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The key to the problem of node coverage in wireless sensor networks (WSN) is to deploy a limited number of sensors to
achieve maximum coverage. This paper studies the hybrid strategies of multiple evolutionary algorithms, and applies them
to the problem of WSN node coverage. We first proposed the hybrid algorithm SFLA-WOA (SWOA) based on Shuffled
Frog Leaping Algorithm (SFLA) and Whale Optimization Algorithm (WOA). The SWOA algorithm combines the
advantages of SFLA and WOA; that is, it retains the unique evolution model of WOA and also has the excellent co-
evolution capability of SFLA. Secondly, using the mutation, crossover and selection operations of the differential evolution
(DE) algorithm to further optimize this hybrid algorithm, the SWOA-based SFLA-WOA-DE (SWOAD) algorithm is
proposed. In addition, the performance of SWOA and SWOAD has been tested by 30 benchmark functions in the CEC
2017 test set. Experimental results show that the optimization effects of these two algorithms are very outstanding. Finally,
the simulation results show that the optimization algorithm proposed in this paper has a good effect on improving the
signal coverage of WSN under the actual three-dimensional terrain.

1. Introduction

The Internet of Things makes use of local area networks or
the Internet and other means of communication to achieve
the interconnection of people, machines and things so as to
realize the intelligent management of items and real-time
perception of the environment [1]. WSN is one of the core
technologies of the Internet of Things. It is also an important
product of the integration of the information industry (com-
puting, communications and sensors) in the new era. It has
received extensive attention from various countries and orga-
nizations, and has formulated relevant strategic policies. For
example, the U.S. Science Foundation (NSF) has developed a
WSN research program to support research on relevant fun-
damental theories. The EU’s sixth framework plan also
emphasizes the importance of WSN and regards it as one of
the hot areas for vigorous development in the future. Com-

pared with traditional networks, WSN is low-cost, easy to
deploy, has better fault tolerance and can be placed in any
environment. The organizer can quickly build a fully func-
tional WSN under limited time and conditions. Once the
WSN has been set up, the maintenance and management
work are carried out within the network and does not require
much workforce. Therefore, the application field of WSN is
very broad, and it can be used in military, modern industry
and agriculture, environmental protection and other fields
[2–4].

The rapid development of artificial intelligence also
brings a variety of problems, and traditional calculation
methods cannot solve them well. Intelligent evolutionary
algorithms came into being and developed rapidly. At pres-
ent, various evolutionary algorithms have been proposed,
such as Genetic Algorithm (GA) [5–7], DE [8–10], Particle
Swarm Optimization (PSO) [11–13], Artificial Bee Colony
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(ABC) [14, 15], Multi-Verse Optimizer (MVO) [16, 17], Ant
Lion Optimizer (ALO) [18], Grey wolf optimizer (GWO)
[19], Cuckoo Search (CS) [20–22], Moth Flame Optimizer
(MFO) [23, 24], Sine Cosine Algorithm (SCA) [25, 26],
QUasi-Affine TRansformation Evolutionary (QUATRE)
[27, 28], pigeon inspired optimization (PIO) [29, 30], Shuf-
fled Frog Leaping Algorithm (SFLA) [31–35], Whale Optimi-
zation Algorithm (WOA) [36–39]. Meta-heuristic
algorithms have received more and more attention from
researchers due to their outstanding performance in solving
optimization problems. They have been widely used in prob-
lems in transportation, wireless sensor networks, industrial
production, intelligence system and other fields [40, 41].
But according to the No Free Lunch (NFL) theorem, there
is no meta-heuristic algorithm that can be widely applied to
various problems [42, 43]. In other words, optimization algo-
rithms that achieve good performance on some problems
may perform poorly on other problems. Therefore, new algo-
rithms need to be proposed to solve increasingly complex
problems. For example, propose a new heuristic algorithm,
or improve the existing algorithm [44, 45], or combine two
or more different algorithms to solve more complex prob-
lems [46, 47].

WSN is a network system composed of sensor nodes with
sensing capabilities deployed in the detection area, and com-
municate through wireless communication. This emerging
technology has brought a new way to obtain information
and control management. And because WSN itself is very
different from traditional networks, it brings a lot of chal-
lenges to people. In WSN, signal coverage can be defined as
the ratio of the perceptible area to the entire area. The ques-
tion of how to maximize network coverage for a given num-
ber of sensors is an important one. Intelligent evolutionary
algorithms are also increasingly used to improve the coverage
of WSN signals. For example, an intelligent calculation algo-
rithm for enhancing black holes is proposed and used to solve
the node coverage problem of wireless sensor networks under
three-dimensional terrain [48]. An artificial bee colony algo-
rithm with dynamic search strategy is proposed to solve the
deployment problem of three-dimensional surface sensors
and improve the signal coverage [49]. A genetic algorithm-
based network coverage and optimization control strategy
is proposed to solve the coverage problem of sensor nodes
in three-dimensional terrain [50]. Therefore, this article
attempts to mix WOA and SFLA to improve the perfor-
mance of the original algorithm, and to deal with the
problem of node coverage in WSN under 3D actual
terrain.

The rest of this article is organized as follows. Related
work introduced the principles of WOA, SFLA and DE, as
well as the problem of WSN node coverage in a 3D actual
environment. In Section 3, the process of mixing WOA and
SFLA and the steps of using DE to optimize the hybrid algo-
rithm are introduced. In Section 4, the performance of the
proposed algorithm is tested, and the performance of the
algorithm on 30 test functions is shown and analyzed. Sec-
tion 5 introduces the application of the algorithm in WSN
node coverage under actual terrain. Finally, the conclusion
is given in Section 6.

2. Related Work

This section briefly introduces the principles of WOA, SFLA
and DE and the problem of node coverage in WSN under
actual terrain.

2.1. WOA. Mirjalili et al. were inspired by the humpback
whale’s spiral bubble net predation strategy and proposed a
new heuristic whale optimization algorithm. WOA includes
three location update models: encircling mode, bubble-net
attacking mode, and searching mode. The WOA flowchart
is shown in Figure 1.

2.1.1. Encircling Mode. In order to cooperate in predation, the
whales share the location information of their prey, and then
the whales approach the whale closest to the prey in the

group. Update the current whale X
!

according to the whale
with the best position, and the update equations are as fol-
lows:

D
!
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tð Þ
��� ��� ð1Þ
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Where t represents the current iteration number, D
!

has

different expressions at different stages, X∗�!
is the whale with

the best position so far, X
!ðtÞ is the current whale position of

the t-th generation, X
!ðt + 1Þ is the current whale position of

the ðt + 1Þ-th generation, Operator ð∙Þ means to multiply

item by item, ∣∙ ∣ means to take the absolute value, A
!

and

C
!
are coefficient vectors, The update equations of vectors A
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and C
!
are as follows:
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r! is a random vector distributed in [0,1], a! linearly

decreases from 2 to 0 during the iteration process, so A
!
∈ ½−

2, 2�, C! ∈ ½0, 2�, T is the maximum number of iterations.

(1.1.1) Bubble-Net Attacking Mode

According to the spiral Equation (6), the current whale
moves in a spiral motion to approach the prey and update
its position.

X
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D′
�!

denotes the distance between the current whale and
the best positioned whale; b is a constant that defines the
shape of a logarithmic spiral; and l is a uniformly distributed
random number within [-1,1].

When whales spirally search for prey, they also shrink
their encirclement. In order to simulate this behavior, the
encircling prey and spiral search will be performed with the
same probability. The location update equation is as follows:

X
!

t + 1ð Þ =
X∗�!

tð Þ − A
!
∙D
!
, if p < 0:5

D′
�!

∙ebl∙cos 2πlð Þ + X∗�!
tð Þ, if p ≥ 0:5

8<
:

ð8Þ

where p is a random number in the interval (0, 1).

2.1.2. Random Searching Mode. In order to improve the
global search capability of whales, the current whale position
is updated according to the randomly selected whales during
the exploration phase. When |A|<1, select the model that
encircling; when |A|≥1, select the model of random search.
The random search location update equations are as follows:

D
!
= C

!
∙Xrand
��! − X

!��� ��� ð9Þ

X
!

t + 1ð Þ =Xrand
��! − A

!
∙D
! ð10Þ

Among themXrand
��!

is a whale randomly selected from the
current population.

2.2. SFLA. SFLA is a collaborative optimization algorithm
proposed by Eusuff and Lansey et al. The idea of the hybrid
leapfrog algorithm: When frogs hunt for food, they adjust
their position through information exchange. First, the entire
frog population is divided into multiple memeplexes, and
each memeplex executes a local search strategy to adjust the
position of the worst frog. When the memeplex iterates to
the specified number of times, the memeplexes are combined
and exchanged for information. The process of local search
and the process of global information exchange are carried
out cyclically until the end condition is met. The following
are the steps of the hybrid leapfrog algorithm:

Step 1: Initialize the population and calculate the fitness
value of each frog. Sort the population and record the indi-
vidual Pb with the best position.

Step 2: The population containing F frogs is now divided
into m memeplexes, so that there are n frogs in each meme-
plex, where n=F/m. If m=3, then the distribution principle
is: the first frog is assigned to memeplex1, the second to
memeplex2, the third to memeplex3, the fourth to meme-
plex1, ..., and so on.

Figure 1: WOA flowchart.
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Step 3: The local search process of the hybrid leapfrog
algorithm is shown in Figure 2. Each memeplex evolves sep-
arately according to the following equations and Figure 2.

Di = rand ∗ Pb − Pwð Þ ð11Þ

Pw ′ = Pw +Di,Dmax ≥Di ≥ −Dmax ð12Þ

Di = rand ∗ Pg − Pw

� � ð13Þ
where Pb is the frog with the best position, Pw is the frog with

Find Pb, Pw, Pg

Calculate Pw′
by equations
(11) and (12)

Calculate Pw′
by equations
(12) and (13)

Update Pw′
by random

position

Pw = Pw′Fitness(Pw′) <
fitness (Pw)

Fitness(Pw′) <
fitness (Pw)

N

N

Y

Y

It = It+1

Y

It < Iter

Start

End

N

Initialization
parameters,
population

Figure 2: Local search flow chart of the hybrid leapfrog algorithm.
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S2Longitudinal section of mountain

Figure 3: The communication process between sensor S1 and
sensor S2.
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Figure 4: SWOA flow chart.
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the worst position, rand() is a random number in [0-1], Pw ′
is the adjusted position of the frog with the worst position,
and Pg represents the best frog in the m memeplexes.

Step 4: After each memeplex evolves individually, it is
reorganized into a population containing F frogs. Sort F frogs
according to fitness value and update Pb.

Step 5: If the defined iteration conditions are met, the
algorithm is terminated. Otherwise, go back to step 2.

2.3. De. The DE algorithm was proposed by Rainer Storn and
Kenneth Price to solve the problem of Chebyshev polyno-
mials. Differential evolution uses the three key operations
of mutation, crossover and selection to continuously iterate
to find the optimal value. First, the DE algorithm randomly
selects several individuals in the population to performmuta-
tion operations. Then crosses between the mutant individ-
uals and the current individuals to obtain intermediates.
Finally judges the pros and cons of the intermediates and
the current individual, and selects individuals with good fit-
ness values.

The mutation operation is based on all individuals in the
population. Randomly select several individuals, one of
which is the basis vector, and the other individuals make dif-
ference with each other to form a difference vector to con-
struct a mutation operation. There are several combinations
of basis vector and difference vector as follows:

m = xtr1 + f xtr2 − xtr3
� � ð14Þ

where r1, r2, and r3 are unequal integers distributed in [1,
Np], Np is the number of individuals in the population, t rep-
resents the current iteration number, m is the newly gener-
ated variant individual, f is the scale parameter for
adjusting the solution size range, f ∈(0,1).

The crossover operation is to exchange the values of the
mutated individual and the current individual in certain
dimensions to form a new individual. The equation for bino-

mial crossover is as follows:

ui,j =
yi,j, rand 0, 1ð Þ ≤ pCR or d = rand 1, numel xð Þ½ �ð Þ
xi,j, else

(

ð15Þ

where pCR is the cross factor belonging to [0,1], rand ð∙Þ is
the function of taking random values, d is the current dimen-
sion value, and numelð∙Þ is the function of obtaining the total
dimension of the individual.

The selection operation selects individuals who can enter
the next generation population. If the fitness value of the new
individual after mutation and crossover is better than the fit-
ness value of the current individual, replace the current indi-
vidual with the new individual, otherwise, keep the current
individual.

2.4. 3D WSN Node Coverage. WSN has broad application
prospects, and it has become one of the hot research fields
today. The improvement of signal coverage in WSN has
always been an important issue. The measurement of the
WSN coverage can understand whether there is a blind spot
for monitoring and communication, and then the

Initialize parameters; M is the number of memeplex; ne is the number of iterations for each memeplex; Iter is the maximum number of
iterations.
for1 g =1: Iter do.

Calculate the fitness value of each whale.
Sort individuals by fitness value.
Define memeplex, divide the population into M memeplexes.
for2 each memeplex do.

for3 n =1:Ne do.
Update global optimal value.

for4 each solution do.
for5 each dimension do.
Update Memeplex by equation (1) to equation (9).

End for5.
End for4.

End for3.
Combine M memes into a population.

End for2.
End for1.

Algorithm 1: SWOA.

for1 each solution do.
Generate variant intermediates Y by Equation (14).
The current solution is X.
for2 each dimension of Y do.

Generate new individuals U by Equation (15).
End for2.
if2 fitness(U)< fitness(X).

X =U.
End if2.

End for1.

Algorithm 2: DE pseudo code for step 6.
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deployment position of the sensor can be adjusted or the
number of sensors can be increased to improve the cover-
age of the sensor signal. The high deployment density of
sensor nodes will result in higher network coverage, but
it will also cause redundancy of network coverage, result-
ing in a great waste of resources. In the case of a fixed
number of sensors, the proper deployment location of
WSN nodes will have a direct impact on network perfor-
mance. Optimizing the location of wireless sensor nodes
can reasonably allocate network resources and better com-

plete environmental perception. At present, the sensor
coverage strategy in the two-dimensional plane has
achieved more results, applied to the three-dimensional
space of the sensor coverage strategy is also gradually
attracting the attention of scholars. For example, Adda
Boualem et al. proposed a spider web strategy and applied
it to area coverage in 3D wireless sensor networks using
mobile sensor nodes [51]. Yu Xiang et al. proposed 3D
space detection and coverage of wireless sensor network
based on spatial correlation [52].

Table 1: Parameter settings for each related algorithm.

Name Parameter

WOA Np=40, Lb = -100, Ub =100, dim=30

SFLA Np=40, Lb = -100, Ub =100, dim=30, Memeplex =5, M_it =25, Smax =10

SWOA Np=40, Lb = -100, Ub =100, dim=30, Memeplex =5, M_it =25

SWOAD Np=40, Lb = -100, Ub=100, dim=30, Memeplex =5, M_it =25, Beta_min =0.02, Beta_max =0.08, pCR=0.01

Table 2: Simulation Results of CEC 2017 Benchmark Function (The optimal value is marked by bold).

Functions WOA SFLA SWOA SWOAD
Variable Mean Std Mean Std Mean Std Mean Std

F1 2.14E+10 5.14E+09 6.46E+10 8.46E+09 8.95E+09 2.81E+09 2.85E+09 1.58E+09

F2 3.12E+40 1.60E+41 4.97E+47 2.25E+48 1.72E+33 4.16E+33 1.08E+33 4.77E+33

F3 2.68E+05 7.76E+04 1.87E+05 4.61E+04 1.97E+05 3.72E+04 1.52E+05 4.59E+04

F4 4.84E+03 1.82E+03 3.12E+04 6.43E+03 1.42E+03 5.37E+02 8.72E+02 3.60E+02

F5 9.16E+02 5.80E+01 9.62E+02 4.06E+01 8.00E+02 3.15E+01 7.65E+02 3.45E+01

F6 6.88E+02 1.12E+01 6.97E+02 9.89E+00 6.70E+02 7.91E+00 6.59E+02 6.88E+00

F7 1.40E+03 8.81E+01 1.89E+03 1.83E+02 1.27E+03 5.11E+01 1.22E+03 7.31E+01

F8 1.11E+03 3.91E+01 1.15E+03 4.21E+01 1.03E+03 2.08E+01 9.91E+02 2.85E+01

F9 1.45E+04 5.55E+03 1.49E+04 2.65E+03 7.78E+03 1.04E+03 6.63E+03 1.07E+03

F10 8.34E+03 6.47E+02 8.07E+03 5.23E+02 6.75E+03 5.56E+02 5.98E+03 5.56E+02

F11 1.76E+04 8.70E+03 1.63E+04 4.40E+03 4.89E+03 1.38E+03 3.23E+03 9.94E+02

F12 1.82E+09 8.98E+08 1.91E+10 4.74E+09 4.31E+08 3.41E+08 9.43E+07 6.22E+07

F13 2.83E+08 2.26E+08 2.07E+10 6.73E+09 4.62E+06 1.05E+07 4.54E+06 2.30E+07

F14 3.52E+06 2.91E+06 1.13E+07 1.35E+07 5.45E+05 4.64E+05 7.12E+05 8.59E+05

F15 4.11E+07 3.90E+07 1.68E+09 1.10E+09 2.08E+06 2.18E+06 3.65E+05 6.58E+05

F16 4.68E+03 5.52E+02 5.41E+03 7.09E+02 3.65E+03 3.80E+02 3.39E+03 3.46E+02

F17 3.07E+03 3.16E+02 3.85E+03 1.43E+03 2.51E+03 2.21E+02 2.37E+03 2.05E+02

F18 3.96E+07 3.87E+07 5.77E+07 5.76E+07 2.96E+06 3.22E+06 1.87E+06 2.24E+06

F19 5.74E+07 4.26E+07 2.48E+09 1.96E+09 6.32E+06 8.39E+06 9.67E+05 1.06E+06

F20 3.02E+03 2.58E+02 3.18E+03 1.21E+02 2.69E+03 1.22E+02 2.67E+03 1.87E+02

F21 2.70E+03 5.99E+01 2.80E+03 5.35E+01 2.58E+03 3.15E+01 2.55E+03 4.12E+01

F22 9.08E+03 1.39E+03 9.73E+03 4.48E+02 6.25E+03 1.85E+03 6.31E+03 1.84E+03

F23 3.24E+03 1.18E+02 3.54E+03 1.08E+02 3.08E+03 4.33E+01 3.05E+03 8.38E+01

F24 3.35E+03 9.93E+01 3.86E+03 1.88E+02 3.18E+03 6.77E+01 3.14E+03 7.70E+01

F25 3.77E+03 2.42E+02 9.46E+03 1.48E+03 3.25E+03 1.17E+02 3.09E+03 7.33E+01

F26 9.34E+03 9.83E+02 1.04E+04 8.53E+02 7.67E+03 1.05E+03 7.05E+03 1.18E+03

F27 3.61E+03 1.82E+02 4.62E+03 3.50E+02 3.38E+03 6.44E+01 3.35E+03 7.44E+01

F28 5.02E+03 5.02E+02 9.78E+03 1.68E+03 3.92E+03 2.52E+02 3.56E+03 1.46E+02

F29 5.88E+03 7.14E+02 6.76E+03 1.24E+03 4.80E+03 3.66E+02 4.60E+03 2.69E+02

F30 1.70E+08 1.24E+08 1.77E+09 9.80E+08 2.36E+07 1.52E+07 6.78E+06 4.89E+06
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Deploying wireless sensors on an actual three-
dimensional terrain rather than a two-dimensional plane
requires additional considerations. Because the communica-
tion quality between the two sensors largely depends on the
actual physical environment. Surrounding obstacles cause
signal fading and obstruction. The communication process

between sensor S1ðx1, y1, z1Þ and sensor S2ðx2, y2, z2Þ is
shown in Figure 3. When the sensor S1 communicates with
the sensor S2, the signal sent out is likely to be blocked by
the protruding terrain between them, so that S1 and S2 will
not be able to communicate, thereby reducing the coverage
of the WSN signal. This paper uses Bresenham’s line of sight
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Figure 5: Convergence curves of unimodal functions.
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(LOS) algorithm to detect whether there is terrain obstruc-
tion between two sensors to affect their signal transmission
[53]. In order to determine whether the communication
between the target node S1 and the node S2 within the com-
munication range is blocked, we choose the points between
S1 and S2 on the actual terrain to make judgments. If the
height of any one of the points is higher than the height of
the connection between S1 and S2, the communication
between S1 and S2 will be blocked, that is, the S1 node cannot
communicate with the S2 node.

So to judge whether two nodes can communicate, first
calculate the Euclidean distance Ds between sensor S1 and
sensor S2 according to Equation (16).

Ds =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x1 − x2ð Þ2 + y1 − y2ð Þ2 + z1 − z2ð Þ2

q
ð16Þ

Then use the LOS algorithm to calculate whether there is
an obstruction between the two sensors. Finally, a judgment
is made according to Equation (17). If Ds is less than the cov-
erage radius Rs of the sensor, and there is no obstruction
between the two sensors, it means that they can communi-
cate, and Communication (s1, s2) is equal to 1. Otherwise,
if one of the conditions is not met, it is considered that sensor
S1 and sensor S2 cannot communicate, and Communication
(s1, s2) is equal to 0.

Communication s1, s2ð Þ =
1, Ds < Rsð Þ andNo obstacle

0, else

(

ð17Þ

Ds is the Euclidean distance between two sensors, and Rs
is the coverage radius of the sensor signal.

3. Hybrid Strategy of SWOA and SWOAD

This section introduces the mixing process of WOA and
SFLA, and the steps to optimize the mixing algorithm with
DE.

3.1. Hybrid Strategy of SWOA. The WOA algorithm is a new
type of bionic optimization algorithm with strong global
optimization performance. However, in the later stage of
the algorithm iteration, it still has the disadvantage of being
easy to fall into the local optimal value, so the solution accu-
racy is low. The SFLA algorithm can realize global informa-
tion exchange through the combination and sorting of
memeplexes, so that the algorithm avoids falling into local
convergence, but the early search speed is slow. The above
shortcomings of the algorithm can be effectively solved by
combining the WOA algorithm and the SFLA algorithm.
The flow chart of SWOA algorithm is shown as in Figure 4.

SWOA’s pseudo code is in Algorithm 1.

3.2. Hybrid Strategy of SWOAD. The SWOAD algorithm
integrates the differential evolution algorithm into the
SWOA algorithm, so that the whale population has a mech-
anism of mutation, crossover, and selection, which in turn
enables SWOA to have stronger search capabilities. After
each iteration of SWOA, the SWOAD algorithm first ran-
domly selects a whale individual as the basis vector, and then
combines with the difference between two randomly selected
whale individuals to complete the mutation. Whether in the
early or late stage of algorithm iteration, this strategy can
enhance the ability of whales to jump out of the local opti-
mum. Then the mutant intermediates are crossed with the
target whale individuals, thereby increasing the diversity of
the whale population; finally, a selection is made. If the fitness
value of the newly generated individual is better than the tar-
get individual, the newly generated individual will replace the
target individual. Otherwise, keep the target individual.
SWOAD execution steps are as follows:

Step 1. Calculate the fitness of each individual.
Step 2. Sort the populations by fitness.
Step 3. According to the division rule, the population is

decomposed into multiple memeplexes.
Step 4. Each memeplex evolves individually.
Step 4.1. Calculate the fitness value of each individual and

Update global optimal value.
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Step 4.2. Update the position of each frog by Equation (1)
to Equation (10).

Step 4.3. Repeat 4.1–4.2 until the end conditions of the
local search are met.

Step 5. Combine memeplexes.
Step 6. Performing variation, crossover and selection

operations.
Step 7. Repeat step 1 to 6 until the end conditions are met.
The pseudo code of step 6 is in Algorithm 2.

4. Results and Analysis of the Experiment

In this section, we use 30 benchmark functions in CEC2017
to test the effectiveness of the proposed hybrid algorithm.

4.1. Parameter Configuration. To verify the results, we com-
pared the hybrid algorithm with the original WOA and SFLA
algorithms. Each algorithm performs 100 iterations on each
benchmark function, and runs 30 times to average. The test
parameters of the algorithm are given in Table 1. Table 2
shows the statistical results of the algorithm, including the
mean (Mean) and standard deviation (Std).

From the data in the table, it can be seen that SWOA and
SWOAD perform better than the original WOA and SFLA
on the 30 test functions. SWOA performs better on functions
F14 and F22, and SWOAD performs better on other func-
tions. WOA has stability in function F22, SFLA has better
stability in functions F10 and F20, SWOAD has excellent sta-
bility in function F1, F4, F6, F11, F12, F15, F16, F17, F18, F19,
F25, F28, F29 and F30, and SWOA is more stable in other
functions.

In order to further evaluate the performance of the algo-
rithm, we use the convergence curve of the algorithm to eval-
uate the convergence speed and convergence ability of the
optimized algorithm in this paper. The iterative curves of
the algorithm on 30 test functions are shown in Figure 5–8.
All algorithms have the same number of iterations on each
function. The horizontal axis is the number of iterations of

the function, and the vertical axis is the average of the fitness
values of each function running 30 times.

4.2. Unimodal Functions. In Figure 5, SWOAD’s convergence
ability on function F1 is better than other algorithms. Each
algorithm can find the optimal value on the function F2
and F3, but the improved two algorithms converge faster
than the original algorithm.

4.3. Simple Multimodal Functions. In Figure 6, the SWOAD
algorithm has a faster convergence speed and stronger opti-
mization ability than the WOA, SFLA and SWOA algo-
rithms. The performance of SFLA in function F10 is better
than that of WOA.

4.4. Hybrid Functions. In Figure 7, the convergence curves of
SWOA and SWOAD on the function F13, F14, F15, F18 and
F19 have very little difference. But the convergence perfor-
mance of SWOAD on functions F11, F16, F17 and F20 are
significantly better than SWOA. The performance of SFLA
in function F11 is better than that of WOA.

4.5. Composition Functions. In Figure 8, the convergence
results of SWOA and SWOAD are almost the same in F22
and F30. Among other functions, SWOAD has the best per-
formance, followed by SWOA, which is better than WOA
and SFLA.

5. Application of Hybrid Algorithm in WSN
Node Coverage under Real Terrain

The 3-D actual terrain used in this simulation is the Dagong
Island in Qingdao. Obtain topographic data of Dagong
Island through satellite maps, and collect information about
a coordinate point every ten meters in a prescribed area.
The sensor nodes are deployed on this 3-D terrain. The ter-
rain of Dagong Island is shown in Figure 9. When the simu-
lation is performed on the actual terrain of Dagong Island,
the initial sensor nodes are randomly generated and
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optimized by hybrid algorithms to find a better position. To
randomly generate the position of a sensor node, only the
horizontal and vertical coordinates of the sensor node need
to be randomly generated, and use the following method to
determine the height through the available terrain data: If
the randomly generated or optimized sensor node is at the
intersection of the horizontal and vertical grid lines, the
height value in the corresponding terrain data is the height
of the sensor; Otherwise, the height of the grid intersection
closest to this position is the height of the sensor node.

Set a matrix CMat, and determine the coordinate points
that each sensor can cover by Equation (17), and set the coor-
dinate points that the sensor can cover in CMat to 1. Calcu-
late the coverage rate according to Equation (18).

Rate = sum CMat :ð Þ == 1ð Þ/ Xl ∗ Ylð Þ ð18Þ

where sumð∙Þ is a sum function, Xl and Yl are horizontal and
vertical coordinate lengths, respectively.

Use the hybrid algorithm in this paper to optimize the
position of the sensor, and improve the signal coverage as
much as possible on the premise of a fixed number of sensors.
The communication radius of the sensor is set to 5m. Test
the algorithm with 30, 40, 50, and 60 nodes, respectively.
Run 30 times for each group of nodes and take the average.
The results of the experiment are shown in Table 3. As the
number of sensor nodes increases, the signal coverage also
increases, and the coverage rate is the largest when 60 sensor
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Table 3: Simulation Results of WSN node coverage (The optimal
value is marked by bold).

Node number
Algorithm

WOA SFLA SWOA SWOAD

30 0.5132 0.5583 0.5760 0.5895

40 0.6026 0.6621 0.6765 0.6884

50 0.6697 0.7428 0.7519 0.7658

60 0.7426 0.8012 0.8130 0.8256
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nodes are deployed, reaching 82.56%. It can also be seen that
the hybrid algorithm is far superior to the performance of
WOA and SFLA.

6. Conclusion

In this paper, WOA and SFLA are combined to form a new
hybrid algorithm. The two algorithms cooperate with each
other to form an organic whole. Compared with the perfor-
mance of the two algorithms alone, the performance of the
hybrid algorithm is better. Through mutual fusion, the algo-
rithm can avoid falling into the local optimum in the process
of finding the global optimum. And use DE to optimize the
hybrid algorithm, which further improves the algorithm’s
convergence speed and optimization ability. In the experi-
ments tested using the CEC 2017 benchmark function, the
hybrid algorithm outperformed both WOA and SFLA.
Finally, the hybrid algorithm is applied to the node coverage
problem of wireless sensor network based on actual terrain.
The simulation results show that the improved algorithm
has achieved good results and increased the signal coverage
of the wireless sensor network. There are many metaheuristic
algorithms. In this article, we only use two algorithms for
mixing. In the future, we may adopt some other algorithms
[54–56] to get a hybrid approaches with better performance
on WSN coverage problem.
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