 CRA31200_Com.bin 7517 13980 1378 15284 377 0x1000 167

Schneider 140CRA31200
140CRA31200_
Master.bin

7185 13883 2176 15950 396 0x02001000 180

Sony AS30 DV vmlinux.bin 4838 7993 1751 9676 265 0xC0018000 80

Sony SBH52 SBH52_firmware.bin 2949 4 1564 1568 73 0x8040001 8
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is not determined successfully (even though it recognizes
some LDR instructions). The possible reasons for this are
as follows:

(1) Some firmware files are encrypted or compressed.
These files must be decrypted or decompressed
before applying the proposed methodology

(2) Due to different coding practices or compilation
modes of a compiler, some firmware uses other
instructions, such as ADR instruction, to load binary
function addresses. In this case, the addresses identi-
fied by the FIND-LDR algorithm contain no binary
function addresses. The algorithm proposed in this
paper needs to utilize the binary function address
loaded by LDR instruction, so it is not valid for such

firmware, such as firmware tintin_fw.bin file of Peb-
ble smart watch and firmware wingtip_in.bin file of
Samsung gear fit

5. Conclusions

Disassembling for firmware is a necessary step in the anal-
ysis of embedded system security. Most of the firmware
for unknown format cannot obtain the image base
directly, which blocks the disassembly work. This paper
studies the prologue of binary function and load method
of binary function in ARM firmware and proposes a
method for determining the image base by the binary
function offset in firmware and the function address
loaded by the LDR instruction. The experimental results
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indicate that the method proposed in this paper is effective
for the firmware of loading function addresses using LDR
instruction. For other types of firmware, try using other
methods to determine the image base, or manual method.

For the future work, it is interesting to explore the
encoding of ARM instruction and propose the image base
determination method for other types of ARM firmware.
We will focus on automatically determining the image base
of firmware of other architectures, such as MIPS and
PowerPC.

Appendix

import csv # import the csv module
print("start")
# get the path to save the file
csvFilePath = AskFile(True,} ∗.csv", "Save to CSV File");
if csvFilePath == None: # If no file is selected, exit the
program

Message("The user canceled the operation!")
sys.exit()

Message("csvFilePath = %s\n"%(csvFilePath)) # for
debug
csvFilePath = unicode(csvFilePath , "utf8") # for Chinese
path
FunCount =0 # variable FunCount is used
to record the number of functions
funcs = Functions() # walk through each function
for f in funcs:

name = Name(f) # obtain current function name
offset = idaapi.get_fileregion_offset(f) # get offset
of current function
FunCount = FunCount + 1
Message("FunCount = %d, function_name = %s,
offset =0x%X\n"%(FunCount, name, offset))
# save to csv file
try:

with open(csvFilePath, 'ab+') as csvFile:
csvFile.write(codecs.BOM_UTF8)
spamwriter = csv.writer(csvFile,
dialect='excel')
str = '{:X}'.format(offset) # format
the str
spamwriter.writerow([str])
csvFile.close()

# close the CSV File
except:

# get detail from sys.exc_info() method
error_type, error_value, trace_back =
sys.exc_info()
print 'error_value = ', error_value # print
error value

print("done!")
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