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On the basis of the chaotic features of the frequency hopping signal, frequency band prediction for frequency hopping signal can
enhance the interference effect of the signal greatly. However, poor prediction accuracy often limits its development in the military
field. Therefore, for the sake of enhancing the frequency band prediction accuracy of frequency hopping signal, this paper studies
the radial basis function (RBF) neural network frequency hopping signal frequency band prediction model based on the gradient
descent method and improved the particle swarm optimization algorithm, respectively. The former uses a step-by-step algorithm to
optimize the center value and weight so that the network can find the most suitable initial state. Then, the clustering selection
optimization algorithm is employed to optimize the central value. In addition, it optimizes the weight by using a gradient
descent method of the optimal learning rate. The latter optimizes the structure of the RBF neural network through the
combination of the subtractive clustering algorithm and improved the particle swarm optimization (PSO) algorithm. Simulation
results demonstrate that the gradient RBF algorithm model performs better in terms of accuracy, but time efficiency is lower,
while the PSO-RBF algorithm has better time efficiency.

1. Introduction

The purpose is to effectively combat the enemy’s communi-
cation system or protect the security of our army’s communi-
cation system in the modern military battlefield. In addition
to the traditional physical attack accident, we can also attack
the enemy’s communication system by means of signal inter-
ference. Network confrontation has become the main mode
of enemy-friend warfare. Its main form of confrontation is
exploiting a security flaw in an enemy network system to
invade the enemy network and reduce and destroy the use
efficiency of the enemy network [1]. Therefore, we need to
understand the enemy’s communication frequency band,

and if we interfere and strike arbitrarily without knowing
anything, it will also interfere with our communication sys-
tem. As a result, it is necessary to predict the communication
frequency band of the enemy. Through the prediction of the
frequency band of frequency hopping communication, we
can understand the enemy communication frequency band
and attack effectively. Therefore, the prediction of the fre-
quency hopping signal is the most important work before
the specific strike.

In the traditional conventional frequency hopping tech-
nology, both sides of the communication carry out synchro-
nous hopping according to the agreed frequency hopping
strategy in the process of communication to awaken the
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reliable transmission of data information [2]. However, with
the increasing intensity of modern electronic warfare, the
spectrum resources are becoming more and more limited,
which leads to the intensification of mutual interference
among all kinds of communication equipment and the
continuous upgrading of the interference technology of
the interference party. The traditional frequency hopping
technology cannot meet the antijamming needs of modern
electronic warfare. Therefore, based on conventional fre-
quency hopping, many experts and scholars worldwide
raise the communication technology of adaptive frequency
hopping (AFH) [3]. The core technology is monitoring the
channel in real time, carrying on the link quality analysis
(LQA) and feeding the evaluation information back to
the other side of the communication. Then, the two sides
communicate adaptively at the same time according to a
certain strategy. Adaptive frequency hopping technology
dramatically enhances the antijamming ability of the com-
munication system. The common adaptive frequency hop-
ping techniques include frequency point adaptive
frequency hopping technology, power adaptive frequency
hopping technology, frequency hopping rate adaptive fre-
quency hopping technology, and the adaptive frequency
hopping technology combined with them.

Nowadays, the existing neural network researches mainly
focus on three aspects: network structure and optimization,
learning and training algorithm, and practical application
[4]. According to the real-time performance of network
applications, these researches are separated into two fields:
static network research and dynamic network research. The
back propagation network (BP network) is the most exten-
sively applied network model. It has a strong biological back-
ground because of its excellent input-output mapping
characteristics. The BP network has a strong advantage in
multivariable function approximation. Although it can
achieve global optimization in theory, the optimization easily
sinks into local minimum due to the algorithm restriction.
The radial basis function network not only has the biological
background but also coincides with the function approxima-
tion theory and is also suitable for multivariable function
approximation. The theoretical basis of the orthogonal poly-
nomial function network is relatively perfect, but for the non-
linear modeling and prediction of complex problems, the
magnitude of network nodes often augments rapidly [5].
The advantage of the spline function network is that it only
needs local information when learning; so, it has obvious
advantages in the parallelism and convergence velocity of
the algorithm, but because the subarea network separation
in its definition domain is extraordinary complex, thus
increasing the difficulty of practical application. The existing
dynamic network research mainly focuses on real-time con-
trol, which requires the designed network to be simple in
structure and fast in convergence. Typical dynamic networks
include Hopfield network, adaptive resonance theory (ART)
network, and dynamic recursive network [6]. The dynamic
network is a single-layer network in the network structure,
realizing the system’s complex behavior control and simula-
tion with less network structure overhead because of the
internal feedback connection. So, it is more suitable for non-

linear dynamic system identification and control and other
fields.

In view of the existing network vulnerability analysis
methods, the important differences of nodes in the network
and the relationship between network nodes are often
ignored. The research challenges of prediction frequency
are listed as follows: (1) The prediction accuracy of frequency
hopping signals with interference is strictly requested in the
military. Meanwhile, the applied prediction scheme must
have a high operability. (2) Considering that the military sce-
nario has a strict requirement on the timeliness of applica-
tions, it is rather a challenge to reduce the running time of
the applied algorithm while ensuring accurate decisions are
made. (3) Limited spectrum resources aggravate the interfer-
ence between communication devices. Designing a method
overcoming the interference among devices while ensuring
network efficiency is necessary. In the network vulnerability
analysis, this project considers the communication character-
istics of the node itself and the standing and influence of the
network node structure from the multidimensional point of
view of time and space. Finally, the fragile node is determined
to provide a prerequisite for the frequency band selection of
interference targets. The main contributions of this paper
are summarized as follows:

(1) Compared with the interference to the enemy signal
in the military field, this scheme predicts the fre-
quency band of the frequency hopping signal from
the point of view of the nature of the frequency hop-
ping signal. It not only enlarges the precision of the
interference but also is more convenient in practical
operation

(2) The clustering selection optimization algorithm is
introduced into the radial basis function neural net-
work (RBF neural network) to predict the frequency
band of frequency hopping communication. It is
improved based on k-means and has higher accu-
racy than the k-means algorithm. It provides con-
venient conditions for the second step prediction
and reduces the amount of computation. The con-
cept of the optimal learning rate is introduced into
the traditional gradient descent method, which
makes the optimization process more efficient and
convenient. The optimal learning rate is calculated
by the least mean square matrix algorithm, which
effectively reduces the running duration of the
algorithm

(3) The second scheme applies the improved particle
swarm optimization algorithm to the RBF neural net-
work and uses a subtractive clustering algorithm to
optimize the number of RBF network centers. The
proposed scheme in this paper availably raises the
overall efficiency of the network and the accuracy of
frequency hopping communication band prediction

The remaining work of this paper is organized as follows:
Section 2 introduces the frequency hopping signal prediction
scheme based on the RBF neural network proposed, Section 3
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introduces the structure of RBF neural network based on the
improved particle swarm optimization and subtractive clus-
tering algorithm, Section 4 explains the experimental results,
and Section 5 summarizes the full-text work.

2. Frequency Band Prediction Model of
Frequency Hopping Signal Based on the
Gradient Descent Method

This section proposes an RBF neural network prediction
model based on an improved gradient descent method due
to the existing problem of low accuracy of prediction models.
It combines the clustering algorithm and the optimal learn-
ing rate to predict the frequency band of the frequency hop-
ping signal.

2.1. Design Overview. In the RBF neural network prediction
model, this scheme regards the current signal frequency
and the signal frequency of the next time unit as the input
and output in the RBF neural network [7], respectively. This
prediction process is adaptive and is carried out gradually. In
the specific prediction process, the network is constantly
optimizing according to the actual value of the predicted sig-
nal. The number of signals in this process always remains the
same, that is, when the next signal is optimized, the first sig-
nal is removed, and when the next signal is predicted, the first
two signals are removed. In this way, a requirement of always
keeping the same data optimized in the network is achieved.
This approach can reduce the computing time and improve
the optimization efficiency of the entire network. The
method of real-time prediction of the network structure can
greatly improve the accuracy of the network to achieve the
experimental goal. Figure 1 shows a schematic diagram of
the specific RBF neural network prediction process.

According to Figure 1 above, the RBF neural network’s
prediction model needs to go through the following steps:
First, set the accuracy of the predicted model to achieve
higher prediction accuracy than the existing scheme, which
is set as 90%. Next, we need to obtain a certain number of fre-
quency hopping signal transmission frequency bands as the
training set of the algorithm and then use the generated data
set to optimize the structure of the entire network and deter-
mine the number, size, and weight of the center. Then, the
frequency band prediction of the frequency hopping signal
can be realized.

In the prediction process of the RBF neural network,
training the central value and weight of the neural network
is the key step in this scheme, and it is also the key research
link in this section. The training of the central value and
weight directly determines the quality of the RBF neural net-
work prediction model. This section proposes a scheme
based on a clustering selection optimization algorithm and
gradient descent method, which constructs an RBF neural
network prediction model to achieve an accurate prediction
of frequency hopping signal frequency bands.

The prediction model that had been put forward in this
section is divided into two steps in the optimization design
of the model [8] according to the gradient-RBF neural net-
work. The first step is to optimize the selection of the central
value in the RBF neural network, and the main application is
a new cluster selection optimization algorithm. Compared
with the commonly used k-means clustering selection opti-
mization algorithm, it will make the size of the center value
more accurate, thereby reducing the time required for the
second step, improving the work efficiency of the network,
and improving the accuracy. The second step is the optimal
selection of weights. This section uses the gradient descent
method and the least mean square algorithm to convert the
learning rate in the gradient descent method into the optimal
learning rate so that the efficiency of the entire neural net-
work will be significantly improved, and the signal frequency
prediction will be more accurate.

2.2. Selection of the Number of the Center c of the Hidden
Layer of the RBF Neural Network. This program introduces
the RBF neural network prediction method, which is used
to predict the frequency of the frequency hopping signal in
the frequency hopping communication. Due to the particu-
larity of the RBF neural network structure, it is necessary to
construct a reasonable network structure before predicting
the frequency of the frequency hopping signal to achieve
the purpose of accurate prediction. Therefore, how to find
the optimal structure has become the most important issue
in this scheme. The main idea of selecting the center is to
make the center point as the center of a certain area, and
the number of centers is required to be appropriate.

The pseudorandom code irregularly controls the fre-
quency of the frequency hopping signal, but it may be con-
centrated in a certain area at different times [9]. Therefore,
choosing the center value in these several areas will make
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Input the real data set to predict the
real frequency hopping signal

frequency data in the previous period

Training the neural
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predicted value

and record
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Figure 1: The RBF neural network prediction of frequency hopping signal flow diagram.
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the neural network structure more optimized and simplify
the training process during the training process. The follow-
ing scheme introduces an improved algorithm based on the k
-means clustering selection algorithm. This algorithm is
more suitable for one-dimensional input of frequency hop-
ping signal frequency, and its calculation time is shorter,
and the accuracy is higher.

After comparing the radial basis functions mentioned
above, this scheme selects the Gaussian function as the radial
basis function of the RBF neural network [10]. Because the
Gaussian function decreases monotonously from the center
to both sides, its response is locally limited. There will be a
local response only at a position close to its center. The
Gaussian function is similar to the biological neuron in the
RBF neural network and the linear summation weighted by
N Gaussian functions as the final output. Thus, the RBF neu-
ral network transformed the original nonlinear problem into
the current linear problem [5]. The functional equation f ðx
Þ =w0 +∑n

i wiφðkx − cikÞ is the mapping equation from
input to output, where cið1 ≤ i ≤ nÞ denotes the center of
the RBF neural network, and norm k•k represents the Euclid-
ean distance and wið1 ≤ i ≤ nÞ is the weight of the linear sum-
mation. x and wo represent the input vector and deviation,
respectively. The Gaussian function is selected as the radial
basis function φð⋅Þ. Figure 2 shows a schematic diagram of
its structure.

For the selection of center c, this section introduces an
improved cluster selection optimization algorithm based on
the k-means clustering algorithm, which has a faster conver-
gence speed than the k-means algorithm, and the accuracy of
optimizing the center value is higher.

In this learning method, the center is determined by self-
organizing learning, which can be moved. The selection of
the center can use the mean clustering selection optimization
algorithm. This is an unsupervised learning method, and the
center changes with the number of samples. The following
are the detailed steps:

(1) Initialize cluster center cið1 ≤ i ≤ nÞ. If the value of n
is increasing, the accuracy is also improved, but the
amount of calculation will increase [11]. Select n

samples from the input sample xð1, 2,⋯,mÞ as clus-
ter centers. (n is given in advance, according to the
characteristics of the frequency hopping signal, n is
given as 50)

(2) Group the input samples according to the nearest
neighbor rule, assign xð1, 2,⋯,mÞ to the center c;
θn is the cluster set of the input samples and
meetsd = dmin = kxm − cik, and j is the number of ele-
ments in each cluster set

(3) Calculate the average distance �d = ð1/jÞ∑i
1kxj − cik of

each center ci and the average distance �D = ð1/mÞ
∑m

1 kxm − cik of the entire system (each input xm cor-
responds to its cluster center)

(4) Find ca corresponding to �di max and randomly select
another center c′a, if it is �Di ′ ≤ �Di, keep c′a; otherwise,
keep ca

Repeat steps 3 and 4, when the random center c′a always
satisfies �Di ′ ≤ �Di, and the optimization is completed, and the
cluster center ci is output. The width of the RBF network is
σ = d/

ffiffiffiffi
N

p
, where d represents the maximum distance

between all centers and N represents the number of centers.

2.3. Improved Gradient Descent Method and Implementation
Scheme. After the center optimization is selected, the weights
are optimized by the gradient descent method. In this
scheme, the Gaussian function and matrix are used to calcu-
late the actual output value ŷ of the network, and y, t, and w
denote the actual output value of the network, the number of
iterations, and the weight, respectively. Herein, eðtÞ repre-
sents the error function, EðtÞ is the cost function, and ηðtÞ
is the learning efficiency function.

The update function of the weight is

w t + 1ð Þ =w tð Þ − η tð Þ dE tð Þ
dt

: ð1Þ

By using the least mean square algorithm, we can obtain

φ x − cik kð Þ = exp −
1
2σ2 x − cik k2

� �
i = 1, 2,⋯,nð Þ, ð2Þ

where n is the center number, and m is the total number of
input samples. In this experiment, we assume n is 50.

φji = φ xj − ci
�� �� j = 1, 2⋯,m, ð3Þ

ϕω = yω = ω1, ω2,⋯,ωnð ÞT : ð4Þ
The cost function can be obtained by

E tð Þ = 1
2〠

m

j=1
yj − y∧ tð Þ
h i2

= 1
2〠

m

j=1
ej
2 tð Þ: ð5Þ

By using the gradient descent method for function EðtÞ,

1 𝜑1 (x) 𝜑2 (x)

f (x)

𝜑3 (x) 𝜑n (x)

w0 w1 w2 w3
wn

x1 x2 x3 xm

Figure 2: The input-neuron-output diagram of the RBF neural
network.
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we can obtain

∇E tð Þ = 〠
m

j=1
ej tð Þ

∂ej tð Þ
∂ω tð Þ = −〠

m

j=1
ej tð Þ

∂ φj•ω tð Þ
h i
∂ω tð Þ , ð6Þ

∇E tð Þ = −〠
m

j=1
ej tð ÞφT

j : ð7Þ

The variable for the tth learning weight is ΔωðtÞ.

Δω tð Þ = ω t + 1ð Þ − ω tð Þ, ð8Þ

Δω tð Þ = −η tð Þ∇E t − 1ð Þ = η tð Þ〠
m

j=1
ej t − 1ð ÞφT

j : ð9Þ

The optimal learning rate is to use the learning rate in the
gradient descent method to achieve the highest efficiency
through matrix calculation [12]. The scheme is listed as fol-
lows:

Δe tð Þ = e tð Þ − e t − 1ð Þ = −Δ y tð Þ
∧

= −η tð ÞϕΔω tð Þ = −η tð ÞϕϕTe t − 1ð Þ,
ð10Þ

e tð Þ = e t − 1ð Þ − η tð ÞϕϕTe t − 1ð Þ, ð11Þ

E tð Þ = 1
2 e

T tð Þe tð Þ = 1
2 e t − 1ð Þ − η tð ÞϕϕTe t − 1ð Þ� �T• e t − 1ð Þ − η tð ÞϕϕTe t − 1ð Þ� �

:

ð12Þ
From the above derivation, the optimal learning rate can

be obtained:

η∗ tð Þ = ∇e tð Þ = e tð Þ − e t + 1ð Þ = eT t − 1ð ÞϕϕTe t − 1ð Þ
eT t − 1ð ÞϕϕTϕϕTe t − 1ð Þ :

ð13Þ

Specific steps are as follows:

(1) We need to get the number of hidden layer nodes n
through the above method and use the mean cluster
selection algorithm to find the center c and the width
σ. Set learning accuracy rmse∗ and the maximum
number of iterations max t

(2) Set the weight of the output layer and hidden layer to

w0 =
1
⋮

1

0
BB@

1
CCA and calculate EðtÞ = rmse

(3) Let ηðtÞ = η∗ðtÞ and w =w + ηðtÞϕTeðt − 1Þ iterate
(4) If rmse ≥ rmse∗ or t ≤max t, repeat step 3; otherwise,

stop and output ŷ and t

The above optimization scheme can obtain the center,
weight, and width of the RBF neural network through opti-
mization training and learning [13]. When testing the data,

the obtained data can continue to be input into the network
structure as a sample, and the above steps are repeated. In
this way, when the test data is more, the network structure
is more accurate, and the measurement result is more
accurate.

3. Frequency Band Prediction Model of
Frequency Hopping Signal Based on the RBF
Neural Network Based on Improved Particle
Swarm Optimization (PSO-RBF Algorithm)

In view of the limitations of the above schemes in the military
field and relatively speaking, the algorithm simulation time is
long, and a global prediction scheme is proposed to predict
the frequency band of frequency hopping signals in this sec-
tion. This scheme uses the subtractive clustering algorithm
and improved the particle swarm optimization (PSO) algo-
rithm. We propose an RBF neural network prediction model
based on improved PSO and optimize the center value and
weight of the network to achieve the purpose of frequency
hopping signal frequency band prediction.

3.1. Design Overview. In the previous section, the center and
weight of the hidden layer in the RBF neural network are
optimized by the step-by-step method. To improve the accu-
racy of the scheme as a whole, the accuracy of each step is
high, which leads to too many iterations. Therefore, this sec-
tion applies the improved PSO algorithm to the RBF neural
network to predict the signal frequency band in the fre-
quency hopping communication [14]. The prediction model
proposed in this section optimizes the structure of the RBF
neural network through real data, compares the predicted
value with real value, and reoptimizes the adaptive prediction
process of the network mechanism with real value as the
training sample. Figure 3 shows a schematic diagram of the
specific forecasting process.

Figure 3 above shows the prediction diagram, which is
similar to the prediction process mentioned in Section 2.
Some improvements are made on the optimization of the
center, width, and weight of the RBF neural network. Data
flow in this prediction process represents the real FM signal
transmission frequency. The real value is taken as the train-
ing sample of the prediction model, which is optimized by
the scheme in this section. By constantly adjusting the
parameters, we can finally achieve the purpose of optimizing
the RBF neural network construction.

In this scheme, the improved PSO algorithm is applied to
the RBF neural network to predict the frequency band of the
frequency hopping signal model. PSO is a random search
algorithm that simulates biological activities in nature and
is a branch of evolutionary computing. It finds the optimal
solution through the cooperation mechanism in the popula-
tion and is extensively used in various engineering optimiza-
tion problems. The RBF neural network prediction model
applies the improved PSO algorithm, which regards the cen-
ter, width, and weight of the RBF neural network as a three-
dimensional optimization structure, and optimizes the pre-
diction model continuously through the parameters and
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fitness function of the particle swarm [15]. The step of opti-
mizing the speed and position of particles is the most impor-
tant link in this scheme. Combined with the advantages of
the above two, the PSO algorithm is used to optimize the cen-
tral parameters of the basis function. While using the sub-
tractive clustering algorithm to determine the number of
centers of the radial basis function, the PSO algorithm is used
to adjust the connection weight between the hidden layer and
the output layer of the network to achieve the overall optimi-
zation effect of the RBF neural network [16].

3.2. The Center Number of the RBF Neural Network Is
Determined by the Subtractive Clustering Algorithm. The
Gaussian function constitutes the vector basis, and several
vector bases constitute the hidden layer of the RBF neural
network [17], which is a method of approximating nonlinear
functions by linear functions. In this section, the radial basis
function used in the hidden layer of the RBF neural network
is the Gaussian function, and the transmission frequency of
frequency hopping signal in frequency hopping communica-
tion is the nonlinear function. In this scheme, the accuracy of
the prediction model is directly determined by the number of
radial basis functions in the hidden layer of the neural net-
work. Under normal circumstances, the more basic func-
tions, the higher the accuracy of the algorithm and then the
more iterations of the algorithm [18]. Therefore, the key to
this prediction model is that the count of hidden layer centers
needs to be determined.

The subtractive clustering algorithm is a relatively effec-
tive clustering method to determine the number of basis
function centers. The calculation principle of the subtractive
clustering algorithm is to select the first central point from
the position with the highest density in a group, get the first
central point, subtract this point and the points near this

point, and then repeat this process, and so on; until the cur-
rent highest density is met. The specific algorithm is as
follows.

Consider normalizing the data into p data points ðx1, x2
,⋯, xpÞ in an n-dimensional unit of hyperspace [19], the fol-
lowing formula gives the density at data point xi:

Di = 〠
p

i=1
exp −

xi − yj
��� ���2

γa/2

2
64

3
75: ð14Þ

After calculating the density of each data point, we chose
the point with the highest density as the first cluster center
and denoted its density as Dc. The updated formula for the
density of each data point is

Di =Di − 〠
p

i=1
exp −

xi − xc1k k2
γa/2

� 	
: ð15Þ

After the density of each point is updated, we select the
next clustering center and modify its density again [20]. This
process is repeated until the current maximum density D is
far less than the initial maximum density, and the formula
is as follows:

Dmax
Dc1

< λ: ð16Þ

Thus, the clustering ends, and the number of clustering
centers obtained is equal to the number of centers of the basis
function.

3.3. Implementation of Improved PSO in the RBF
Neural Network

3.3.1. Fitness Selection Based on Frequency Hopping Signal. In
this scheme, the fitness function selects the error function of
the whole system, which can show the quality of the system
more intuitively and has more intuitive significance for the
optimization of the internal structure of the system.

In the PSO algorithm, a particle corresponds to a feasible
solution. First, we code the particle, which includes the center
value and width of the basis function, particle velocity, and
fitness [21]. According to the subtractive clustering algo-
rithm, suppose m centers are determined and each center is
k-dimensional, then the position of the particle is m × ðk +
1Þ-dimensional, the velocity of it is also m × ðk + 1Þ-dimen-
sional, σi represents the width of the i basis function, and f i
is the fitness of the i individual. Formulas (17) and (18) show
the fitness function:

f i =
1
Ri
, ð17Þ

Ri =
1
M

〠
m

k=1
yk − y∧kð Þ2: ð18Þ

Next set of data Previous set of data

Input learning
samples

Learning and training
network

Output prediction
data

Jammer

Compare data get
the errors 

Data stream

Figure 3: The data processing flow diagram of the prediction
system.
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3.3.2. Selection of the Update Function of Improved PSO. A
random particle swarm is generated by the PSO algorithm,
and each particle is given a random velocity. During the
flight, the speed of the particles is dynamically adjusted by
the pulling force of their own and companions’ flight experi-
ence, and the whole group can fly to a better search area [22].
Suppose that the search space is N-dimensional, the total
number of particles is Z, the position of the i particle in the
N-dimensional space is expressed as xi = ðxi1, xi2,⋯, xiNÞ,
and the flight speed is expressed as vi = ðvi1, vi2,⋯, viNÞ.
The optimized objective function assigns a fitness value to
each particle. Each particle is searched in the solution space
immediately following the current optimal particle. In itera-
tions, each process is not completely random, and if we find
a better solution, we can use it as a basis for finding the next
solution. Each time the particle updates itself, it tracks two
“extremes” in the iteration: one is the individual extreme
point [23], that is, the best solution found by the particle
itself, whose position is expressed as pbest; the other is the
global extreme point, which is the best solution found by
the whole population at present, and its position is expressed
as gbest. When the two best solutions are found, the velocity
and position of particle will be updated according to formula
(19):

vk+1id =wvkid + c1 randk1 pbestkid − xkid

 �

+ c2 randk2 gbestkid − xkid

 �

,

ð19Þ

where vkid denotes the d-dimensional component of the flight
velocity in the k iteration of the i particle, and xkid represents
the d-dimensional component of the position in the k itera-
tion of the i particle [24]. pbestkid denotes the position of the
individual extreme point of the particle i in the d-dimen-
sion. gbestkid denotes the position of the global extreme point
of the whole swarm in the d-dimension. w stands for inertia
weight, and c1 and c2 are learning factors. The maximum step
size of the global best particle and the individual best particle
flying in the direction of the global best particle and the indi-
vidual best particle is adjusted by them severally. General
orderc1 = c2 = 2andrand 1are stochastic numbers among ½0,
1�.

Different from the application of the traditional particle
swarm optimization algorithm, the prediction model of the
RBF neural network regards the radial basis function in the
hidden layer of the neural network as a particle. The center

value, width, and weight are regarded as particles that need
to be searched in the three-dimensional solution space.
Therefore, the value of d in this scheme is 3. pbestkid repre-
sents the best position of the predicted value of this time in
the training sample, and gbestkid represents the best position
of the predicted value of all training samples up to the current
time. In this training model [25], each radial basis function
has a memory function and records its center value and
width, as well as its weight connected to the output layer.

3.3.3. Algorithm Step. This algorithm optimizes the RBF neu-
ral network, using subtractive clustering algorithm and
improved the particle swarm optimization algorithm [26].
The following are the specific steps:

(1) Input the transmission frequency bands of a certain
number of real frequency hopping signals (2000-
100) as set training samples optimized by the RBF
neural network

(2) According to the subtractive clustering algorithm
mentioned above, we perform clustering analysis on
the samples, so that the number of centers can be
determined

(3) Initialize the particle swarm, that is, we set the
parameters of the PSO algorithm, as well as the initial
position of the particles. The neurons in the hidden
layer of the RBF neural network are represented by
the particles here

(4) If the fitness of each particle is better than that of the
best position it has ever experienced, then update the
optimal position pbestkid of the particle

(5) If the fitness of each particle is better than that of the
best position experienced by the particle population,
then update the global optimal position gbestkid of
the particle

(6) Modify the velocity and position of particles

(7) Continue the cycle from steps 4 to 6 and end the cycle
when the result meets the calculation requirements

(8) Decode the best position experienced by the particle
swarm and use the decoded value as the structural
parameter of the RBF neural network. Then, learn
from the network

4. Performance Analysis

In this experiment, 2000 data generated by MATLAB are
used as training samples and 100 as test samples. The initial-
ization values of the PSO-RBF algorithm are shown in
Table 1.

Figures 4 and 5 compare between the real and predicted
values obtained when the training set of different methods
is 2000 data. There are 100 test sets, and it can be seen from
the simulation figure that the distance between the real value

Table 1: Initialization values of PSO-RBF algorithm.

Parameter Value

Number of iterations G 20

Particle dimension n 15

Population size m 20

Algorithm parameters w 0.1

Algorithm parameters c1 2

Algorithm parameters c2 2
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and the predictive value of most of the vast majority data is
small, indicating that the error is small.

Because the scheme of this paper is mainly used to attack
the enemy’s communication system in the military field,
therefore, the demand for time efficiency is high. In the first
scheme, the RBF neural network based on the gradient

descent method utilizes 100 to 2000 training data to analyze
the impact of time efficiency and accuracy in detail. The
details are shown in Figures 6 and 7 below.

Figure 7 depicts the changing trend between the gradient-
RBF algorithm and the traditional correlation-based algo-
rithm model prediction accuracy and the simulation time
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Figure 5: The error diagram of prediction result of PSO-RBF algorithms.
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Figure 4: The error diagram of gradient-RBF prediction results.
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of the algorithm. We can obtain from the figure that as the
number of training sets increases, the simulation time curve
of the two prediction models is tortuous. The simulation time
of the gradient-RBF algorithm is getting longer. It can also be
said that the simulation time is proportional to the number of
training set samples. Compared with the simulation results of

the two algorithms in the figure, the simulation time of the
prediction model based on the correlation degree algorithm
is significantly lower than that of the gradient-RBF algo-
rithm. The cause of this trend is that the massive training
samples and the massive iterations of the algorithm also
increase, resulting in longer simulation times.
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Figure 6: The relation diagram between the number of training samples and time efficiency.
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Figure 8 shows the yellow line in the figure shows the
changing trend between model prediction accuracy and
accuracy in the PSO-RBF algorithm. Through the compari-
son of the three lines, we can see that the accuracy of the

gradient-RBF algorithm and the PSO-RBF algorithm is obvi-
ously better than the traditional correlation-based algorithm.
As the number of training sets increases, the accuracy curve
of the prediction model rises tortuously, and the accuracy
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Figure 8: The relation diagram between the number of training samples and accuracy.
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of the algorithm gradually increases, up to 92%. This indi-
cates that the accuracy is proportional to the number of train-
ing set samples. The reason for this trend is that the number
of training set samples increases, the number of iterations of
algorithms also increases, and the center value and weight are
better optimized, thus improving the accuracy of the algo-
rithm. In this paper, we make use of the subtractive clustering
algorithm to determine the number of centers of the radial
basis function of the RBF neural network and the center
value, width, and weight between the hidden layer and the
output layer is optimized by the PSO algorithm. The experi-
mental results illustrate that the optimization of the neural
network by particle swarm optimization is effective.

Figure 9 shows that the yellow line in the figure indicates
the changing trend between the model prediction accuracy of
the PSO-RBF algorithm and the simulation time of the algo-
rithm. Through the comparison of the simulation time of the
three schemes, we can obtain that the simulation time curve
of the prediction model rises tortuously as the number of
training sets increases, and the simulation time of the algo-
rithm becomes longer gradually. In other words, the simula-
tion time is proportional to the number of training set
samples. This is due to the number of training samples
increasing, and the number of iterations of the algorithm also
increasing, thus making the simulation time longer. The
PSO-RBF algorithm of this scheme adopts the global optimi-
zation prediction model; so, the simulation time is much less
than the other two schemes.

We select four specific indicators for systematic analysis
to analyze the performance of the proposed scheme and the
other existing schemes more clearly, including mean absolute
error (MAE), mean absolute error rate (MAER), root mean
square error (RMSE), and symmetrical mean absolute per-
centage error (SMAPE). The specific formulas are as follows.
Through these indicators to judge the relationship between
the final output and the actual value, the specific criteria are
as follows:

(1) Mean absolute error (MAE) represents the actual sit-
uation of the prediction error

MAE = 1
n
〠
n

t=1
Xt − Ftj j, ð20Þ

where Xt is the actual value, Ft is the predicted value, and n is
the total number of samples

(2) Mean absolute percentage error (MAPE) is a crite-
rion for describing predicted and actual error values

MAPE = 1
n
〠
n

t=1

Xt − Ft

Xt

����
����, ð21Þ

for MAPE, the closer the value is to 0, the better the predic-
tion effect is

(3) Root mean squared error (RMSE) is the square root
of the mean square difference between the prediction
data and the original data

RMSE =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n
〠
n

i=1
Xt − Ftð Þ2

s
ð22Þ

(4) Symmetrical mean absolute percentage (SMAPE) is a
criterion for describing predicted and actual errors,
which is expressed as

SMAPE = 2
n
〠
n

t=1

Xt − Ftj j
Xt + Ft

, ð23Þ

and the range of value is [0,2). The closer the value is to 0, the
better the prediction effect and the smaller the error.

The real and predicted values of the test results of 1000
training in this scheme are brought into the above formulas.
The result data can be obtained as follows.

In Table 2, SMAPE can clearly show the error between
the real value and the prediction value of the system. The
two schemes proposed in this paper are only slightly insuffi-
cient in accuracy compared with the gradient-RBF algorithm
mentioned above when the data selected by the gradient-RBF
algorithm is 1000 training sets.

This scheme compares the simulation running time of
the two schemes through the specific data of Table 3, which
directly shows the time defect of the gradient-RBF algorithm.
The reason for this problem is that the number of iterations
of the algorithm is too many.

It can be obtained from Table 4 that in the training pro-
cess of the gradient algorithm, each iteration reaches the
highest number of iterations, and the corresponding time is
longer, while the prediction result is higher than that of the
improved particle swarm algorithm. However, after meeting
the minimum accuracy requirement, the improved particle
swarm optimization algorithm does not continue to iterate.

Table 2: The quantitative analysis of 1000 training sets prediction
results.

Algorithm
MAE
(Hz)

MAPE
RMSE
(Hz)

SMAPE

Gradient-RBF algorithm 105 0.0361 11.7 0.0722

Correlation-based
algorithm

656 0.1452 24.6 0.01285

PSO-RBF algorithm 458 0.0932 22.7 0.0872

Table 3: The error analysis of two schemes.

Algorithm Simulation time (s)

Gradient-RBF algorithm 146

Correlation-based algorithm 82

11Wireless Communications and Mobile Computing



It optimizes the center, width, and weight of the RBF neural
network from the global search. This scheme is much higher
in time efficiency than the first scheme. As long as the param-
eter adjustment work is meticulous and the parameter
adjustment is reasonable, the accuracy of the gradient algo-
rithm can be achieved.

5. Conclusions

This paper analyzes and compares the features of related
algorithms with their optimization algorithms. We apply
each method to the frequency band prediction process of fre-
quency hopping signals, compare the pros and cons of
related algorithms, and propose two kinds of prediction
schemes. The first is to first predict the center c in the RBF
neural network and use the cluster selection optimization
algorithm. After optimizing the center c, using a gradient
descent method and least mean square algorithm to calculate
optimal learning rate, so as to improve the efficiency of the
entire system. By analyzing simulation results, it is found that
the accuracy of this scheme is remarkably progressed com-
pared with a traditional correlation-based algorithm, but
time efficiency is slightly longer. The second scheme is pro-
posed in response to the shortcoming of the long computing
time of the first scheme. It applies the improved particle
swarm algorithm to the RBF neural network and uses the
reduced clustering algorithm to calculate the number of
RBF neural network centers. Then, the proposed scheme is
used to directly optimize the center and weight for predicting
the frequency problem of the frequency hopping signal of the
nonlinear function in the RBF neural network. After the error
analysis and comparison of the two schemes, it is found that
using the second scheme to enhance the particle swarm opti-
mization algorithm in the RBF neural network can effectively
increase the time efficiency and make system accuracy above
90%. In this way, it realizes the prediction of the nonlinear
function, that is, the prediction of the frequency hopping sig-
nal, which makes it operable to attack the enemy’s communi-
cation system in the specific military field. For our future
work, we will consider blockchain-based communications
and high-efficient learning solutions in our framework, such
as [27, 28].
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