
Research Article
A Novel Cooperative Cache Policy for Wireless Networks

Lincan Li ,1 Chiew Foong Kwong ,1 Qianyu Liu ,2 Pushpendu Kar ,3

and Saeid Pourroostaei Ardakani 3

1Department of Electrical and Electronic Engineering, University of Nottingham Ningbo China, 315100 Ningbo, China
2International Doctoral Innovation Centre, University of Nottingham Ningbo China, 315100 Ningbo, China
3School of Computer Science, University of Nottingham Ningbo China, 315100 Ningbo, China

Correspondence should be addressed to Chiew Foong Kwong; chiew-foong.kwong@nottingham.edu.cn

Received 11 February 2021; Revised 16 July 2021; Accepted 27 July 2021; Published 10 August 2021

Academic Editor: Vishal Sharma

Copyright © 2021 Lincan Li et al. This is an open access article distributed under the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Mobile edge caching is an emerging approach to manage high mobile data traffic in fifth-generation wireless networks that
reduces content access latency and offloading data traffic of backhaul links. This paper proposes a novel cooperative
caching policy based on long short-term memory (LSTM) neural networks considering the characteristics between the
features of the heterogeneous layers and the user moving speed. Specifically, LSTM is applied to predict content
popularity. Size-weighted content popularity is utilised to balance the impact of the predicted content popularity and
content size. We also consider the moving speeds of mobile users and introduce a two-level caching architecture consisting
of several small base stations (SBSs) and macro base stations (MBSs). To avoid content requests of fast-moving users
affecting the content popularity distribution of the SBS since fast-moving users frequently handover among SBSs, fast-
moving users are served by MBSs no matter which SBS they are in. SBSs serve low-speed users, and SBSs in the same
cluster can communicate with one another. The simulation results show that compared to common cache methods, for
example, the least frequently used and least recently used methods, our proposed policy is at least 8.9% lower and 6.8%
higher in terms of the average content access latency and offloading ratio, respectively.

1. Introduction

Wireless networks are undergoing exponential growth in
mobile data traffic due to the massive utilisation of mobile
devices and the tendency for high data rates and low-
latency applications [1, 2]. Based on [3], the global mobile
data traffic has increased sevenfold from 2016 to 2021, which
causes the current network capacity to be not enough. More-
over, massive low-latency applications, such as real-time
monitoring and intelligent driving, aggravate the network
overload [4]. The most common approach is to deploy ultra-
dense BSs to increase network capacity and overcome this
problem. However, upgrading these infrastructures comes
at a high cost for mobile operators [5]. And even if the capac-
ity is expanded by upgrading the infrastructure, the latency
cannot meet the requirements of low-latency applications
due to the long distance between the users and the remote
core network [6].

To meet the increasing demand for data traffic and pro-
vide low-latency services, mobile edge caching is introduced
in wireless networks [7]. Mobile edge caching deploys popu-
lar content at edge nodes close to users, either in base stations
(BSs) and/or user terminals (UTs). Users can directly access
their requested content from the edge server rather than the
remote core network via backhaul links [8], reducing content
access latency due to decreased content transmission dis-
tances. In addition, data congestion in the backhaul links
can be efficiently alleviated as many repeated content
requests are avoided in the backhaul links [9, 10].

However, the cache capacity is limited, that only a part of
rather than all the contents can be cached. The requests for
the uncached contents still need to be satisfied at the core net-
work [11]. Designing an efficient cache policy based on the
limited cache capacity is a challenge. To date, the predictive
cache scheme is proposed, where the content is precached
before the content is requested [12]. Once the cached content

Hindawi
Wireless Communications and Mobile Computing
Volume 2021, Article ID 5568935, 18 pages
https://doi.org/10.1155/2021/5568935

https://orcid.org/0000-0002-3774-8878
https://orcid.org/0000-0001-7857-511X
https://orcid.org/0000-0002-2660-7287
https://orcid.org/0000-0002-0896-0650
https://orcid.org/0000-0001-8062-6617
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2021/5568935


is requested, it can be directly delivered from the cache
devices to the corresponding requester. The performance of
the predictive cache highly depends on the accurate content
popularity [13]. However, it is hard to accurately predict
the content popularity when the cache scenario is dynamic.

Besides, the cache-enabled heterogeneous networks
(HetNets) have attracted much attention. If the contents are
cached at the small base stations (SBSs), the requested con-
tent can be delivered from the SBSs directly. Otherwise, the
SBS needs to retrieve the requested content from the upper
level, e.g., macro base stations (MBSs), and then send it to
the corresponding user. The existence of the cache-enabled
SBS provides more chances to reduce the content access
latency since SBSs are highly close to the users [14]. Addi-
tionally, the SBSs can be empowered with collaborative abil-
ity. Under this situation, adjacent BSs can communicate with
one another. Once the requested content is not cached at the
serving SBS, the serving SBS retrieves the content from its
nearby SBSs directly [15]. However, the above cache policies
in HetNets consider the stationary user while do not consider
user mobility. Actually, the users are mobile moving, and the
local content popularity varies due to mobile users frequently
moving in and out of the coverage area of the SBS. Without
considering user mobility can cause the cache policy cannot
adapt to the actual scenario [16]. The reason is that the
motion of users increases the uncertainty of users arriving
at the specific area, which complexes the local content popu-
larity distribution.

To accurately predict the content popularity and make
sure our policy can adapt to the actual scenario, this paper
proposes a content popularity prediction-based cooperative
caching (CPP-CC) policy and jointly considers the heteroge-
neous layers’ features and user mobility. This paper’s main
contributions are summarised as follows:

(1) LSTM neural networks with time sequence predic-
tion abilities are utilised to predict the time-varying
content popularity. As a result, CPP-CC can track
variations in the dynamic content popularity to
achieve a high cache performance. Compared to the
common neural networks in time-series prediction,
e.g., recurrent neural network (RNN) and echo state
network (ESN) [17], the advantage of LSTM in pre-
dicting dynamic content popularity comes from its
self-forgetting ability [18]. Specifically, in RNN and
ESN, the content requested a long time ago is still
used to predict the future content popularity, which
may result in the pollution of future content popular-
ity by these outdated content requests. In contrast,
the LSTM can forget these outdated content requests
to enable the accuracy of future content popularity

(2) A size-weighted content popularity algorithm is
applied to balance the effect of the content size and
predicted content popularity to increase the cache per-
formance of content popularity-based cache policies

(3) A two-level cache architecture consisting of MBSs
and SBSs is proposed. The MBS should only serve
fast-moving users in this work, and the SBS serves

slow-moving users. As the MBS has a relatively large
cache capacity and its cached content does not need
to be updated frequently, this configuration ensures
that fast-moving users can acquire their desired con-
tent from the close MBS and will not affect the con-
tent popularity distribution of the SBS. This
configuration ensures that slow users can receive
their desired content from the SBS with low content
access latency

(4) The caching storage of each SBS is divided into two
parts, which are the global caching and local caching
modules. The local caching module caches popular
content evaluated from the local perspective and the
global module caches popular content evaluated from
the entire cluster’s perspective. Global caching mod-
ules in the same clusters can share their cached con-
tent, which further reduces content access latency

The remainder of this paper is organised as follows: Sec-
tion 2 introduces the related works. Section 3 introduces a
system model and problem formulation. Section 4 presents
content caching and delivery for cooperative caching frame-
works. Simulation results and analyses are provided in Sec-
tion 5, and a conclusion is given in Section 6.

2. Related Works

To date, considerable research has been devoted to mobile
edge caching. In [19], mobile edge caching at macro base sta-
tions (MBSs) was introduced, providing higher cache storage
and coverage areas that serve more users. In [20], the small
base station (SBS) caching architecture based on the user
preference, e.g., the personal content request probability dis-
tribution, is proposed to reduce latency. However, popular
content cached at noncooperative BSs can result in dupli-
cated content to be cached and waste limited cache capacity
resources.

To fully utilise limited cache capacity, cooperation
among BSs is applied in cache policies. In [21, 22], a cooper-
ative cache structure to reduce content access latency was
introduced, in which adjacent SBSs can communicate with
one another. In [23], Ye et al. presented a collaborative cache
policy based on BS clustering to reduce content transmission
costs. In [7], a predictive cache scheme was applied in the
heterogeneous network, where the user’s future path is pre-
dicted to decide the cache policy for each SBS. In [24], the
user mobility was utilised to predict the contact time, which
is when the user is in the coverage area of a BS. The cache
content placement policy is based on the contact time since
the contact time can affect the successful retrieval of the con-
tent by the user even if it is cached at the BS. However, unlike
our proposed CPP-CC policy, these cooperative cache poli-
cies assume that content popularity is static and cannot per-
form effectively in dynamic cache scenarios with varying
content popularity because they cannot track changes in
time-varying content popularity.

To address this issue, the predictive cache scheme is
applied. In [25], a deep learning-based content popularity

2 Wireless Communications and Mobile Computing



prediction algorithm was used to reduce the cost of cache
networks. The authors of [26] utilised a long short-term
memory (LSTM) network to predict the location-related
content popularity and minimise latency. In [27], big data
analytics were applied to predict content popularity maxi-
mise the cache hit ratio, that is, the ratio of content requests
hit in cache nodes to the entire content requests. In [28], a
collaborative filter was used to predict the content popularity
to reduce the pressure of backhaul links. However, unlike our
proposed CPP-CC policy, these predictive cache policies
have the following problems: (1) reference [25, 27] do not
consider that user mobility can change content popularity
since content popularity is location-dependent. (2) Although
[26, 28] have considered user mobility, their works have not
jointly considered the characteristics of different layers in
heterogeneous cache networks and user moving speed. For
instance, if fast-moving users are served by an SBS whose
coverage area is small, fast-moving users will frequently
handover among adjacent SBSs. In this case, the content pop-
ularity distribution of the SBS frequently varies, and the
cached content of the SBSs needs to be updated frequently;
hence, content popularity-based cache policies could be inef-
ficient. The differences between the above cache policies and
our proposed CPP-CC policy are summarised in Table 1.

3. The System Model and Problem Formulation

This section describes a heterogeneous network, the content
model, and the cooperative caching model. We show how
to calculate content access latency and offloading ratio to
produce a caching problem formulation. Table 2 is the list
of notations mainly used in this paper.

3.1. Heterogeneous Networks. In this paper, we consider a
heterogeneous network that consists of a core network, Q
MBS, W SBSs, and E users with different moving speeds, as
shown in Figure 1. MBS, SBS, and User represent the set of
Q MBSs, W SBSs, and E users, respectively. Each MBS or
SBS is equipped with limited cache resources to store popular
content. Each BS is connected to the cache device through a
user plane function (UPF). The interface between the BS
and UPF is N3, and the interface between the UPF and cache

device isN6. TheMBS has a large cache capacity, and the SBS
has a relatively small cache capacity. The adjacent SBSs are
clustered in the same group, and each SBS in this group can
communicate with one another. High-speed users are served
by the serving MBS, and low-speed users are served by the
serving SBS. The SBS will retrieve the requested content from
nearby SBSs or its serving MBS once the content request is
missed locally (the content is not locally cached). The MBS
will retrieve the requested content from the core network if
the content request is missed in the local MBS. We assume
that the core network has enough capacity to hold all the con-
tents provided by the content provider.

Table 1: The comparison of the related work policies.

Policy category Weakness The improvement by CPP-CC policy

(1) Zhao et al. [19]
(2) Cheng et al. [20]

These policies do not include BS cooperation,
which results in duplicate content being cached
and further wasting limited cache capacity.

The SBSs in the CPP-CC policy can exchange
information with each other. In particular, the SBSs
in the same cluster can share their cached content.

(1) Xu et al. [21]
(2) Zhou et al. [22]
(3) Ye et al. [23]
(4) Poularakis and Tassiulas [7]
(5) Somesula et al. [24]

These policies assume that content popularity
is static, and therefore they cannot be used

for the dynamic cache scenario.

CPP-CC policy utilises LSTM neural network
to predict the dynamic content popularity.

(1) Thar et al. [25]
(2) Yan et al. [27]

These policies do not consider user mobility.
The MBS should only serve fast-moving users in
this work, and the SBS serves slow-moving users.(1) Mou et al. [26]

(2) Rathore et al. [28]
These policies do not consider the relationship

between HetNet layer properties and user mobility.

Table 2: The notations.

Symbol Description

MBS Macro base station

SBS Small base station

BS Base station

{MBS},{SBS}, {User} The set of MBSs, SBSs, and users

MBSq, SBSw, and Usere The qth MBS, wth SBS, and eth user

SBSq
The set of SBSs in the coverage area

of MBSq

[User]q, [User]w
The set of users who are served by

the qth MBS and wth SBS

M The connection status matrix

F Content library

S The set of the content size

UPF The user plane function

N3 The interface between the radio
access network and the UPF

N6 The interface between the UPF and
the data network

CPP-CC Our proposed cache policy

UPC
The uncollaborative predicted cache

policy

CLFU
The collaborative reactive least
frequently used cache policy

CLRU
The collaborative reactive least recently

used cache policy

3Wireless Communications and Mobile Computing



We utilise MBSq to represent the qth MBS when 1 < q
<Q, SBSw to represent the wth SBS when 1 <w <W, and
Usere to represent the eth user when 1 < e < E. The SBSq is
used to denote the set of SBSs in the coverage area of MBSq.
We utilise [User]q and [User]w to represent the set of users
who are served by the qth MBS and wth SBS, respectively.
The connection status between E users and W SBSs is mod-
elled as a E ×W matrix M, in which Mew =1 if Usere is
served by SBSw, andMew = 0 if not. Similarly, the connection
status between E users and Q MBSs is modelled as an E ×Q
matrix ℕ.

3.2. Content Model. F = f1, 2,⋯, Fg represents all the F
content that is requested by E users, and we assume that
the core network has enough capacity to cache all of the F
content. S = fS1, S2,⋯, S Fg denotes the amount of F con-
tent. Fq and Fw denote the cached content in the qth MBS
and wth SBS, respectively. Ce

t represents the content
requested by Usere in time t whose duration is one hour,
and Ce = ½Ce

1, Ce
2,⋯, Ce

T �T denotes the database with the
requested content of Usere. Similarly, Cq and Cw represent
the set of the requested content in the qth MBS and wth

SBS, respectively. The content requests follow Zipf distribu-
tion laws [29], and the probability of rth content c is denoted
as Pc and calculated as follows:

Pc =
1/rg

∑A
1 1/Agð Þ

, ð1Þ

where r is the popularity rank of content c, g is the Zipf
parameter, and A is the amount of content. The higher g

is, the more concentrated the content request distribution is
around the most popular content [30].

3.3. System Model. To provide a stable and low-content
latency service, we propose a cooperative caching policy to
manage content caching and delivery. In detail, high-speed
users are clustered in the MBS and their requested content
is cached there. There are two content delivery scenarios for
these users. In scenario 1, fast-moving users directly retrieve
their desired content from the MBS if the content is cached at
the serving MBS, that is, the requested content is hit at the
serving MBS. In scenario 2, if the desired content is not
cached at the servingMBS, that is, content is missed, the serv-
ing MBS retrieves the requested content from the core net-
work and then delivers it to the high-speed users.

Low-speed users’ requested content is cached at the serv-
ing SBS, that is, cached locally. Specifically, we divide the SBS
capacity into two parts, the local and global modules. The
local module caches the most popular content that has the
highest value in the local content popularity distribution,
and the global module caches the popular content that is
not cached in the local module but still has the relatively high
value in the cluster content popularity distribution. There are
three scenarios for low-speed users. In scenario 3, if the
requested content is cached locally, it can be directly deliv-
ered from the serving SBS to requesting users. In scenario
4, if the requested content is missed locally, the serving SBS
needs to retrieve the content from its adjacent SBSs that are
in the same group. In scenario 5, if the adjacent SBSs do
not cache the content, the requested content needs to be
delivered from the core network to the serving users. As the
content delivery distance increases, the content access latency
increases. Consequently, ℓ3 < ℓ4 < ℓ1≪ ℓ2 < ℓ5, where ℓ1, ℓ2

Core network

Cluster Cluster 

N3

N3

N6

MBS

SBS

User plane function

Cache
Low-speed user (LSU)

High-speed user (HSU)

Backhaul link
MBS-SBS 
SBS-SBS 

LSU-SBS 

HSU-MBS 

Figure 1: Heterogeneous cache enabled network.

4 Wireless Communications and Mobile Computing



, ℓ3, ℓ4, and ℓ5 are the average content access latency of sce-
narios 1, 2, 3, 4, and 5, respectively.

3.4. Problem Formulation. In this work, by designing an opti-
mal scheme for cache content update and cache storage allo-
cation, massive content requests from users are satisfied at
the SBS or at the MBS, rather than from the core network
over the backhaul links [31]. This can reduce latency for
accessing content [32]. Two definitions are introduced here:
the average content access latency and traffic offloading ratio,
i.e., the ratio of the amount of data satisfied on the BS (either
MBS or SBS) to the total data volume [33]. For example,
there are ten content requests, and only seven content
requests are satisfied the BS. The traffic offloading ratio is
then equal to 7 × 1/10 × 1 = 7/10, where the size of each con-
tent is 1 bit. Based on the above five scenarios, these two def-
initions are described in detail.

For content c requested by the slow-moving users, the
successful retrieval for content c goes through three scenar-
ios. In scenario 3, the latency of the successful retrieval for

content c can be expressed as ℓ3 × γði,qÞði,cÞ , where γði,qÞði,cÞ is the

probability that the request for content c is processed by the
serving SBS i connected to MBSq (q ∈½MBS�). In scenario 4,

the latency for content c is equal to ℓ4 ×∑i≠j,j∈Sqγ
ðj,qÞ
ði,cÞ , where

SBS j is in the same cluster with the serving SBS i, Sq is the

set of SBSs in the same group covered by MBSq, and γðj,qÞði,cÞ is

the probability that the request for content c is processed by
SBS j connected to MBSq. In scenario 5, the probability that

content c is obtained from the core network is equal to ðRq
i

× Pq
ði,cÞ−∑γðj,qÞði,cÞ Þ, where Rq

i is the amount of content library

ϕðq,iÞ in SBS i, Pq
ði,cÞ is the popularity of content c in SBS i con-

nected to MBSq, and ∑γðj,qÞði,cÞ is the sum of the probabilities

that the request for content c will be processed by either the
serving SBS i or the adjacent SBS j. The latency of successful

retrieval for contents c is equal to ℓ5 × ðRq
i × Pq

ði,cÞ−∑γ
ðj,qÞ
ði,cÞ Þ.

Therefore, the total latency for the contents requested by
the slow-moving users is expressed as follows:

〠Lslow = 〠
Q

q=1
〠
i∈Sq

〠
c∈ϕ q,ið Þ

"
ℓ3 × γ

i,qð Þ
i,cð Þ + ℓ4 × 〠

i≠j,j∈Sq
γ

j,qð Þ
i,cð Þ

+ ℓ5 × R
q
i × Pq

i,cð Þ−〠γ
j,qð Þ
i,cð Þ

� �#
:

ð2Þ

After obtaining the probability that the request for con-
tent c is processed by the serving SBS i and the probability
that the demand for content c is processed by SBS j, the prob-
ability that the request for content c is offloaded at the SBS is

equal to γði,qÞði,cÞ +∑i≠j,j∈Sqγ
ðj,qÞ
ði,cÞ . Therefore, the total traffic for

the content requested by the slow-moving users offloaded
at SBSs is calculated as follows:

rslow = 〠
Q

q=1
〠
i∈Sq

〠
c∈ϕ q,ið Þ

γ
i,qð Þ
i,cð Þ + 〠

i≠j,j∈Sq
γ

j,qð Þ
i,cð Þ

 !
Sc, ð3Þ

where Sc is the size of the content c.
For the content c requested by the fast-moving users, the

successful retrieval for content c goes through two phases. In
scenario 1, the latency for successful retrieval for the content
c can be expressed as ℓ1 × γqc , where γ

q
c is the probability that

MBSq will process the request for content c. If the request for
content c is missed at MBSq, it needs to be obtained from the
core network, as described in scenario 2. The latency for suc-
cessfully receiving the content c from the core network is
equal to ℓ2 × ð1 − γqc Þ. Consequently, the total latency for
the content requested by the fast-moving users is expressed
as follows:

〠Lfast = 〠
c∈φq

ℓ1 × γqc + ℓ2 × 1 − γqcð Þ½ �, ð4Þ

where φq is the content library of MBSq.
Considering that the data traffic can only be offloaded at

the MBS, the probability that the request for content c is
equal to γqc . Therefore, the total traffic for the content
requested by the fast-moving users offloaded at SBSs is calcu-
lated as follows:

rfast = 〠
c∈φq

γqc Sc: ð5Þ

Based on ∑Lfast and ∑Lfast, the average content access
latency �L can be derived as follows:

�L = ∑Lslow+∑Lfast
∑Q

q=1 ∑i∈SqR
q
i +Rq

� � , ð6Þ

where Rq is the amount of content library φq.
Base on the rslow and rfast, the system traffic offloading

ratio r
! is calculated as follows:

r
! = nslowrslow + nfastrfast

∑D
, ð7Þ

where nslow is the number of content requests by the slow-
moving users, nfast is the number of content requests by
fast-moving users, and ∑D is the total system data traffic.

The caching problem minimising the average content
access latency is expressed as follows:

P1 : min �L,: ð8Þ

s:t:〠
c∈ψx

S c,xð Þ ≤Mx ,∀x ∈ MBSq ∪ SBSw
� �

,: ð9Þ

where Sðc,xÞ is the size of content c in BS x, ψx is the set of the
cached content in BS x, Mx is the storage capacity of BS x.

5Wireless Communications and Mobile Computing



The constraint in Equation (9) demonstrates that the total
cached content should not exceed the cache capacity.

As ℓ3 < ℓ4 < ℓ1≪ ℓ2 < ℓ5 is to minimise the average
latency of accessing content, we should maximise the amount
of successful content retrievals from the local BS. Specifically,
we try to ensure that the desired content can be obtained
from the MBS for high-speed users. For low-speed users,
we try to ensure that the desired content can be obtained
from the local SBS or nearby SBSs in the same cluster.

4. The Cooperative Caching Policy

In this section, we introduce a cooperative caching policy to
efficiently manage content caching and delivery. First, a con-
tent popularity prediction based on the LSTM neural net-
work is introduced. We then present the size-weighted
content popularity. Finally, SBS caching and MBS caching
are introduced to improve the cache performance.

4.1. The Long Short-Term Memory Neural Network. This
paper utilises a 3-dimensional LSTM neural network that

has three modules with the same structures, as shown in
Figure 2.

To clearly explain the LSTM, a 1-dimensional LSTM
neural network is shown in Figure 3. The output state ht of
current time t can be weighted combined with the previous
hidden state ht−1 which is also known as the previous output
state, the previous cell unit state Ct−1, and the current input
state X t . The tanh layer is used to avoid gradient explosions,
and the sigmoid layer forgets the recurrent information from
the previous module. The LSTM neural network procedure is
as follows:

(1) The LSTM determines the previous information that
should be discarded, and this is achieved by the sig-
moid layer in the forget gate. The forget value f t is

f t = sigmoid Wf ∙ ht−1,X tð Þ + Bf

� �
: ð10Þ

(2) The memory gate adds new information to the
LSTM. The memory gate’s sigmoid layer determines

×

×

+

xt−1

ft−1

Ct−2 Ct−1

it−1

ht−2

ht−1

ht−1

Ct−1
~

Ot−1
×

×

×

+

xt

ft

Ct

it

ht

ht

Ct

~

Ot
×

×

×

+

xt+1

ft+1

Ct+1

it+1

ht+1

ht+1

Ct+1
~

Ot+1
×

Figure 2: Structure of the LSTM neural network with three modules.

Ctx +

x

Tanh layer

Sigmoid layer

Forget gate

Memory gate

Output gate

ht

ht

ot

Ft

ft it

Ct−1

ht−1 (wo, bo)

(Wm, Bm)(Wf, Bf)
(Wo, Bo)

(wo, bo)

Mt

Ct

~

x

Figure 3: One module of the LSTM neural network.

6 Wireless Communications and Mobile Computing



the new output value it by selectively deleting some
information on ht−1X t , and the tanh layer generates
a new value ~Ct as follows

it = sigmoid Wm∙ ht−1,X tð Þ + Bmð Þ,: ð11Þ

~Ct = tanh wm∙ ht−1,X tð Þ + bmð Þ:: ð12Þ

(3) The new cell unit state Ct is updated by combining Ft
and Mt as follows:

Ft = f t ∗ Ct−1,: ð13Þ

Mt = it ∗ ~Ct ,: ð14Þ
Ct = Ft +Mt ,: ð15Þ

where Ft determines the discarded information and
Mt determines the new information being added.

(4) In the output gate, the sigmoid layer is utilised to
decide which part of ht−1X t is output. The tanh layer
is then utilised to normalise the cell unit state Ct . The
current hidden state ht and predicted output of
LSTM Yp are expressed as follows:

ot = sigmoid Wo ht−1,X tð Þ + Boð ,: ð16Þ

ht = ot ∗ tanh Ctð Þ,: ð17Þ
Yp = σ Yp

� �
,: ð18Þ

where σ is the activation function. The Relu function
is applied since predicting the content popularity is a
fitting problem.

4.2. Content Popularity Prediction Based on the Long Short-
Term Memory Neural Network. The requesting probability
of content c is denoted as pc = ðpc1, pc2,⋯, pct ,⋯pcTÞ, where
pct is the probability of content c being requested at time t
whose time duration is 4 hours. Because this paper applies
a 3-D LSTM neural network, the training data Su is in the
form of ðXu

−2, Xu
−1, Xu

0 , Yu
1Þ where u is the training step,

fXu
−2, Xu

−1, Xu
0 , Yu

1g is a continuous sequence chosen from
pc, fXu

−2, Xu
−1, Xu

0g is the input data, and Yu
1 is the real

upcoming output value as shown in Table 3. For each train-
ing step u, the predicted output Yu

pre is obtained by inputting
the sequence fXu

−2, Xu
−1, Xu

0g into the LSTM neural network.
The mean squared error (MSE) is utilised to generate the loss
value ξu which is

ξu = Yu
1 − Yu

pre

� �2
:: ð19Þ

The LSTM has the automatic ability to minimise the loss
value as the training steps increase. After several training
steps, the LSTM with low loss can predict the content popu-
larity. In a properly trained LSTM neural network, the con-
tent popularity pcT+1 of content c at future time T + 1 can

be predicted by inputting the newest content popularity
sequence {pcT−2, pcT−1, pcT} into the LSTM neural network.
The content popularity prediction based on the LSTM neural
network is shown in Algorithm 1.

4.3. Size-Weighted Content Popularity. Edge caching stores
popular content since it is often requested. Caching the pop-
ular content can improve the cache performance when the
cache capacity is finite [13]. However, if the caching decision
only considers the content popularity but ignores the content
size, it will reduce the cache performance in a practical sce-
nario in which different content has different sizes. For exam-
ple, as shown in Figure 4, the cache device in case 1 stores the
most popular content, that is, content A, while it has no addi-
tional capacity to store other content. The cache device in
case 2 stores relatively less popular content with a relatively
small size, that is, content B and C. As a result, case 2 has bet-
ter content popularity than case 1, and the cache content
placement in case 2 outperforms case 1.

To maximise the utilisation of limited cache capacity and
balance the effect of the content size and popularity on the
cache performance, we introduce a size-weighted content
popularity Ps x, which is calculated as:

Ps x =
ρx
sx
, ð20Þ

where ρx is the content popularity of content x and sx is the
size of content x.

4.4. Cooperative Small Base Station Cache. In this subsection,
we introduce the cache policy for the cache-enabled SBS. For
convenience, we classify the requested content into two cate-
gories, popular and unpopular categories. Specifically, we
rank the content based on the size-weighted content popular-
ity in descending order, and we classify the set of content
with the top K values into the popular category. Only the
content in the popular category has a chance of being cached.

We divide the cache of each SBS into two modules, local
and general modules as shown in Figure 5(a). General mod-
ules in the same cluster can communicate with one another
while the local modules cannot. The local module caches
the most popular content, and the general module caches
the relatively less popular content that has not been cached.
The cached content in each local module in the same cluster
can be repeated, while the cached content in each general
module in the same cluster is unique. More specifically, the
caching content in the local module is based on the predicted
size-weighted content popularity distribution of the corre-
sponding SBS, and the caching content in the local module

Table 3: Training data in the 3-D LSTM neural network.

Training step u Training sequence Xt−2, Xt−1, Xt Y

1 pc1, pc2, pc3, pc4
� �

pc1, pc2, pc3
� �

pc4

2 pc2, pc3, pc4, pc5
� �

pc2, pc3, pc4
� �

pc5

3 pc3, pc4, pc5, pc6
� �

pc3, pc4, pc5
� �

pc6

7Wireless Communications and Mobile Computing



is based on the predicted size-weighted content popularity
distribution of the entire SBS in the same cluster. For exam-
ple, there are three cache-enabled SBSs in the same cluster,
as shown in Figure 5(b). The purple part is the local module
that stores the most popular content in the serving SBS, and
the yellow part represents the general module that caches the
relatively less popular content that is not yet cached. The
content with the highest local size-weighted predicted con-
tent popularity is cached at the corresponding local module.
The three local modules cache {content A and B}, {content
B and C}, and {content D and B}, respectively. Their cached
content is repeated. The general module caches the less pop-
ular content that has not been cached in the local module.
Because general modules in the same cluster can exchange
their cached content, each content will only be cached at
one general module in a cluster. The cached content in each
general module is {content E and F}, {content I and G}, and

{content J and K}, respectively. Each general module in the
same cluster has no repeated content.

To achieve our target, we ensure that low-speed users in
the SBS coverage areas have minimal average cache content
access latency. The average cache content access latency for
low-speed users is denoted as LLsp and calculated as follows:

LLsp = 〠
x∈ User½ �

〠
i∈rx

ℓ3 ×P i,3ð Þ
x + ℓ4 ×P i,4ð Þ

x + ℓ5 ×P i,5ð Þ
x

� �
/ 〠
x∈ User½ �

Nrx
,:

ð21Þ

where rx is the set of the requested content of user x,P ði,3Þ
x is

the requested probability of content i requested by user x in
scenario 3, P ði,4Þ

x is the requested probability of content i

requested by user x in scenario 4, P ði,5Þ
x is the requested

Input: The content library F and number of the training time slots T .
Initialise the predicted content popularity ϕP.
1 For c=1,…, F, do
2 Obtain pc
3 For u=1, T, do
4 Input fpcu, pcu+1, pcu+2g
5 Obtain Yu

pre

6 Loss value ξu=ðYu
1 − Yu

preÞ2
7 Backpropagates ξu

8 Adjust the weights of all of the neural layers
9 Obtain the trained LSTM neural network
End for
10 Input{pcT−2, pcT−1, pcT } into the trained LSTM neural network
11 Obtain Yc

T+1
12 End for
13 ϕP=ðY1

T+1, Y2
T+1,⋯, Yc

T+1,⋯, YF
T+1Þ

Algorithm 1: The content popularity prediction based on the LSTM.

Case 1:
Popularity: 0.4

Cache device
Capacity: 10

Content A
Size: 8
Popularity: 0.4

Content B
Size: 4
Popularity: 0.35

Content C
Size: 3
Popularity: 0.25

A
B C

A
B

C

Case 2:
Popularity: 0.35 + 0.25 = 0.6

Figure 4: The two cache content placements. The capacity of the cache device, content A, content B, and content C is 10, 8, 4, and 3,
respectively. The popularity of content A, content B, and content C is 0.4, 0.35, and 0.25, respectively.

8 Wireless Communications and Mobile Computing



probability of content i requested by user x in scenario 5, and
Nrx

is the amount of rx.

4.5. Small Base Station Cache Capacity Allocation. To mini-
mise the average latency LLsp, we should ensure that the
requested content is cached from the SBS perspective, that
is, either in the local SBS or nearby SBSs in the same cluster
as any additional requested content missing at the SBS and
retrieved from the core network results in a high average con-
tent access latency. Due to the limited caching capacity of
each SBS, we need to determine the capacity allocation for
the local and general modules. Hence, we introduce an algo-
rithm that is called the popularity maximising algorithm
(PMA). The PMA allocates the caching capacity to the local
and general modules. The local module stores content based
on the local SBS’s size-weighted content popularity, and the
general module stores content that is not cached from the
entire cluster’s perspective. The content can be cached at
one general module at most in the entire cluster. The PMA
finds an optimal caching capacity allocation that has the
maximal overall content popularity of cluster x, which is cal-
culated as:

℘x = 〠
i∈n xð Þ

q ilð Þ + q ig
� �� 	

, ð22Þ

where nðxÞ is the number of SBSs in cluster x, qðilÞ is the con-
tent popularity of local module i in cluster x, and qðigÞ is the
content popularity of general module i in cluster x.

For simplicity, we assume that each SBS in the same clus-
ter x when x ∈Q has the same cache capacity Mx, and the
capacity of each local and general module in cluster x is Mx

l
andMx

g, respectively. The PMA’s specific operation is shown
in lgorithm 2.We introduce the capacity allocation algorithm
in one cluster, and it is the same in the rest of the clusters.
First, the cache capacities of each local and general module
are updated by increasing the cache capacity of each local
module Mx

l by one percentage. Based on the updated capac-
ity, the local module chooses κ content that has the top κ
values from the local size-weighted content popularity distri-
bution, and the general module chooses Ν content that has
the top Ν values from the content popularity distribution
in the entire cluster. The content is sorted in descending
order based on the size-weighted content popularity in the
local content popularity and the entire cluster. Furthermore,
κ content and Ν content should not exceed the capacity of
the local and general modules, respectively. If increasing the
local module can produce a better ℘x than before, we keep
this increase; otherwise, we reduce the local module’s capac-
ity by one percentage. The process is finished when ℘x barely
changes regardless of how the capacity of the local module
increases or decreases.

4.6. Macro Base Station Cache. The MBS cache is for high-
speed users who do not have enough time in their corre-
sponding SBSs. Once their requested content is cached at
the MBS, regardless of how frequently they switch among
the SBSs, they can still retrieve their desired content from

Content C
Content B

Content G
Content I

Content D
Content B

Content K
Content J

Content A
Content B

Content E
Content F

(a)

(b)

General module 

Local module Cluster

Cooperation between
any two near by general
modules in the same
cluster

Figure 5: Detailed content placement in the local and general modules.

9Wireless Communications and Mobile Computing



the MBS, which has a large coverage area. As the MBS has a
relatively large capacity, the effect of the content size on the
cache performance is ignored. Therefore, in the MBS cache,
we cache the contents that have the highest content popular-
ities to maximise their effect on the cache performance.

5. The Simulation Results

5.1. The Simulation Settings. In this section, we analyse the
average content access latency and the data offloading ratio
of our proposed cooperative caching policy. Here, an LSTM
neural network with three cells is proposed to predict the dis-
tribution of content popularity. Specifically, for each cell, the
size of the input layer is equal to 3. The size of each hidden
layer, i.e., the tanh layer and the sigmoid layer, is 4. The learn-
ing rate E is equal to 0.05. The cache scenario consists of 1
core network, 1 MBS, 5 SBSs within the same cluster, 20
slow-moving users, and 10 fast-moving users. Here, to allevi-
ate the effect of frequent handover of the users on the content
popularity distribution of SBSs, the users who move in and
out of the coverage area of one SBS more than 2 times during
one interval are defined as fast-moving users, and the rest are
slow-moving users. The Zipf parameter varies from 1.1 to
1.6. The cache update interval is 4 hours. In each time slot,
each slow-moving user within the coverage area of an SBS
is moved. The fast-moving users are assumed to be able to
move from one SBS to another adjacent SBS while always
being covered by the same MBS. The capacities of the MBS,
each SBS, and the core network are 200 units, 50~ 100 units,
and infinite units, respectively. The number of content
requests is in a range of 3000-30000, and the size of each con-
tent varies from 1 to 5 units. ℓ1, ℓ2, ℓ3, ℓ4, and ℓ5 are 4~ 6ms,
8~ 15ms, 0.5~ 1ms, 2~ 4ms, and 10~ 20ms, respectively,
which are the average content access latencies of our pro-
posed 5 scenarios. The simulations are achieved by Pytorch

language in Pycharm software, running at the personal com-
puter whose central processing unit (CPU) is Intel Core i7-
1165G7. The main simulation settings are shown in Table 4.

5.2. The Benchmark Policies. This subsection first briefly
reviews the CPP-CC policy. To evaluate the performance of
our proposed policy, we compare CPP-CC with the existing
methods whose cache content update is described as follows:

(1) CPP-CC Policy. The CPP-CC policy is a predictive
policy, i.e., the cache decision is made before the con-
tent request. At the end of time t, each BS updates its
original cached content by precaching the new con-
tent that will be in high demand in the future time t
+ 1. Based on the predicted future distribution of
content popularity, the new cached content can be
decided in the MBSs and SBSs, as described in Sec-
tions 4.4 and 4.6

(2) The Uncollaborative Predictive Cache (UPC) Policy.
The difference between the CPP-CC and UPC poli-
cies is that the SBSs in the UPC policy cannot com-
municate with each other. Therefore, once the
content request is missed at the serving SBS, the con-
tent must be retrieved from the MBS and not from
the nearby SBSs. Moreover, the SBS cache stores
locally popular content. Apart from the above differ-
ences, the rest of the UPC policy is the same as that of
the CPP-CC policy

(3) Collaborative LFU (CLFU) Policy. The CLFU policy is
a reactive cache, i.e., the cache decision is made after
the content request. More specifically, in the cache
content update phase, at the end of time t, each BS
updates its cache content based on the distribution
of content popularity collected in the last time t − 1.

Input: Mx , Mx
l , and Mx

g.
Initialise: ℘x = 0 and t = 1.
1 Randomly generate a value m for 0 <m <Mx

2 Mx
l =m

3 Mx
g =Mx −Mx

l

4 Obtain a new ℘x based on the initial capacity of the local module Mx
l .

5 ∇ = new℘x − initial℘x
6 For t = 1, T, do
7 If |∇∣ ≤ 5%, then

Output Mx
l andMx

g

End if
End for

8 Elif ∇>5%, then
New Mx

l =Mx
l + 1

∇ = new℘x − initial℘x
t = t + 1

9 Elif ∇<5%, then
New Mx

l =Mx
l − 1

∇ = new℘x − initial℘x
t = t + 1

Algorithm 2: Capacity allocation of the SBS cache.

10 Wireless Communications and Mobile Computing



The content with the highest value in the content
popularity distribution can be cached [34]. Except
for the above difference, the rest of the CLFU policy
is the same as the CPP-CC policy

(4) The Collaborative Least Recently Used (CLRU) Policy.
The CLRU policy is also a reactive policy, hence, the
cache decision is made after the content request. Spe-
cifically, in the cache update phase, at the end of time
t, each BS updates its cache content based on the
most recently requested content collected in the last
time t − 1 [35]. Except for the above difference, the
rest of the CLRU policy is the same as that of the
CPP-CC policy

5.3. The Effect of the SBS Cache Capacity Allocation on the
Cache Performance. Figures 6 and 7 show the average system
latency and offloading ratio under different proportions of
local module capacity to the SBS cache capacity. The capacity
of each SBS cache is 100 units, and the number of the whole
content requests is 3000. First, as the local module’s capacity
increases, the average latency of our proposed policy
decreases, and the offloading ratio improves. This occurs
because more content can be retrieved from the serving SBS
or nearby SBS caches than from the remote core network
via the backhaul links. When the proportion reaches 30%,
the average latency gradually increases, and the offloading
ratio decreases. More content can be cached at the local mod-
ule as its capacity increases. However, the new cached con-
tent in the local module gradually becomes less popular
than the initial cached content, and the less popular content
in the local module cannot be retrieved by the nearby general
modules. Therefore, caching the less popular content in the
local module wastes the local module’s capacity, and the gen-
eral module has insufficient capacity since the total capacity
of each SBS cache is constant. As demonstrated, the propor-
tion of 30% is an optimal percentage.

5.4. The Accuracy of Content Popularity Prediction Based on
LSTM Neural Network. To evaluate the effect of the number
of contents on the prediction of content popularity, 72

groups of training data and 720 groups of training data are
applied for training the LSTM neural network. Each group
has 20 raw data. Here, the difference ratio, α = jyp − yrj/yr ,
is proposed to measure the content popularity prediction,
where yp and yr are the predicted Zipf value based on the
LSTM neural network and the real Zipf value. The Zipf value
can represent the distribution of content popularity. Figure 8
shows the difference ratio when selecting 72 groups of train-
ing data for training the LSTM neural network. The loss of
the corresponding LSTM neural network is shown in
Figure 9(a). When choosing 720 groups of training data,
the corresponding difference ratio and loss of the LSTM neu-
ral network are shown in Figures 10 and 9(b), respectively. As
shown in Figures 9(a) and 9(b), both loss functions gradually
converge with the increase of training step, which means that
both LSTMs are well trained and can accurately predict con-
tent popularity. However, when comparing Figures 8 and 10,
the trends of the two curves are different. The curve in
Figure 8 always fluctuates, and while in Figure 10, the curve
gradually converges with a low value. The reason is that the
content prediction based on 720 groups of training data is
accurate, while the content prediction with 72 groups of
training data is not accurate. This, in turn, reflects the impor-
tance of the number of training data on the content popular-
ity. Therefore, 720 groups of training data are chosen for
content popularity prediction in the following simulations.

The effect of learning rateE on content popularity is stud-
ied, as shown in Figure 11. More specifically, Figure 11(a)
shows the different ratio α when the learning rateE is 0.05,
and Figure 11(b) shows the different ratio α when the learning
rateE is 0.5. Here, 720 groups’ training data are chosen for
content popularity prediction. As can be seen, the difference
ratio of Figure 11(a) is gradually converging with a low value.
In contrast, Figure 11(b) shows unstable fluctuations in the
difference ratio. The reason is that the value of the learning
rate 0.5 is too high, which leads to a large step length. The large
step length causes careless exploration for the optimal solu-
tion, and hence, the optimal value cannot be achieved. There-
fore, choosing a proper learning rate is crucial, and in this
paper, the appropriate learning rate is 0.05.

5.5. The Effect of the SBS Cache Capacity on the Cache
Performance. As shown in Figure 12, we investigated the
effect of the SBS cache capacity on the average system latency.
We assume that the capacity of the SBS cache varies from 50
to 150 units. There are 3,000 content requests. As the SBS
cache’s capacity increases, the 4 curves gradually decline.
This occurs because, as the capacity of each SBS cache
increases, more content can be cached at the SBS servers, that
is, the local SBS or nearby servers, and more content
retrievals can be processed at the SBS server than from the
remote core network. Compared to UPC, CPP-CC has a
lower average latency. The reason is that UPC does not con-
sider the cooperation between SBSs. Therefore, if the
requested content is not cached in the SBS, it has to be
obtained from the remote network. However, the SBS of the
CPP-CC policy can obtain the content from the nearby SBSs
once the requested content is not cached locally. On the other

Table 4: The main simulation settings.

Amount of requested content 3,000~ 30,000
Caching capacity of the MBS 200 units

Caching capacity of the SBSs 50~ 100 units
Number of SBSs 5

Zipf parameters 1.1~ 1.6
Size of the content 1~ 5 units
Number of mobile users 30

Learning rate, E 0.05

Average latency of scenario 1, ℓ1 4~ 6ms

Average latency of scenario 2, ℓ2 8~ 15ms

Average latency of scenario 3, ℓ3 0.5 ~ 1ms

Average latency of scenario 4, ℓ4 2~ 4ms

Average latency of scenario 5, ℓ5 10~ 20ms

11Wireless Communications and Mobile Computing



hand, the CPP-CC policy has lower latency than the CLRU
and CLFU policies. This is because CPP-CC is a predictive
policy, where the content that will be in high demand in
the next time ðt + 1Þ is cached at the end of the current time
t. This is the reason why CPP-CC has lower latency than
CLRU and CLFU policies. In contrast, CLRU and CLFU
are reactive policies. The content must be requested first,
and then it can be decided whether to cache it or not. This
means that the cache content update at the end of the current
time t is the content requested by users at the previous time
ðt − 1Þ. However, the popularity of the content is time-vary-
ing, which causes the cached content to be out of date at
the next time ðt + 1Þ, and therefore, more contents need to
be obtained from the core network. Moreover, CPP-CC con-
siders the effect of content size on popularity, which further
increases the usage of limited cache capacity.

The offloading ratio is plotted as a function of the SBS
cache’s capacity as demonstrated in Figure 13. The MBS

cache’s capacity is 200, and the SBS cache’s capacity varies
from 50 to 150 units. There are 3,000 content requests. As
the SBS cache’s capacity increases, the four methods’ offload-
ing ratios increase. This occurs because more content can be
cached at the SBS cache, and the content requests that origi-
nally need to be satisfied at the core network via the backhaul
links can be processed at the SBSs. Consequently, more data
traffic can be offloaded from the backhaul links as the SBS
cache’s capacity increases.

Vertically, the UPC and CPP-CC policies have a higher
traffic offloading ratio than the CLRU and CLFU policies.
Achieving the high offloading ratio depends on predeploy-
ment of the content that is in high demand, which avoids
the expiration of the cached content. For the two predictive
caching policies, the CPP-CC policy performs better than
the UPC policy in terms of offloading rate. This is because
the UPC policy neglects SBS cooperation. In this situation,
massively duplicated contents are cached in the adjacent

6.2

6.4

6.6

6.8

7

7.2

7.4

7.6

0 20 40 60 80 100 120

Th
e a

ve
ra

ge
 la

te
nc

y 
(m

s)

The percentage of the local module capacity to the SBS cache 
capacity (%)

CPP-CC

Figure 6: The average system latency vs. the percentage of the local module’s capacity to the SBS cache capacity. The percentages are equal to
10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, and 100%, respectively.

0
10
20
30
40
50
60
70
80
90

Th
e o

ffl
oa

di
ng

 ra
tio

 (%
)

CPP-CC

The percentage of the local module capacity to the 
SBS cache capacity (%)

0 20 40 60 80 100 120

Figure 7: The offloading ratio vs. the percentage of the local module’s capacity to the SBS cache capacity. The percentages are equal to 10%,
20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, and 100%, respectively.

12 Wireless Communications and Mobile Computing



SBSs, which leads to the waste of the limited SBS cache stor-
age resources. Therefore, more content cannot be cached and
more content has to be obtained from the core network,
resulting in a worse traffic offloading ratio than the CPP-
CC policy.

5.6. The Effect of the Number of the Content Requests on the
Cache Performance. Figure 14 displays the relationship
between the average latency and the number of content
requests. The MBS cache’s capacity is 200 units, and each
SBS cache’s capacity is 50 units. The number of content

0

5

10

15

20

25

30

35

0 10 20 30 40 50 60 70 80

Th
e d

iff
er

en
ce

 ra
tio

 (%
)

The number of the training data with time sequence property

Figure 8: The difference ratio vs. the number of the training data.

0

0.2

0.4

0.6

0.8

1

1.2

0 200 400 600 800 1000 1200

Lo
ss

Training step

(a)

0

0.1

0.2

0.3

0.4

0.5

0.6

0 200 400 600 800 1000 1200
Training step

Lo
ss

(b)

Figure 9: The loss of the LSTM neural network with (a) 72 groups of training data and (b) 720 groups of training data vs. the training step.

13Wireless Communications and Mobile Computing



0

5

10

15

20

25

30

35

40

0 100 200 300 400 500 600 700 800

Th
e d

iff
er

en
ce

 ra
tio

 (%
)

The number of the training data with time sequence property

(a)

0

10

20

30

40

50

60

70

Th
e d

iff
er

en
ce

 ra
tio

 (%
)

The number of the training data with time sequence property
0 100 200 300 400 500 600 700 800

(b)

Figure 11: The difference ratio of the LSTM neural network whose learning rate E is equal to (a) 0.05 and (b) 0.5.

0

5

10

15

20

25

30

35

40

0 100 200 300 400 500 600 700 800
The number of the training data with time sequence property

Th
e d

iff
er

en
ce

 ra
tio

 (%
)

Figure 10: The difference ratio vs. the number of training data.

14 Wireless Communications and Mobile Computing



requests varies from 3,000 to 30,000. As the number of con-
tent requests increases, the four methods’ average system
latencies increase. This occurs because, according to the Zipf
distribution laws, the number of content increases as the
number of content requests increases, which changes the
size-weighted content popularity distribution. The average
system latency increases since the initial cache method can-
not fully adapt to the changed size-weighted content popu-
larity. The increase in the CLRU curve is lower than those
of the CLFU, UPC, and CPP-CC methods. This occurs
because the CLFU, UPC, and CPP-CC methods focus on
storing content with the highest content popularity, while

the CLRU policy stores the newest requested content rather
than the content with the highest request probability; hence,
the CLRU technique has a lower dependence on the content
popularity than the other three methods. Moreover, the dis-
tance between the CLFU curve and the UPC curve gradually
decreases as the number of content requests increases. This is
because predicting content popularity becomes more difficult
as the number of content queries increases. As the accuracy
of content popularity prediction decreases, more content
requests cannot be satisfied on the BS, which causes the
increasing increased average latency of the UPC policy. In
contrast, the effect of increasing content requests on the
CPP-CC policy is not as significant as that on the UPC policy.
The reason is that cooperation between neighbouring SBSs
avoids caching massively repeated content, which means

0 50 100 150 200

Th
e a

ve
ra

te
 la

te
nc

y 
(m

s)

The capacity of the SBS cache

CPP-CC
UPC

CLFU
CLRU

0

2

4

6

8

10

12

Figure 12: The average system latency vs. the SBS cache’s capacity.
Each SBS cache’s capacity is equal to 50, 60, 70, 80, 90, 100, 110, 120,
130, 140, and 150, respectively.

0

10

20

30

40

50

60

70

80

90

0 50 100 150 200

Th
e o

ffl
oa

di
ng

 ra
tio

 (%
)

The capacity of the SBS cache

CPP-CC
UPC

CLFU
CLRU

Figure 13: The offloading ratio vs. the SBS cache’s capacity. Each
SBS cache’s capacity is equal to 50, 60, 70, 80, 90, 100, 110, 120,
130, 140, and 150, respectively.

0

2

4

6

8

10

12

0 10000 150005000 20000 25000 30000 35000 40000

Th
e a

ve
ra

ge
 la

te
nc

y 
(m

s)

The number of the content requests

CPP-CC
UPC

CLFU
CLRU

Figure 14: Average latency vs. the number of content requests.

0

10

20

30

40

50

60

70

80

90
Th

e o
ffl

oa
di

ng
 ra

tio
 (%

)

The number of the content requests

CPP-CC
UPC

CLFU
CLRU

0 10000 150005000 20000 25000 30000 35000 40000

Figure 15: Offloading ratio vs. the number of content requests.

15Wireless Communications and Mobile Computing



more content can be cached in the SBS cluster. And each SBS
can obtain the content from its nearby SBSs, which in turn
increases the capacity of each SBS. Given the increasing con-
tent requests, more cache capacity means a higher chance
that the requested content can be satisfied in the cacheable
SBSs. Therefore, the average latency of the CPP-CC policy
is lower than that of the UPC policy, and the increase in
the average latency of the CPP-CC policy is slower than that
of the UPC policy.

As shown in Figure 15, we investigated the relationship
between the offloading ratio and the number of content
requests. Similar to Figure 14, the MBS cache’s capacity is
200 units, and each SBS cache’s capacity is 50 units. The
number of content requests varies from 3,000 to 30,000. As
the number of content requests increases, the four methods’
offloading ratios decrease. This occurs because more content
requests are missed at the edge servers, that is, the MBS and
SBS servers, and need to be obtained from the core network
via the backhaul links as the number of content requests
increases. Vertically, the CPP-CC policy has a higher offload-
ing ratio than the CLRU and CLFU policies, regardless of
how many content requests there are. This is because the
cached content of the CLFU and CLRU policies have par-
tially expired, which results in more content to be obtained
from the core network through the backhaul links. Moreover,
the higher offloading ratio of the CPP-CC policy compared
to the UPC policy is achieved by the less frequent caching
of content at the SBSs.

5.7. The Summary of the Simulation Results in terms of the
Average Latency and the Offloading Ratio. As we can see,
regardless of the SBS cache capacity, the CPP-CC policy is
at least 9.2%, 12.8%, and 37.7% lower in terms of average
latency and at least 6.8%, 8.6%, and 35.9% higher in terms
of the offloading ratio compared to the UPC, CLFU, and
CLRU policies, respectively. Moreover, the CPP-CC policy
can reduce at least 8.9% more average latency and offload
at least 7.2% more traffic compared to the UPC, CLFU, and
CLRU policies. Therefore, the CPP-CC policy outperforms
the other three policies in terms of average latency and traffic
offload.

Table 5 summarises the reduction ratio in terms of the
average latency and the increase ratio in terms of the offload-
ing ratio of the CPP-CC policy over the UPC, CLFU, and
CLRU policies. Here, the reduction ratio η is derived based
on η = Lexisting − LCPP CC/Lexisting, where LCPP CC and Lexisting
are the latency of the CPP-CC policy and any of the other
three comparison methods, respectively. The increase ratio
Γ is derived based on Γ = OFFCPP CC −OFFexisting/OFFexisting,

where OFFCPP CC and OFFexisting are the offloading ratios of
the CPP-CC policy and any of the other three policies,
respectively. As we can see, regardless of the SBS cache capac-
ity, the CPP-CC policy is at least 9.2%, 12.8%, and 37.7%
lower in terms of average latency and at least 6.8%, 8.6%,
and 35.9% higher in terms of the offloading ratio compared
to the UPC, CLFU, and CLRU policies, respectively. More-
over, the CPP-CC policy can reduce at least 8.9% more aver-
age latency and offload at least 7.2% more traffic compared to
the UPC, CLFU, and CLRU policies. Therefore, the CPP-CC
policy outperforms the other three policies in terms of aver-
age latency and traffic offload.

6. Conclusion

In this study, we present a cooperative cache method with a
two-level network that consists of a cache-enabled MBS
and five cache-enabled SBSs. Specifically, an LSTM neural
network is first applied to highly predict the time-varying
content popularity. Then, the size-weighted content popular-
ity is presented to balance the effect of the content size and
predicted content popularity. Fast-moving users are con-
nected to the cache-enabled MBS to ensure that the frequent
handover of the fast-moving users does not change the pre-
dicted content popularity distribution of the SBS. Slow-
moving users are connected to the cache-enabled SBS to pro-
vide low latency service. Cache-enabled SBSs in the same
cluster can communicate with one another, which further
increases the cache performance. The simulation results
show that our proposed policy is at least 8.9% lower and
6.8% higher in terms of the average content access latency
and offloading ratio, respectively, than the existing methods.

Data Availability

Content requests were described in the simulation section.

Conflicts of Interest

Lincan Li, Chiew Foong Kwong, Qianyu Liu, Pushpendu Kar,
and Saeid Pourroostaei Ardakani declare that there are no
conflicts of interest regarding the publication of this paper.

References

[1] M. Radenkovic, V. S. H. Huynh, and P. Manzoni, “Adaptive
real-time predictive collaborative content discovery and
retrieval in mobile disconnection prone networks,” IEEE
Access, vol. 6, pp. 32188–32206, 2018.

Table 5: The summary of the reduction ratio of the average latency and the increase ratio of the offloading ratio by comparing CPP-CC policy
with the UPC, CLFU, and CLRU policies.

SBS cache capacity: 50~ 150 Number of content requests: 3000~ 3000
Average latency Offloading ratio Average latency Offloading ratio

CPP-CC vs. UPC 9.2%~ 10.4% 6.8% ~ 9.1% 8.9%~ 11.1% 7.2%~ 10.5%
CPP-CC vs. CLFU 12.8%~ 18.5% 8.6% ~ 15.3% 12.2%~ 18.2% 11.6%~ 13.7%
CPP-CC vs. CLRU 37.7%~ 40.9% 35.9%~ 48.1% 32.8%~ 39.7% 38.1%~ 40.1%

16 Wireless Communications and Mobile Computing



[2] L. Chen, L. Song, J. Chakareski, and J. Xu, “Collaborative con-
tent placement among wireless edge caching stations with
time-to-live cache,” IEEE Transactions on Multimedia,
vol. 22, no. 2, pp. 432–444, 2020.

[3] D. Xu, Y. Li, X. Chen et al., “A survey of opportunistic offload-
ing,” IEEE Communication Surveys and Tutorials, vol. 20,
no. 3, pp. 2198–2236, 2018.

[4] B. Ai, A. F. Molisch, M. Rupp, and Z. D. Zhong, “5G key tech-
nologies for smart railways,” Proceedings of the IEEE, vol. 108,
no. 6, pp. 856–893, 2020.

[5] R. Wang, X. Peng, J. Zhang, and K. B. Letaief, “Mobility-aware
caching for content-centric wireless networks: modeling and
methodology,” IEEE Communications Magazine, vol. 54,
no. 8, pp. 77–83, 2016.

[6] S. M. A. Kazmi, T. N. Dang, I. Yaqoob et al., “Infotainment
enabled smart cars: a joint communication, caching, and com-
putation approach,” IEEE Transactions on Vehicular Technol-
ogy, vol. 68, no. 9, pp. 8408–8420, 2019.

[7] K. Poularakis and L. Tassiulas, “Code, cache and deliver on the
move: a novel caching paradigm in hyper-dense small-cell net-
works,” IEEE Transactions on Mobile Computing, vol. 16,
no. 3, pp. 675–687, 2017.

[8] K. Thar, N. H. Tran, T. Z. Oo, and C. S. Hong, “DeepMEC:
mobile edge caching using deep learning,” IEEE Access,
vol. 6, pp. 78260–78275, 2018.

[9] M. Furqan, C. Zhang, W. Yan, A. Shahid, M. Wasim, and
Y. Huang, “A collaborative hotspot caching design for 5g cel-
lular network,” IEEE Access, vol. 6, pp. 38161–38170, 2018.

[10] S. Wang, X. Zhang, Y. Zhang, L. Wang, J. Yang, andW. Wang,
“A survey on mobile edge networks: convergence of comput-
ing, caching and communications,” IEEE Access, vol. 5,
pp. 6757–6779, 2017.

[11] L. Qiu and G. Cao, “Popularity-aware caching increases the
capacity of wireless networks,” IEEE Transactions on Mobile
Computing, vol. 19, no. 1, pp. 173–187, 2020.

[12] Z. Piao, M. Peng, Y. Liu, and M. Daneshmand, “Recent
advances of edge cache in radio access networks for internet
of things: techniques, performances, and challenges,” IEEE
Internet of Things Journal, vol. 6, no. 1, pp. 1010–1028, 2019.

[13] Y. Jiang, M. Ma, M. Bennis, F. C. Zheng, and X. You, “User
preference learning-based edge caching for fog radio access
network,” IEEE Transactions on Communications, vol. 67,
no. 2, pp. 1268–1283, 2019.

[14] Y. Niu, S. Gao, N. Liu, Z. Pan, and X. You, “Clustered small
base stations for cache-enabled wireless networks,” in 2017
9th International Conference on Wireless Communications
and Signal Processing (WCSP), pp. 1–6, Nanjing, China,
2017.

[15] J. Liao, K. Wong, Y. Zhang, Z. Zheng, and K. Yang, “Energy-
efficient cooperative coded caching for heterogeneous small
cell networks,” in 2017 IEEE Conference on Computer Commu-
nications Workshops (INFOCOM WKSHPS), pp. 468–473,
May 2017.

[16] N. Gao, X. Xu, Y. Hou, and L. Gao, “A mobility-aware proac-
tive caching strategy in heterogeneous ultra-dense networks,”
in 2019 IEEE 30th Annual International Symposium on Per-
sonal, Indoor and Mobile Radio Communications (PIMRC),
Istanbul, Turkey, 2019.

[17] Q. Ma, E. Chen, Z. Lin, J. Yan, Z. Yu, and W. W. Y. Ng, “Con-
volutional multitimescale echo state network,” IEEE Transac-
tions on Cybernetics, vol. 51, no. 3, pp. 1613–1625, 2021.

[18] Y. Yu, J. Cao, and J. Zhu, “An LSTM short-term solar irradi-
ance forecasting under complicated weather conditions,” IEEE
Access, vol. 7, pp. 145651–145666, 2019.

[19] J. Zhao, S. Zhao, H. Qu, G. Ren, and Y. Shi, “Analysis and opti-
mization of probabilistic caching in micro/millimeter wave
hybrid networks with dual connectivity,” IEEE Access, vol. 6,
pp. 72372–72380, 2018.

[20] P. Cheng, C. Ma, M. Ding et al., “Localized small cell caching: a
machine learning approach based on rating data,” IEEE Trans-
actions on Communications, vol. 67, no. 2, pp. 1663–1676, 2019.

[21] P. Xu, S. Cai, and H. Zhu, “Collaborative hierarchical caching
strategy in D2D-enabled heterogeneous networks,” in 2018
IEEE/CIC International Conference on Communications in
China (ICCC), pp. 578–582, Beijing, China, 2019.

[22] Y. Zhou, Z. Zhao, R. Li, H. Zhang, and Y. Louet, “Cooperation-
based probabilistic caching strategy in clustered cellular net-
works,” IEEE Communications Letters, vol. 21, no. 9,
pp. 2029–2032, 2017.

[23] Y. Ye, Z. Zhang, G. Yang, and M. Xiao, “Minimum cost based
clustering scheme for cooperative wireless caching network
with heterogeneous file preference,” in 2017 IEEE Interna-
tional Conference on Communications (ICC), pp. 1–6, Paris,
France, 2017.

[24] M. K. Somesula, R. R. Rout, and D. V. L. N. Somayajulu, “Con-
tact duration-aware cooperative cache placement using genetic
algorithm for mobile edge networks,” Computer Networks,
vol. 193, article 108062, 2021.

[25] K. Thar, T. Z. Oo, Y. K. Tun, D. H. Kim, K. T. Kim, and C. S.
Hong, “A deep learning model generation framework for vir-
tualized multi-access edge cache management,” IEEE Access,
vol. 7, pp. 62734–62749, 2019.

[26] H. Mou, Y. Liu, and L. Wang, “LSTM for mobility based con-
tent popularity prediction in wireless caching networks,” in
2019 IEEE Globecom Workshops (GC Wkshps), pp. 1–6, Wai-
koloa, HI, USA, 2019.

[27] M. Yan, C. A. Chan, W. Li et al., “Assessing the energy con-
sumption of 5G wireless edge caching,” in 2019 IEEE Interna-
tional Conference on Communications Workshops (ICC
Workshops), pp. 1–6, Shanghai, China, 2019.

[28] S. Rathore, J. H. Ryu, P. K. Sharma, and J. H. Park, “Deepcach-
net: a proactive caching framework based on deep learning in
cellular networks,” IEEE Network, vol. 33, no. 3, pp. 130–138,
2019.

[29] L. Yao, A. Chen, J. Deng, J. Wang, and G. Wu, “A cooperative
caching scheme based on mobility prediction in vehicular con-
tent centric networks,” IEEE Transactions on Vehicular Tech-
nology, vol. 67, no. 6, pp. 5435–5444, 2018.

[30] D. Ren, X. Gui, K. Zhang, and J. Wu, “Mobility-aware traffic
offloading via cooperative coded edge caching,” IEEE Access,
vol. 8, pp. 43427–43442, 2020.

[31] Z. Lu, X. Sun, and T. La Porta, “Cooperative data offload in
opportunistic networks: from mobile devices to infrastruc-
ture,” IEEE/ACM Transactions on Networking, vol. 25, no. 6,
pp. 3382–3395, 2017.

[32] F. Guo, H. Zhang, H. Ji, X. Li, and V. C. M. Leung, “An efficient
computation offloading management scheme in the densely
deployed small cell networks with mobile edge computing,”
IEEE/ACM Transactions on Networking, vol. 26, no. 6,
pp. 2651–2664, 2018.

[33] E. Bastug, M. Bennis, and M. Debbah, “Social and spatial pro-
active caching for mobile data offloading,” in 2014 IEEE

17Wireless Communications and Mobile Computing



International Conference on Communications Workshops
(ICC), pp. 581–586, Sydney, NSW, Australia, 2014.

[34] M. S. A. Khaleel, S. E. F. Osman, and H. A. N. Sirour, “Pro-
posed ALFUR using intelegent agent comparing with LFU,
LRU, SIZE and PCCIA cache replacement techniques,” in
2017 International Conference on Communication, Control,
Computing and Electronics Engineering (ICCCCEE), pp. 1–6,
Khartoum, Sudan, 2017.

[35] D. Lee, J. Choi, J.-H. Kim et al., “LRFU: a spectrum of policies
that subsumes the least recently used and least frequently used
policies,” IEEE Transactions on Computers, vol. 50, no. 12,
pp. 1352–1361, 2001.

18 Wireless Communications and Mobile Computing


	A Novel Cooperative Cache Policy for Wireless Networks
	1. Introduction
	2. Related Works
	3. The System Model and Problem Formulation
	3.1. Heterogeneous Networks
	3.2. Content Model
	3.3. System Model
	3.4. Problem Formulation

	4. The Cooperative Caching Policy
	4.1. The Long Short-Term Memory Neural Network
	4.2. Content Popularity Prediction Based on the Long Short-Term Memory Neural Network
	4.3. Size-Weighted Content Popularity
	4.4. Cooperative Small Base Station Cache
	4.5. Small Base Station Cache Capacity Allocation
	4.6. Macro Base Station Cache

	5. The Simulation Results
	5.1. The Simulation Settings
	5.2. The Benchmark Policies
	5.3. The Effect of the SBS Cache Capacity Allocation on the Cache Performance
	5.4. The Accuracy of Content Popularity Prediction Based on LSTM Neural Network
	5.5. The Effect of the SBS Cache Capacity on the Cache Performance
	5.6. The Effect of the Number of the Content Requests on the Cache Performance
	5.7. The Summary of the Simulation Results in terms of the Average Latency and the Offloading Ratio

	6. Conclusion
	Data Availability
	Conflicts of Interest

