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Nowadays, large volumes of multimodal data have been collected for analysis. An important type of data is trajectory data, which
contains both time and space information. Trajectory analysis and clustering are essential to learn the pattern of moving objects.
Computing trajectory similarity is a key aspect of trajectory analysis, but it is very time consuming. To address this issue, this
paper presents an improved branch and bound strategy based on time slice segmentation, which reduces the time to obtain the
similarity matrix by decreasing the number of distance calculations required to compute similarity. Then, the similarity matrix
is transformed into a trajectory graph and a community detection algorithm is applied on it for clustering. Extensive
experiments were done to compare the proposed algorithms with existing similarity measures and clustering algorithms. Results
show that the proposed method can effectively mine the trajectory cluster information from the spatiotemporal trajectories.

1. Introduction

Nowadays, a huge amount of data is collected and it is impor-
tant to develop tools to analyze data to extract useful knowl-
edge. The collected data is often multimodal, that is of
different types (e.g., audio [1], video [2], text [3], and image
[4]), and can be analyzed jointly or separately [5, 6]. An
emerging type of data that is playing a key role in multimodal
data analysis is trajectory data [7]. It consists of spatial and
temporal information about moving objects. Common tra-
jectory data can be divided into four categories, namely,
human trajectories, vehicle trajectories, animal trajectories,
and natural phenomenon trajectories. Analyzing and discov-
ering patterns in trajectory data have applications in several
fields such as intelligent transportation, human mobility
analysis, urban planning, meteorology, and travel recom-
mendations and can reveal insights that are not discovered
from other data types.

The process of trajectory data analysis mainly consists of
obtaining and preprocessing trajectory data, trajectory data
management, and a variety of mining tasks, including trajectory

pattern mining, privacy protection, outlier detection [8, 9], and
clustering trajectories on complex road networks [10, 11].Many
studies have been published, and trajectory data analysis is a
very active research field. A generative adversarial network
(GAN) was used to predict pedestrian movement by analyzing
multimodal trajectory data [12]. However, most techniques for
trajectory data analysis require measuring trajectory similarity,
which necessitates a large amount of calculations on trajectory
data and results that the time complexity of these similarity
measurement methods is relatively high. Based on the idea of
branch and bound, a novel similarity measurement method,
called FSTM [13], was proposed that sets a distance threshold
to prune certain mismatched points. Still, FTSM only considers
space constraints.

More recently, there is an increasing interest on time
series clustering using graphs [14, 15]. Traditional analysis
methods only focus on the local relationship between data
samples, while ignoring the global information. Advanced
trajectory data mining techniques take network dynamics
of trajectories into account, such as to mine trajectory group
patterns and to assess the importance of a moving object in
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trajectory networks [16–18]. A complex network is suitable
for revealing important relationships in trajectory data visu-
ally and can provide global information as time series data.
In addition, there is no restriction on the shape of clusters.

Based on the above advantages and limitations, we pro-
pose an approach to spatiotemporal trajectory clustering
based on community detection (STTC-CD). The algorithm
implements an improved branch and bound strategy based
on time slice segmentation. While richer trajectory informa-
tion is taken into consideration, redundant trajectory points
are pruned. Then, the trajectory data is converted into a
graph representation based on the similarity matrix. Finally,
a suitable community detection algorithm is applied to per-
form clustering on the graph. The main contribution of this
paper is as follows:

(i) An improved similarity calculation method is
designed, which matches pairs of trajectory points
and applies a pruning strategy based on time slicing
to reduce the time complexity

(ii) A method is proposed to convert trajectories into a
suitable data format to apply many types of tech-
niques for trajectory data mining. Based on this, a
community detection algorithm is applied to cluster
trajectories, which captures global relationships
among trajectories from a graph-based perspective

(iii) Experiments have been conducted to evaluate the
proposed algorithm on several datasets to verify
the influence of multiple factors. It was found that
the proposed algorithm is more efficient than the
compared methods

The rest of this paper is organized as follows: Section 2
surveys relevant related work. Section 3 formally defines the
trajectory clustering problem. Section 4 presents the designed
STTC-CD algorithm. Then, Section 5 describes the experi-
mental evaluation and Section 6 draws a conclusion.

2. Related Work

The key problem in trajectory clustering is how to measure
trajectory similarity. This section first reviews techniques
for trajectory similarity measurement and then surveys rele-
vant work on community detection.

2.1. Trajectory Similarity Measure.Most trajectory data anal-
ysis tasks require computing trajectory similarity measure-
ments, such as trajectory clustering [19], transforming data
for privacy-preservation [20], movement pattern mining
[21], and abnormal trajectory detection [22]. Traditional tra-
jectory measurement techniques such as EDR (edit distance
on real sequence), LCSS (longest common subsequence),
and DTW (Dynamic Time Warping) compute the overall
trajectory similarity by analyzing each trajectory as a whole
rather than considering subtrajectories or random trajectory
points. Among these techniques, DTW [23] aligns trajecto-
ries of different lengths by warping a trajectory sequence
and can match a point at a certain time from a trajectory to

a number of continuous points from another trajectory.
Hence, it has no restriction on the length of the compared
trajectories. LCSS [24] calculates the longest common subse-
quence of two trajectories as their similarity. EDR calculates
the minimum number of changes required to transform a
trajectory into another as the similarity between the two tra-
jectories. Clue-Aware Trajectory Similarity (CATS) [25] is
aimed at overcoming the influence of track bias in time and
space. Multidimensional Similarity Measure (MSM) [26]
and Multiple-Aspect Trajectory Similarity Measure (MUI-
TAS) [27] provide similarity measures for multidimensional
sequences, adding information such as weather, user activity,
and user interest into trajectory comparison.

However, DTW is a distance-based method, which
directly accumulates the distances between trajectory point
pairs. A problem of DTW is that the sum of the distances
can greatly increase when there are noise points, which
makes it sensitive to noise points. Quite the reverse, the ε
-threshold-based measures use an ε-threshold value to deter-
mine if two points match, which can be more robust to noise.
LCSS, EDR, CATS, and MSM fall all in the ε-threshold-based
strategy, and the computation of similarity score is based on
the point matching of two trajectories. They have a O(n2)
time complexity and cause a performance bottleneck for tra-
jectory clustering algorithms. Furtado et al. proposed a
branch and bound method (FTSM) to achieve fast similarity
measuring by utilizing a transitive range pruning strategy to
reduce the number of matching point pairs.

2.2. Community Detection in Networks. A community is a
subset of network nodes. Connections between nodes within
a subset are relatively close, while connections between nodes
from different subsets are relatively sparse, which is exactly in
line with the needs and principles of clustering. Recently,
community detection algorithms have been increasingly uti-
lized for trajectory clustering.

Depending on whether a node can belong to multiple
communities or only one, community detection methods
can be categorized as finding nonoverlapping or overlapping
communities. In a nonoverlapping community, each net-
work node can belong to one community. Algorithms that
detect communities of this type are Fastgreedy [28], Louvain
[29], Label Propagation [30], and Infomap [31]. Modularity
is used to measure the quality of community division. The
Fastgreedy algorithm applies a bottom-up process. Initially,
each node is regarded as a community. Then, at each itera-
tion, the two communities providing the largest increase in
modularity are merged until the entire network is merged
into a single community. The final community structure is
a division that maximizes the modularity. The Louvain algo-
rithm improves upon the Fastgreedy algorithm by assigning
each node to neighboring nodes for maximum modularity.
When the ownership of a node no longer changes, the algo-
rithm collapses each community into a node to form a new
community for the next iteration. The basic idea of the Label
Propagation algorithm (LPA) is to predict labels of unlabeled
network nodes from labeled nodes. Each node label is prop-
agated to neighboring nodes according to their similarity.
At each step of node propagation, the node updates itself
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according to the label of the neighboring node until the label
no longer changes. Similar to K-means, the results of LPA are
affected by the initial label selection. The Infomap algorithm
introduces a coding-based technique based on random
walks. A good group division can lead to shorter coding
length.

A trajectory clustering algorithm based on an improved
Label Propagation algorithm was proposed where road net-
work is modeled as a dual graph to capture and characterize
the similarity between nodes [10]. Liu and Guo proposed a
semantic trajectory clustering algorithm based on commu-
nity detection [32], where different community detection
algorithms were discussed.

3. Problem Statement

The following definitions are provided to facilitate the for-
mulation of the problem under study:

Definition 1 (trajectory). A trajectory is a sequence of points
in chronological order, denoted as TRi = fp1i , p2i ,⋯,pji ,⋯,pnii
g, where each point pji = ði, x, y, tÞ represents the spatial loca-
tion ðx, yÞ of an entity at given time t of trajectory TRi, and ni
is the number of points in TRi.

Definition 2 (silhouette coefficient SI). The silhouette coeffi-
cient is a metric to evaluate the quality of a clustering, which
considers two aspects that are cohesion and resolution. The
sðiÞ of each trajectory point pi is calculated as follows:

s ið Þ = b ið Þ − a ið Þ
max a ið Þ, b ið Þf g , ð1Þ

where aðiÞ denotes the average distance from pi to all trajec-
tory points in the cluster to which pi belongs, and bðiÞ is the
average distance between pi and trajectory points in other
clusters. Given a trajectory dataset TS = fTR1, TR2,⋯,TRNg
, the silhouette coefficient of TS is the average of the silhou-
ette coefficients of all trajectories, denoted as

SI =
1
N
〠
N

j=1

1
nj
〠
nj

i=1
s ið Þ, ð2Þ

whereN is the number of trajectories, nj is the number of tra-

jectory points in TR j, and ð1/njÞ∑
nj

i=1‍sðiÞ is the silhouette
coefficient of trajectory TR j.

The value of SI is between -1 and 1 such that a higher SI
value indicates a better clustering result in general. According
to the above definition, the road trajectory clustering optimi-
zation problem is defined as follows:

Definition 3 (trajectory clustering optimization problem).
Given a set of trajectories TS = fTR1, TR2,⋯,TRNg in
Euclidean space for the time period ½0, T�, the goal is to divide
TS into groups fC1, C2,⋯,CNc

g to maximize SI.

4. The Proposed STTC-CD Algorithm

This paper proposes an approach to spatiotemporal trajec-
tory clustering based on community detection, named
STTC-CD, which is applied in three steps: (1) trajectory par-
tition, (2) graph generation, and (3) trajectory clustering, as
illustrated in Figure 1.

Stage 1. Trajectory Partition. Given a collection of space-time
trajectories fTR1, TR2,⋯,TRNg, STTC-CD divides them into
time slices and then utilizes transitive range pruning to calcu-
late the number of pairs of matching points between trajecto-
ries in each time period to generate a matching matrix.

Stage 2. Graph Generation. STTC-CD aggregates the match-
ing matrix of each time period to generate a global matching
matrix. Then, the algorithm transforms the matching matrix
into a similarity matrix according to similarity rules, and a
trajectory-connected graph is generated.

Stage 3. Trajectory Clustering. Based on the trajectory graph
obtained in the second stage, we utilize a community detec-
tion algorithm for clustering to capture global relationships
between trajectories from the perspective of the network.

4.1. Trajectory Partition. An algorithm is proposed that takes
the time characteristics of trajectories into account and uti-
lizes a branch and bound strategy for fast trajectory similarity
measurement. The algorithm is called STTC-CD. It not only
improves the accuracy of similarity measurement but also
only compares each trajectory segment with others from
the same time slice instead of all trajectories, thereby improv-
ing computational efficiency through further pruning.

Given a trajectory dataset TS = fTR1, TR2,⋯,TRNg and a
partition threshold κ, TS is divided into κ subdatasets fTS1,
TS2,⋯, TSκg according to the time slice and then allocated
to the corresponding subdataset of the time slice. Let tmin
and tmax be the minimum and maximum timestamp in the
dataset, respectively. The length of each time slice is defined
as follows:

Δt =
tmax − tmin

κ
: ð3Þ

Each trajectory TRi = fp1i , p2i ,⋯,pmi ,⋯,pnii g ∈ TS is
divided into subdatasets according to the time slice (as shown
in Figure 2). The index of the subdataset to which a point pmi
is assigned is dðtmi − tminÞ/Δte.
4.2. Graph Generation. The graph is generated based on the
similarity matrix. The calculation of similarity in each time
slice is done based on the following definitions:

Definition 4 (point matching (PM)). Let there be two points
pi and pj, a matching threshold ε, and a distance function
distðpi, pjÞ. If distðpi, pjÞ ≤ ε, then pi and pj match each other;
otherwise, they do not match. The formula is defined as fol-
lows:
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PM =
1, dist pi, pj

� �
≤ ε,

0, dist pi, pj
� �

> ε:

8><
>:

ð4Þ

Definition 5 (trajectory segment matching (TM)). Given two
trajectory segment sTRi = fp1, p2,⋯, pmg and sTR j = fq1,
q2,⋯, qng, trajectory segment matching is defined as follows:

TM sTRi, sTR j

� �
= 〠

m

i=1
〠
n

j=1
PM pi, qj
� �

+ 〠
n

j=1
〠
m

i=1
PM qj, pi
� �

,

ð5Þ

where m and n are the numbers of the points of sTRi and
sTR j.

Considering that trajectory elements are points in Euclid-
ean space, the following definitions adopt the Euclidean dis-
tance as distance function to perform point matching. Hence,
the matching threshold can be seen as the radius ε of a
matching circle.

Definition 6 (pivot point). For a trajectory TRi, the pivot
point of TRi is the point at half of the trajectory as follows:

pki = p 1+nið Þ/2b c
i , ð6Þ

where ni is the number of trajectory points of TRi.

Definition 7 (pruning radius (PR)). Given a pivot point pki
∈ TRi and a matching threshold ε, the pruning radius is a cir-
cle around pki that covers all the points that are at maximum

distance ε of any point in TRi, that is,

PR = ε +max 〠
k−1

m=1
dist pmi , p

m+1
i

� �
, 〠
ni−1

n=k
dist pni , p

n+1
i

� �
 !

:

ð7Þ

Lemma 8 (transitive range pruning). Let TRi = fp1i , p2i ,⋯,
pmi ,⋯,pnii g and TRj = fp1j , p2j ,⋯,pnj ,⋯,pnj

j g be two trajectories,
ε be a matching threshold, distðpmi , pnj Þ be the metric comput-
ing the distance between two points, and PR be a pruning
radius around a pivot point pki ∈ TRi. Then, for any point p

m
i

∈ TRi and pnj ∈ TRj,

dist pnj , p
m
i

� �
≤ ε⇒ dist pnj , p

k
i

� �
≤ PR: ð8Þ

This lemma [13] means that for any point in TR j, if its dis-
tance to a certain point ofTRi is less than ε, then its distance to
the pivot point of TRi must be less than PR. Therefore, if the
distance from a point to the pivot point of TRi is greater than
PR, the distance from it to all points of TRi is greater than ε,
and the pruning operation can be performed accordingly.

Based on the subdatasets generated in Stage 1, the num-
ber of matching points in each subdataset is calculated. Given
two subtrajectories sTRi and sTR j, the calculation of point
matching consists of three steps, as shown in Figure 3:

(a) Pruning step: the pivot point of sTRi is denoted as p
k
i .

For any point pmj ∈ sTR j, the distance is calculated

from pki to pmj and is compared with the threshold

PR. If distðpki , pmj ÞPR, pmj is added to the matching
queue

(b) Splitting step: sTRi is separated from the pivot point
pki to form two subtrajectories. The center points of
subtrajectories are taken as new pivot points, and
the points in the matching queue form the new sT
R j. The pruning step is repeated until the matching
queue is empty or the trajectory segment can no lon-
ger be divided

(c) Matching step: the points of sTR j in the matching
queue are matched with sTRi to get the number of
matching points

Trajectory
data

Trajectory
partition

Time sliced

sub-trajectories

Graph
generation

Trajectory

network graph

Trajectory
clustering

Trajectory
clustering

result

Figure 1: Algorithm flowchart.

PR

Subdataset 1 Subdataset 2 Subdataset 3 Subdataset 4
t

TR2

TR3

TR1

Figure 2: The schematic diagram of trajectory partition.
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For instance, Figure 4 shows one of the subdatasets after
partition. Figure 4(a) is a subdataset consisting of three sub-
trajectories, and Figure 4(b) shows the matching result of it,
where the number of matching points between sTR2 and
other trajectories in subdataset 2 is calculated as 2 and 0.

The matching matrix is aggregated of each time slice.
According to the matching point matrix, the similarity
matrix can be obtained. The similarity is defined as follows:

Definition 9 (trajectory similarity measure). For two trajecto-

ries TR1 = fsTRð1Þ
1 , sTRð2Þ

1 ,⋯, sTRðmÞ
1 g and TR2 = fsTRð1Þ

2 ,
sTRð2Þ

2 ,⋯, sTRðnÞ
2 g, the similarity of them is calculated as

Sim TRi, TR j

� �
= Sim TR j, TRi

� �

=
∑m

p=1∑
n
q=1TM sTR pð Þ

i , sTR qð Þ
j

� �
+∑n

q=1∑
m
p=1TM sTR qð Þ

j , sTR pð Þ
i

� �

m + n
,

ð9Þ

wherem and n are the number of sub-trajectories in TRi and
TR j, respectively. The similarity measure satisfies the prop-
erty of nonnegativity, which means SimðTRi, TR jÞ ≥ 0 in all
cases, and a large score indicates a high similarity.

Then, the matching matrix is transformed by Equation
(9) to obtain the similarity matrix S, where SimðTRi, TR jÞ
represents the similarity between TRi and TR j. A trajectory
graph G = ðV , EÞ is constructed by exploiting the similarity
matrix S. Firstly, N vertices are constructed for a dataset with
N trajectories and each trajectory corresponds to a vertex.
For each vi corresponding to the trajectory TRi and vj corre-
sponding to the trajectory TR j, edge is added between them if
SimðTRi, TR jÞ > 0. The weight of each edge is equal to the
similarity between the two vertices. For instance, given a
matrix ½½0,0:5,0:3,0�, ½0:5,0, 0,0:2�, ½0:3,0, 0,0:8�, ½0,0:2,0:8,0��,
the trajectory graph is as shown in Figure 5.

4.3. Trajectory Clustering. A community is composed of a
group of closely connected nodes that are sparsely connected
with nodes outside the community. Community detection is
to discover these closely connected community structures in
a complex network, which coincides with the objective of
clustering. Therefore, the Infomap algorithm [31] is
employed for clustering, which combines community detec-
tion with information encoding.

The basic idea of the Infomap algorithm is to find the
shortest codes to describe the path generated by a random
walk on the network. This is done using a two-level cod-
ing of all network nodes to find the module partition with
the shortest encoding length by minimizing entropy to
find the optimal clustering. The two-level code assigns
unique module names, and nodes in different modules
are allowed to use repeated codewords. The module code
is inserted before the nodes in the same module, and the
termination mark is inserted at the end. The average code

PR

TR1

TR2

TR3

(a) Subdataset 2

TR1
TR2

TR3

(b) Matching result of subdataset 2

Figure 4: Matching step for a subdataset.

v2

v4
v3

v1 0.2

0.8

0.3

0.5

Figure 5: Trajectory graph.

Table 1: Datasets.

DS# Dataset
Trajectory
count

Avg. trajectory
points

Time
span

DS1 Trucks 1,100 85 39 days

DS2 T-drive 10,357 1448 7 days

DS3 UCI 163 111 493 days

TR1

TR2

(a)

TR1

TR2

(b)

TR1

TR2

(c)

Figure 3: The schematic diagram of point matching.
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length is calculated as follows:

L Mð Þ = q ⋐H Qð Þ +〠
i

piOH Pi� �
, ð10Þ

where q ⋐ represents the probability of switching from
one module to another per step of the random walk, Hð
QÞ is the entropy of movements between modules, piO
denotes the proportion of all nodes in group i in the
encoding, and HðPiÞ denotes the average code length
required by all nodes in group i. The Infomap algorithm
performs three steps:

Step 1. Initialization. Each graph node is treated as an inde-
pendent group.

Step 2. Each node is traversed in a random order, and each
point is assigned to the adjacent module that gives the largest
decrease in Equation (10).

Step 3. Step 2 is repeated in a different random order until
Equation (10) does not decrease.

5. Performance Evaluation

The performance of the proposed SSTC-CD algorithm was
evaluated in terms of silhouette coefficient and runtime. All
algorithms were implemented in Java 14, and all experiments
were conducted on a Windows PC workstation equipped
with an Intel(R) Core(TM) i5-10400 CPU@2.90GHz and
16GB of memory.

5.1. Datasets. The algorithm was evaluated on several widely
used public datasets, described in Table 1. The trucks dataset
(DS1) is a real-word dataset composed of 1,100 trajectories
generated by 50 different trucks transporting concrete in
Greece. T-drive dataset [33] (DS2), provided by Microsoft

Research Asia, is a collection of trajectories generated by
10,357 taxis located in Beijing within a week. The UCI dataset
(DS3) was collected by the GoTrack Android app in 2016. It
has a high sampling rate for a single trajectory, but the inter-
val between trajectories is long.

DS2 was collected in Beijing, which is located in longi-
tude 115.7°E to 117.4°E and latitude 39.4°N to 41.6°N. There-
fore, out-of-range points were deleted as abnormal points.
The average trajectory length in DS2 is about 1,500 points.
Yet, the longest trajectory has 150,000 points, and there are
many repeated points and stay points, which we have
removed from the dataset. Figure 6 presents the longest tra-
jectory in DS2 with id 6275. Figure 6(a) is the original trajec-
tory, and Figure 6(b) is the processed trajectory.

5.2. Evaluation. In our experiments, we run STTC-CD with
different ε-threshold and different number of time slices to
identify the optimal parameters. Figure 7 shows the influence
of different parameters on the proposed algorithm. As shown
in Figure 7(a), the SI index shows a trend of rising first and
then falling as the number of time slices increases, and it
reaches the maximum value when the number of time slices
is 45. As shown in Figure 7(b), the value of ε was set from 2
to 35 and the SI index reaches its maximum value when ε is
10.

The performance of the proposed STTC-CD algorithm
was compared with several similarity measurement algo-
rithms, namely, FTSM [13], DTW [23], MSM [26], and LCSS
[24], on DS1 and DS3. The parameter ε was set to 10, and the
number of time slices was set to 45. Results are presented in
Figure 8(a).

It can be observed that the running time of STTC-CD and
FTSM on both datasets is shorter than that of other algo-
rithms. For large datasets, the runtime gap is greater. The rea-
son is that the other three algorithms are implemented using
dynamic programming, which have quadratic time complex-
ity. As the data size increases, the time required by these
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Figure 9: SI.
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algorithms rises sharply. Since FTSM and STTC-CD pruned
the sequence to be matched on the trajectory, the complexity
is close to linear in the best case. When the data size is small,
STTC-CD prunes more pair-wise trajectory points than
FTSM by splitting in time slices. However, the operations
of splitting and matching time slices take more time, which
results in spending more time than FTSM.

To further evaluate FTSM and STTC-CD, DS2 was split
into six subdatasets of different sizes and the two algorithms
were applied. It can be seen in Figure 8(b) that when the data-
set is small, the runtimes of the two algorithms are almost the
same. As dataset size increases, the gap becomes more obvi-
ous. This result is also consistent with the results for the other
two datasets.

The performance of algorithms was further compared in
terms of the SI index. The time dimension of the dataset is
considered in the algorithm; therefore, the three-
dimensional Euclidean distance combined with the time
dimension is utilized as the distance measure of SI. Com-
pared with DTW, MSM, and LCSS implemented by dynamic

programming, FTSM only pruned away some unnecessary
comparisons, which improved the running speed of the algo-
rithm without affecting the accuracy of the algorithm. Based
on FTSM, the proposed algorithm further reduces the num-
ber of point matching in similarity calculation, but it also
affects the accuracy of the algorithm. Therefore, the SI index
was used to compare the accuracy of FTSM and STTC-CD,
and K-means was used as the benchmark algorithm. As illus-
trated in Figure 9, the proposed algorithm was compared
with FTSM and K-means with different numbers of trajecto-
ries on DS1 and DS2. It can be observed that the SI of FTSM
and STTC-CD are greater than the SI of K-means on both
datasets, and most of the time, STTC-CD results are better
than FTSM, which indicates that the proposed STTC-CD
takes better account of time correlation.

The clustering results of FTSM and STTC-CD on DS1 are
displayed using lines of different colors, while trajectories
from the same cluster are represented using the same color.
Figure 10(a) shows the clustering result of FTSM, and
Figure 10(b) shows the clustering result of STTC-CD. It is
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(a) FTSM clustering results on DS1
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(b) STTC-CD clustering results on DS1

Figure 10: Clustering result on DS1.
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found that FTSM does not discriminate in the time dimen-
sion. In contrast, the proposed algorithm has better results
in the division of time levels.

6. Conclusion

This article presented an approach to spatiotemporal trajec-
tory clustering based on community detection (STTC-CD),
which is based on time slicing to reduce the time for similar-
ity calculation. STTC-CD relies on a new trajectory represen-
tation, which enables various algorithms such as for
community detection to be applied for trajectory clustering.
Experimental results have shown that the proposed algo-
rithm can effectively reduce runtimes on large datasets and
that clustering results are more meaningful in the time
dimension.

The approach proposed in this paper is designed to ana-
lyze and cluster trajectory data. An interesting research pos-
sibility for future work is to see this work as a building
block to build a system for analyzing multimodal data con-
sisting not only of trajectory but also text, video, and audio
data. In particular, a hybrid system could be developed com-
bining the proposed approach with a neural network or other
machine learning models.

Data Availability

The T-drive dataset used to support the findings of this study
has been deposited in the Microsoft Research Asia (doi:10
.1145/2020408.2020462). The trucks dataset used to support
the findings of this study is included within the article “Clus-
tering Trajectories of Moving Objects in an Uncertain
World” (doi:10.1109/ICDM.2009.57). The UCI dataset used
to support the findings of this study has been feed by
Android app called GoTrack. It is available at Google Play
Store.
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