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Currently, human pose estimation (HPE) methods mainly rely on the design framework of Convolutional Neural Networks
(CNNs). These CNNs typically consist of high-to-low-resolution subnetworks (encoder) to learn semantic information and low-
to-high subnetworks (decoder) to raise the resolution for keypoint localization. Because too low-resolution feature maps in
encoder will inevitably lose some spatial information, which cannot be recovered in the upsampling stages, keeping high spatial
resolution features is critical for human pose estimation. On the other hand, due to scale variation of human body parts,
multiscale features are also very important for human pose estimation. In this paper, a novel backbone network is proposed
specifically for HPE, named High Spatial Resolution and Multiscale Networks (HSR-MSNet), which maintain high spatial
resolution features in deeper layers of the encoder and meanwhile construct multiscale features within one single residual block
via subgroup splitting and fusion of feature maps. Experiments show that our approach outperforms other state-of-the-art
methods with more accurate keypoint locations on COCO dataset.

1. Introduction

Human pose estimation (HPE) is one of the most fundamen-
tal tasks in computer vision—which is aimed at predicting the
locations of body joints from input images. Recently, the
human pose estimation methods based on Convolutional
Neural Networks (CNNs) have achieved a great breakthrough
[1–6], since CNNs have the powerful ability to learn rich con-
volutional feature representations [7]. For example, for single-
person pose estimation, the state-of-the-art models have
improved the performance from less than 50% PCKh@0.5 to
more than 90% PCKh@0.5 [8–12] on the MPII benchmark

[13]. However, multiperson pose estimation still faces two
main challenges:

(1) There may be occlusion between different people,
which will cause ambiguities of joints

(2) Some invisible joints are hard to be predicted

In order to solve these challenges, existing methods, such
as CPN [14] and SimpleBaseline [15], employ ResNet [16] as
the backbone to obtain feature maps with large downsam-
pling. However, too large downsampling will cause image
spatial information loss [17], leading to difficulties for joint
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context recovery. On the other hand, due to camera view
change or foreshortening, scales of different body parts may
still be inconsistent, even if training images are warped to
the same scale [9]. Therefore, scale variation of human body
parts is also one of the main challenges. Previous works [9,
10, 18] have shown that multiscale or pyramid features are
beneficial for solving the problems caused by scale changes.

In this paper, a novel backbone network is proposed spe-
cifically for HPE, named High Spatial Resolution and Multi-
scale Networks (HSR-MSNet). The network could maintain
high spatial resolution features in deeper layers while keeping
large receptive fields and construct multiscale features within
one single residual block by channel split and fusion. Exper-
iments on COCO keypoint detection dataset demonstrate the
effectiveness of HSR-MSNet. At the same time, the network
architecture of HSR-MSNet is very lightweight, which means
that it will be possible to implement functions similar to
MobileNet [19] on Internet-of-Things (IoT) devices.

2. Related Works

2.1. Single-Person Pose Estimation. DeepPose [5] is the first
human pose estimation method based on deep learning,
which treats the body joint as a CNN-based regression prob-
lem, and its backbone consists of a softmax classifier, five
convolution layers, and two fully connected layers. Subse-
quent methods mostly apply heatmaps that could character-
ize the probability of each keypoint at different locations for
pose estimation [20]. The accurate location of a keypoint is
further estimated by selecting the maximum value in the
aggregation heatmaps. Convolutional Pose Machine (CPM)
[21] is a multistage architecture where the belief maps and
image features generated in the previous stage are served as
input for the next stage [22]. For CPM, large receptive fields
are used to learn long-range spatial relationships and the gra-
dient vanishing problem is eliminated by using intermediate
supervision. The features of stacked hourglass network [23]
(Hourglass) are processed across all scales and consolidated
to best capture the various spatial relationships associated
with the body [23]. The above two models (CPM and Hour-
glass) achieve state-of-the-art performance, which all adopt
intermediate supervision to generate detailed heatmaps for
the joint locations.

2.2. Multiperson Pose Estimation. Multiperson pose estima-
tion is a more challenging problem than single-person pose
estimation for many computer vision applications. Due to
occlusion and complex background, it is difficult to obtain
accurate location results for multiperson pose estimation. A
common approach is bottom-up, which detects human joints
throughout the image region and then makes the groups of
joint candidates for each person. The main problem of the
bottom-up approach is to model the joint-to-individual asso-
ciations [24]. Cao et al. [25] proposed a novel model to detect
the 2D pose of several people in an image, which uses a non-
parametric representation (Part Affinity Fields (PAFs)) to
associate body parts with individuals in the given image.
The architecture is aimed at learning part positions and their

association jointly by two branches of the same sequential
prediction process.

Another pipeline to multiperson pose estimation is top-
down [14, 15, 26, 27], which first detects each person in the
image and then conducts single-person pose estimation for
each single person. This top-down approach is not suitable
when crowds are in close proximity, because it will result in
significant overlap between bounding box regions of people.
Fang et al. [27] proposed a novel regional multiperson pose
estimation (RMPE) framework, which applies SSD [28] or
Faster RCNN [29] to locate persons in an image and uses
Hourglass [23] to predict pose of each people. Wei et al.
[21] proposed the Cascaded Pyramid Network (CPN) for
multiperson pose estimation, which uses Mask RCNN [25]
to detect persons and then designs CPN to predict each per-
son’s pose.

2.2.1. High Spatial Resolution Features. Some state-of-the-art
human pose estimation architecture, such as Hourglass [23],
CPN [14], and SimpleBaseline [15], are shown in Figure 1.
These CNN-based methods are typically encoder-decoder
architecture, which consists of high-to-low resolution sub-
networks (encoder) to learn semantic information and low-
to-high subnetworks (decoder) to raise the resolution for
the keypoint locations. Hourglass stacks multiple encoder-
decoder subnetworks together to get progressively refined
heatmaps. The “RefineNet” of CPN plays the role to explore
the context information of “hard” keypoints to further
improve the performance. SimpleBaseline simply takes
ResNet as its backbone and adds additional deconvolution
layers to raise the resolution of feature maps to predict key-
point heatmaps.

Because too low-resolution feature maps in encoder will
inevitably lose some spatial information, which cannot be
recovered in the upsampling stages, keeping high spatial res-
olution features is critical to improve the performance of
human pose estimation.

In [30], DetNet maintains high spatial resolution in dee-
per layers to deal with the problem that large downsampling
factors may compromise the location capability. Sun et al.
[18] proposed the High-Resolution Net (HRNet) that con-
sists of parallel high-to-low resolution subnetworks with
multiscale feature fusion, which learns reliable high-
resolution features by maintaining high-resolution represen-
tations through the whole networks. The information is
exchanged repeatedly across multiresolution subnetworks,
each of which receives information from other parallel ones.

2.2.2. Multiscale Features.Multiscale features are very impor-
tant for pose estimation due to scale variation of human body
parts. Most existing methods [14, 29] represent the multi-
scale features in a layer-wise manner fusing different level
(scale) features together.

PyraNet proposed by Pishchulin et al. [8] and Res2Net
proposed by Gao et al. [31] both construct multiscale features
within one single residual block. By means of extending
residual block to multiscale pyramids, PyraNet [8] designs
Pyramid Residual Modules (PRMs) to enhance the invari-
ance in scales. Multiscale features are obtained by applying
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different subsampling on input features in a multibranch
residual block. Res2Net [31] represents multiscale features
at a granular level and increases the range of receptive fields
for each network layer. Specifically, Res2Net implements
multiscale features via splitting channels of feature maps
into subgroups and fusing these channel groups hierarchi-
cally. It has been proven that Res2Net can boost many
backbone networks in some vision tasks, including object
detection, semantic segmentation [32, 33], and salient
object detection [29].

3. Our Approach

Similar to the previous works [14, 15, 25], we adopt the top-
down pipeline for multiperson pose estimation, as illustrated
in Figure 2. The whole framework consists of two parts:
human detection and human pose estimation. First, a human
detector is used to find all persons in the input image and
generate a set of human bounding boxes. Then, a human
pose estimation approach is applied to predict the keypoints
for each single person by dealing with those human bound-
ing boxes.

3.1. Human Detection. The state-of-the-art object detection
method, YOLOv3 [34], is utilized for human detection. All
eighty categories from the COCO dataset [35] are utilized

to train YOLOv3, but only human bounding boxes are used
for our model. In the network of YOLOv3, 53 convolution
layers with some shortcut connections are used for image fea-
ture extraction and the size of feature map can be adjusted
through the convolution stride. Drawing on the idea of fea-
ture pyramid networks, YOLOv3 uses multiple scales to
detect objections with different sizes, the finer the grid cell,
the finer the object can be detected. In addition, the softmax
is replaced with logistic classifier; in this way, multilabel
object detection can be supported when detecting objects.
More detail about YOLOv3 could be found in [34].

3.2. Human Pose Estimation with High Spatial
Resolution Features

3.2.1. Motivation. Backbone networks play an important role
in human pose estimation because of their abilities to extract
effective features from the input images, which is critical for
classification and keypoint localization. ResNet [16], as a tra-
ditional backbone network, has been widely used [36] and
achieved outstanding performance in many state-of-art net-
works for human pose estimation such as SimpleBaseline
[15] and CPN [14]. Accordingly, ResNet has high efficiency
for image feature extraction. However, there still exist the fol-
lowing shortcomings when ResNet is used as the backbone
network for human pose estimation.
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Figure 1: Some state-of-the-art pose estimation architecture: (a) Hourglass; (b) CPN; (c) SimpleBaseline.
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(1) Poor accuracy of keypoint localization. There are five
stages in ResNet, and in each stage, the feature maps
are sampled down. Compared to the input image, the
feature maps have strides of 32 with strong semantic
information and have large valid receptive fields,
which bring a great performance in classification
task. However, the downsampling with 32 strides
may lead to the loss of local information and further
affect the accuracy of keypoint localization in human
pose estimation

(2) Invisibility of small joints. Another drawback of large
stride is the missing of small keypoints. For some
occluded joints which contain less information, the
spatial resolution of input image is greatly reduced
when the large stride feature maps are extracted

(3) Ambiguities. In the case of occlusion between multi-
ple persons, one human bounding box may contain
the keypoints of other persons. There exists the loss
of the context information while the input image is
converted into feature maps with large strides. It is
hard to distinguish which keypoints belong to the
right person without the context information

To solve these problems, inspired by DetNet [30], we
reserve the first four stages of ResNet and replace the fifth
stage with two new stages, as shown in Figure 3(b), named
as HSRNet (High Spatial Resolution Network). In these two
stages, the feature maps are no longer sampled down and
the valid receptive fields are expanded. Thus, we can not
only ensure the classification of each keypoint but also
reserve more semantic information of the feature maps,
which will be helpful to improve the accuracy of keypoint
localization.

3.2.2. Our Model for Keypoint Localization. A simple network
structure is adopted in our model, as shown in Figure 4(b).
Firstly, we use HSRNet as backbone network to generate
feature maps with semantic information. Then, a few
deconvolutional layers with batch normalization and ReLu
activation are applied to generate heatmaps from the low-
resolution feature maps. Finally, Mean Squared Error
(MSE) is used as the loss between the predicted heatmaps
and target heatmaps. The target heatmaps for keypoints
are generated by applying a Gaussian centered at the
ground-truth location of keypoints. Compared with Sim-
pleBaseline [15], HSRNet is adopted to replace the original
ResNet. Since the size of output feature maps of HSRNet
and ResNet is different, the deconvolutional layer is
reduced to keep the same size of feature map.

As shown in Figure 5(b), HSRNet is our backbone net-
work with two new stages based on the existing ResNet
[16]. As shown in Figure 6, in the two new stages, original
bottlenecks A and B are slightly altered into two new bottle-
necks C and D. Original3 × 3convolution layer is converted
into a convolution layer with dilation of 2. And the bottle-
neck C does not have a downsampling, which ensures that
the size of feature maps will not change during these two
new stages. Similar to ResNet, the stack method is applied,
and original bottlenecks A and B are replaced by bottlenecks
C and D, as shown in Figure 5. Since the fifth stage in ResNet
has a downsampling with a stride of 2, if only a new stage is
used, it will reduce the valid receptive field, leading to a neg-
ative effect for human pose estimation. Therefore, we utilize
two new stages to gain feature maps of higher spatial resolu-
tion, simultaneously without sacrificing valid receptive field.

3.3. Human Pose Estimation with Multiscale Features. Based
on Res2Net [31], we design a new multiscale module

Person detection Pose estimation

Figure 2: Top-down pipeline for multiperson pose estimation.
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Figure 3: Comparisons of different backbones used in human pose estimation: (a) ResNet backbone; (b) HSRNet backbone.
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(MSNet) (as shown in Figure 7(b)) specifically and further
integrate it into HSRNet to learn multiscale features. Our
entire framework is named as HSR-MSNet.

The structure of Res2Net [31] is shown in Figure 7(a).
Res2Net uses hierarchical groups of 3 × 3 convolution filters
to extract multiscale features. Specifically, Res2Net
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Figure 4: Illustration of network architecture for human pose estimation: (a) SimpleBaseline; (b) our model.
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Figure 5: Detailed structures of different bottlenecks: (a) original bottleneck with 1 × 1 Conv; (b) original bottleneck; (c) dilated bottleneck
with 1 × 1 Conv; (d) dilated bottleneck.
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implements multiscale features by splitting channels of fea-
ture maps into subgroups (3 groups as shown in
Figure 7(a)) and fuses these channel groups hierarchically.
Since we have retained the first four stages of ResNet,
Res2Net module can be easily integrated into the first four
stages of our network backbone. As shown in Figure 7(b),
we add a 3 × 3 convolution layer compared with Res2Net,
in order to increase the receptive fields. In addition, we use
multiple smaller scale 3 × 3 convolution layers to replace
the 3 × 3 convolution layer with stride 2. There are two
advantages in this network structure. Firstly, multiple smaller
3 × 3 convolution layers can learn more context information
of keypoints compared with one convolution layer with
stride 2, especially for small-scale persons. Since the output
feature maps of stage 4 are 16x strides with respect to input
image, the convolution layer with stride 2 will be more diffi-
cult to extract semantic features for small-scale persons in
detail. Secondly, the MSNet module can extract deep seman-

tic features in multiscale style, while keeping large receptive
fields. We denote the output feature maps of the 3 × 3 convo-
lutional layer ConvðÞ as yi, i ∈ f1, 2,⋯, ng, where n is the
total numbers of subgroups that the feature maps are split
into evenly. Then, yi could be expressed as

yi =
Conv xið Þ, i = 1,
Conv xi + yi−1ð Þ, 1 < i ≤ n,

(
ð1Þ

where xi denotes the results of input feature maps x after 1
× 1 convolution and split evenly.

Among the multiscale features, not all the features are
equally valid for human pose estimation. In order to balance
the relationship among channel features, we add a SE
(Squeeze-and-Excitation) block [37] before the residual con-
nections (Figure 7(b)), which can learn the importance of
each feature channel and promote important features while

••• •••

Stage 4 output
16x stride

Stage 5 output
32x stride

B A A

(a)

••• •••

Stage 4 output
16x stride

Stage 5 output
16x stride

Stage 6 output
16x stride

D DC C C C

(b)

Figure 6: Detailed structures of ResNet and HSRNet. A, B, C, and D are bottlenecks illustrated in Figure 5. HSRNet follows the same design as
ResNet before stage 4, while keeping spatial size after stage 6. (a) The fifth stage of ResNet; (b) two new stages of HSRNet.
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Figure 7: Comparison of two multiscale building blocks: (a) original Res2Net block; (b) our proposed MSNet.

6 Wireless Communications and Mobile Computing



suppressing the less useful features for the current vision task.
As a result, the final formula of our MSNet module could be
written as

f = Re Lu x + K yð Þð Þ, ð2Þ

where y represents the concatenation of yi(i ∈ f1, 2,⋯, ng),
f represents the final output feature maps, ReLu is the
activation layer we used, and KðÞ represents the SE block
and 1 × 1 convolution layer.

4. Experiments

4.1. Datasets. We evaluate our model on popular MS COCO
benchmark [35]. There are more than 200K images and 250K
person instances labeled with keypoints in the COCO dataset
which contain train set, validation set, and test set. 150K per-
son instances are publicly available for training and valida-
tion. Our models are only trained on COCO train2017
dataset (includes 57K images and 150K person instances),
no extra data involved, and ablation studies are conducted
on the COCO val2017 dataset. Finally, we report the results
on COCO test-dev2017 set to make a fair comparison with
the public state-of-the-art methods.

4.2. Model Training and Inference.Our models are trained on
the NVIDIA Tesla P100 GPU using PyTorch and optimized
by Adam algorithm with a batch size of 32 for 140 epochs.
The learning rate is initialized as 0.0001 and decreased by a
factor of 0.1 at 90th and 120th epoch. The ground-truth
human box is made to a fixed aspect ratio, which is height
: width = 4 : 3 by extending the box in height or width. It is
then cropped from the image and resized to a fixed resolu-
tion. The default resolution is 256 × 192, which is the same
as the state-of-the-art methods [14, 15] for a fair comparison.
During the model training, we use a pretrainedmodel trained
on ImageNet classification task [1].

We test HSR-MSNet with 59, 110, and 161 layers, named
HSR-MSNet-59, HSR-MSNet-110, and HSR-MSNet-161,

respectively. HSR-MSNet-59 is derived from [18], which
can be download at https://github.com/guoruoqian/
DetNet_pytorch. For HSR-MSNet-110 and HSR-MSNet-
161, we adopt to initial the parameters of the first four stages
from ResNet pretrained models [16].

The standard COCO metrics [35] are used to evaluate
our approach, including AP (averaged precision), OKS
(object keypoint similarity) thresholds, AP50 and AP75 (AP
at different IoU (Intersection over Union) thresholds), APm
and APl (AP at different scales: middle and large), and AR
(average recall). The OKS plays the same role as the IoU in
object detection, which is calculated from the distance
between predicted keypoints and ground-truth keypoints
normalized by scale of the person.

4.3. Quantitative Results. The experiments with HSRNet and
HSR-MSNet are implemented to investigate the effectiveness
of keeping high spatial resolution features and multiscale fea-
tures for human pose estimation, respectively.

4.3.1. High Spatial Resolution Features. For the experiments
with HSRNet, a human detector is introduced with AP 56.4
on COCO val2017, and the performance of ResNet and
HSRNet with various options is listed in Table 1. Since the
feature maps of HSRNet have higher spatial resolution than
ResNet, two deconvolution layers are utilized to maintain
the same size of output heatmaps. Methods a, b, c, d, e, g,
h, i, j, and k with 256 × 192 input size eventually generate
64 × 48 heatmaps, and methods f and l with 384 × 288 input
size generate 96 × 72 heatmaps.

(1) Size-varied backbone. Methods a, b, and c and g, h,
and i compare the results of HSRNet and ResNet by
size-varied backbones, which illustrate that HSRNet
is better than ResNet by 0.4 AP at least in comparable
size of backbones. Similar to ResNet, the larger the
size of HSRNet backbone, the better the performance.
As can be seen from Table 1, AP increases 0.4 from

Table 1: Comparisons on the COCO val2017 dataset.

Method Backbone Input size Deconv. layers Deconv. kernel size AP

a ResNet-50 256 × 192 3 4 70.4

b ResNet-101 256 × 192 3 4 71.4

c ResNet-152 256 × 192 3 4 72.0

d ResNet-50 256 × 192 3 2 70.1

e ResNet-50 256x192 3 3 70.3

f ResNet-50 384 × 288 3 4 72.7

g HSRNet-59 256 × 192 2 4 71.4

h HSRNet-110 256 × 192 2 4 71.8

i HSRNet-161 256 × 192 2 4 72.6

j HSRNet-59 256 × 192 2 2 70.9

k HSRNet-59 256 × 192 2 3 71.2

l HSRNet-59 384 × 288 2 4 73.2
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HSRNet-59 to HSRNet-110 and 1.2 from HSRNet-59
to HSRNet-161

(2) Various kernel sizes of deconvolution layers.
Methods a, d, and e and j, i, and k prove that HSRNet
also outperforms ResNet by at least 0.8 AP with var-
ious kernel sizes of deconvolution layers. AP
increases 0.3 from kernel size 2 to 3 and 0.5 from ker-
nel size 2 to 4 in HSRNet-59

(3) Different sizes of input images. a and f and g and l
methods illustrate that the higher the resolution of
input images, the better the performance. In addition,
HSRNet improves 1 AP compared with ResNet

Since HSRNet has more parameters than ResNet in com-
parable size of backbone, it may be hard to demonstrate that
HSRNet structure is better than ResNet. However, it is worth
noting that AP of methods b and g are the same. The perfor-
mance is comparable between HSRNet-59 and ResNet-101,
which implies the ability of high spatial resolution to improve
the performance of human pose estimation significantly.

4.3.2. Multiscale Features. The experiments are implemented
with HSR-MSNet and compared with HSRNet to show the
importance of multiscale features for human pose estimation,
as shown in Table 2.

A human detector is adopted with AP 56.4 on COCO
val2017. Due to the fact that HSR-MSNet can extract seman-
tic features with multiscale and assign weights to these fea-
tures by the SE module, HSR-MSNet has a better
performance than HSRNet with the same parameters which
is improved by 0.1AP. Obviously, multiscale features play

an important role in human pose estimation, because it
requires an understanding of large-scale features for the clas-
sification of keypoints, as well as small-scale features for
localization of keypoints. SE block is also indispensable since
it can assign weights to different features and make the most
effective features prominent among others. The combination
of multiscale features and weight distribution can further
improve human pose estimation.

4.3.3. Comparisons with Other State-of-the-Art Methods. The
results of HSRNet and other state-of-the-art models includ-
ing Hourglass [23], CPN [14], and SimpleBaseline [15] on
the COCO val2017 dataset are shown in Table 3. For fair
comparison, a human detector provided by SimpleBaseline
is introduced with 56.4 AP, which is comparable to Hour-
glass and CPN with 55.3 AP.

Our method exceeds Hourglass by 4.5 AP in the same
input size of 256 × 192. Compared with CPN, our method
outperforms CPN without OHKM by more than 2.6 AP
and CPN with OHKM by 1.6 AP. Although our model is
based on SimpleBaseline, it has been proved in Table 1 that
our method performs better than SimpleBaseline. It is obvi-
ous that these performance gains are benefited from keeping
high spatial resolution in deeper layers of the backbone
encoder networks.

To gain a better performance, a human detector of 60.9
AP is applied to obtain human bounding boxes on COCO
test2017 dataset. For reference, CPN uses a human detector
with person detection AP of 62.9 on COCO minival split
dataset and SimpleBaseline uses a human detector of 60.9
AP on COCO std-dev split dataset. As shown in Table 4,
CPN uses the ResNet-Inception and SimpleBaseline uses

Table 2: Comparisons on the COCO val2017 dataset.

Method Backbone Input size Deconv. layers Deconv. kernel size AP

a HSRNet-59 256 × 192 2 4 71.4

b HSRNet-59 384 × 288 2 4 73.2

c HSR-MSNet-59 256 × 192 2 4 71.5

d HSR-MSNet-59 384 × 288 2 4 73.3

Table 3: Comparisons with Hourglass, CPN, and SimpleBaseline on the COCO val2017 dataset.

Method Backbone Input size OHKM AP

8-stage Hourglass — 256 × 192 N 66.9

8-stage Hourglass — 256 × 256 N 67.1

CPN ResNet-50 256 × 192 N 68.6

CPN ResNet-50 384 × 288 N 70.6

CPN ResNet-50 256 × 192 Y 69.4

CPN ResNet-50 384 × 288 Y 71.6

SimpleBaseline ResNet-50 256 × 192 N 70.4

SimpleBaseline ResNet-50 384 × 288 N 72.2

Ours HSRNet-59 256 × 192 N 71.4

Ours HSRNet-59 384 × 288 N 73.2
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ResNet-152 for human pose estimation. Our method only
utilized a small backbone but outperforms some state-of-
the-art models including G-RMI [38] and FAIR∗ [37] and
achieves a potential performance of 72.6 AP and 72.8 AP.

Since our model is based on SimpleBaseline, the changes
we made are very slight, which have a negligible impact on
the overall parameters of the model. In other words, com-
pared to SimpleBaseline, the computational complexity of
our model is almost the same.

4.4. Qualitative Comparisons. Some qualitative comparison
results on the COCO test2017 dataset are shown in
Figure 8. We compare our approach with SimpleBaseline
[15] and use comparable model to predict the keypoints for
fair comparison. SimpleBaseline utilizes ResNet-50 as
backbone, and our method is HSR-MSNet-59. As shown
in Figure 8, the first row contains some original images
of the COCO test2017 dataset, the second row is the

results predicted by SimpleBaseline [15], and the third
row is our results.

It is obvious that our method can better predict the
keypoints of partially occluded or small people by utilizing
higher resolution and multiscale feature maps. As the first
column of Figure 8 has shown, our method can perceive
and predict the keypoints more accurately for small peo-
ple. For complex backgrounds, the second column illus-
trates that our method can separate the person from the
background easily with high-resolution feature maps to
avoid misidentification. In addition, our method can accu-
rately predict the “hard” joints that are occluded or invis-
ible in the third and fourth columns of Figure 8. Especially
in the third column, HSR-MSNet makes it easier to detect
the left arm which is heavily occluded in this image and
gives a more accurate prediction. It is attributed to the
ability of HSR-MSNet to mine more context information
of “hard” joints.

Table 4: Comparison experiments on the COCO test2017 dataset. Results of compared methods are cited from [15].

Method Backbone Input size AP AP50 AP75 APm APl AR

G-RMI [38] ResNet-50 256 × 192 64.9 85.5 71.3 62.3 70.0 69.7

CPN ResNet-Inception 384 × 288 72.1 91.4 80.0 68.7 77.2 78.5

FAIR∗ [37] ResNeXt-101-FPN — 69.2 90.4 77.0 64.9 76.3 75.2

G-RMI∗ ResNet-152 384 × 288 71.0 87.9 77.7 69.0 75.2 70.6

oks∗ [37] — — 72.0 90.3 79.7 67.6 78.4 77.2

Bangbanggren∗ [37] ResNet-101 — 72.8 89.4 79.6 68.6 80.0 78.7

CPN∗ ResNet-Inception 384 × 288 73.0 91.7 80.9 69.5 78.1 79.0

SimpleBaseline ResNet-152 384 × 288 73.7 91.9 81.1 70.3 80.0 79.0

Ours HSRNet-59 384 × 288 72.6 91.2 79.9 69.0 78.9 77.8

Ours HSR-MSNet-59 384 × 288 72.8 91.2 80.5 69.6 79.0 78.3
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Figure 8: Qualitative comparisons on the COCO test2017 dataset.
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5. Conclusion

In this paper, a novel backbone network, named HSR-
MSNet, is proposed specifically for human pose estimation,
which maintains high spatial resolution features in deeper
layers of the encoder while still keeping large receptive fields.
We also design a building module to learn multiscale features
within one single residual block by splitting channels of
feature maps into subgroups and then fuse these channel
groups hierarchically. For multiperson pose estimation,
our model can learn efficient context information of
“hard” joints, due to partial occlusion or small scale of
persons. Experiments on the COCO keypoint detection
dataset show that our model outperforms other state-of-
the-art methods, such as Hourglass [23], CPN [14], and
SimpleBaseline [15] with respect to standard COCO met-
rics. At next steps, we will focus on evaluating our model
on other human datasets, such as MPII dataset, and then
further experiments on lightweight devices.
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