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With the upgrading of the high-performance image processing platform and visual internet of things sensors, VIOT is widely used
in intelligent transportation, autopilot, military reconnaissance, public safety, and other fields. However, the outdoor visual internet
of things system is very sensitive to the weather and unbalanced scale of latent object. The performance of supervised learning is
often limited by the disturbance of abnormal data. It is difficult to collect all classes from limited historical instances. Therefore,
in terms of the anomaly detection images, fast and accurate artificial intelligence-based object detection technology has become
a research hot spot in the field of intelligent vision internet of things. To this end, we propose an efficient and accurate deep
learning framework for real-time and dense object detection in VIOT named the Edge Attention-wise Convolutional Neural
Network (EAWNet) with three main features. First, it can identify remote aerial and daily scenery objects fast and accurately in
terms of an unbalanced category. Second, edge prior and rotated anchor are adopted to enhance the efficiency of detection in
edge computing internet. Third, our EAWNet network uses an edge sensing object structure, makes full use of an attention
mechanism to dynamically screen different kinds of objects, and performs target recognition on multiple scales. The edge
recovery effect and target detection performance for long-distance aerial objects were significantly improved. We explore the
efficiency of various architectures and fine tune the training process using various backbone and data enhancement strategies to
increase the variety of the training data and overcome the size limitation of input images. Extensive experiments and
comprehensive evaluation on COCO and large-scale DOTA datasets proved the effectiveness of this framework that achieved
the most advanced performance in real-time VIOT object detection.

1. Introduction

Intelligent vision internet of things (VIOT) uses all kinds of
image sensors, including surveillance cameras, mobile
phones, and digital cameras, to obtain people, cars, objects,
images, or video data; extract visual tags; and use intelligent
analysis technology to process information, so as to provide
support for follow-up applications as shown in Figure 1.
The intelligent visual internet of things can directly, vividly,
and efficiently reflect the monitoring data of the observed
object and output the results of intelligent analysis. There-
fore, VIOT is widely used in important places such as social

public safety, intelligent vehicles, parking lots, community
monitoring, land and sea traffic monitoring, urban security,
and military reconnaissance. However, the performances of
supervised learning are often limited by the disturbance of
abnormal data and unbalanced scale of latent objects, which
impair the automatic inference speed and recognition
accuracy.

The intelligent visual internet of things can provide infor-
mation assistance for public security departments, such as
real-time monitoring, suspect tracking, and crime early
warning. At the same time, it can also provide a large number
of real-time traffic information for traffic management

Hindawi
Wireless Communications and Mobile Computing
Volume 2021, Article ID 7258649, 15 pages
https://doi.org/10.1155/2021/7258649

https://orcid.org/0000-0002-7516-059X
https://orcid.org/0000-0001-6916-1919
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2021/7258649


departments to facilitate their traffic supervision. There is no
doubt that the emergence of the internet of things in intelli-
gent vision has brought great convenience to people’s lives.
The intelligent visual internet of things system needs to
extract accurate image features in the application.

However, the object detection task for an outdoor inter-
net of things vision system is very sensitive to weather condi-
tions, especially in frequent and widely distributed blurry
scenes. In addition, when vehicles and people move quickly,
the captured images may be blurry. Out-of-focus cameras
can also lead to a decrease in detection accuracy. Finding spe-
cific key information from traffic surveillance, astronomical
remote sensing, public security investigation, and other
applications therefore remains a significant challenge.
Because of the lack of information, these low-quality images
seriously affect the effectiveness of the intelligent visual inter-
net of things system.

In order to conquer these challenges, we need more
advanced object detectors. Advanced object detection
methods have greatly improved over the past few years, and
several methods have been introduced to optimize the net-
work structure, which can be divided into single-stage and
double-stage; however, the use of an attention module to
improve the efficiency of searching is not well investigated.
They are divided into two mainstreams: two-stage detector
and single-stage detector. Two-stage detector: the R-CNN
[1] directly performs the selective search [2] and classifies
objects using a CNN. Compared with the traditional
methods, the use of the R-CNN significantly improved the
accuracy of classification, marking the beginning of the era

of target detection using deep learning. In its variants (for
example, fast R-CNN [3]), the two-phase framework was
updated, which helps them achieve even better performance.
In addition, to further improve the accuracy, some highly
effective extensions were proposed, such as R-FCN [2] and
mask R-CNN [4]. Single-stage detector: The most represen-
tative single-stage detectors are YOLO [5, 6] and SSD [7].
They use feature maps to predict the confidence and location
of a multitarget receptive field block (RFB) network to
achieve accurate and fast object detection. Both these detec-
tors use lightweight backbones for acceleration; however,
their accuracy clearly lags behind the top two-stage approach.
Recently, more advanced single-stage detectors (such as
DSSD [8] and RetinaNet [9]) have updated their original
lightweight backbone using a deeper ResNet-101 and by
applying some techniques, such as deconvolution [8] or caus-
tics [9]. Their results are comparable to or even better than
most advanced two-stage methods. However, these detectors
could not achieve the balance of speed and accuracy
simultaneously.

In view of the abovementioned limitations, we propose to
design a generative edge detection method to perceive the
object structure, make full use of attention mechanism to
dynamically screen different kinds of objects, and perform
object detection on multiple scales. By doing so, not only
does the edge recovery effect become better, but also the
object detection performance for long-distance aerial objects
is significantly improved.

We design a lightweight single-stage attention rotation
intelligent object detection network for wireless internet of
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Figure 1: The whole object detection process of intelligent vision internet of things (VIOT).
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things. Inspired by the previously proposed methods, our
framework, using an edge attention-wise conventional neural
network, EAWNet, and based on attention mechanism, has
the following advantages:

(i) Edge prior depiction greatly reduces the amount of
attention-aware computation. We propose an edge
attention-wise network beneficial for extracting fea-
tures effectively and reducing the ground truth posi-
tion shrinkage. The framework performs well in
terms of accuracy (state-of-the-art stability for mul-
ticlass) and speed (real-time video recognition).
Edge prior reconstruction and attention-wise mod-
ules are embedded into the EAWNet, which helps
in performing efficient latent search and localization

(ii) With the combination of intelligent connection and
residual link, rotating bounding box, and synthesis
loss function, the visual loss of intensive detection
is reduced to a minimum. Pass-wise connection fol-
lows a straight way to pass the initial patch informa-
tion to different last stage fusion layers to restore the
recognition fusion. It propagates semantically strong
features and enhances all features with a reasonable
classification capability. In addition, residual con-
nections for local convolutional layers and pass-
wise connections for global feature dataflow are
designed to modify the architecture for faster and
lighter inference

(iii) A dual parallel attention module is used to
improve the efficiency of multiscale object detection.
Attention-wise modules including context attention-
wise module (CAW) and position refinement-wise
module (PRW) are designed to reduce computing
cost and improve effectiveness. These modules can
match the right object and position instead of search-
ing the entire background. A rotating bounding box,
designed for aerial image object detection, proved to
be beneficial for the recognition of dense and tiny
objects

2. Related Work

2.1. Object Detection. In the wave of artificial intelligence
sweeping the world, the intelligent visual internet of things
is expected to achieve a significant social and economic pro-
motion of the internet of things. It has become a typical suc-
cessful representative of the application of the internet of
things. Object detection methods are mainly based on CNNs;
one-stage object detectors play a remarkable role in object
detection. Most existing VIOT object detectors are classified
according to whether they have suggested steps for regions
of interest (two-stage [3, 4, 10]) or not (one-stage [6, 7,
11]). Although two-stage detectors are more flexible and
accurate, single-stage detectors are generally considered fas-
ter and more efficient by using pretrained anchors [12].
Single-stage detectors have attracted wide attention because
of their high efficiency and simplicity. Here, we mainly follow
the design of single-stage detectors and prove that higher effi-

ciency and higher accuracy can be achieved by optimizing the
network structure.

A recent single-stage detector [7, 13] was designed to
match the accuracy of more complex two-stage detection
methods. Although these detectors show impressive results
on large- and medium-sized objects, their performance on
small objects is lower than expected [14]. (The size of an
object is related to the pixels it occupies in the picture.) When
using the most advanced single-stage RetinaNet [13], it
achieves unbalanced results with a COCO AP-large of 47
but only 14 for AP-small objects (as defined in [15]). Small
object detection is a challenging problem, which requires
not only low intermediate information to accurately describe
it but also high-level semantics to distinguish the target from
the others or background.

There are five types of YOLO from YOLOv1 to YOLOv5
[16, 17]. Based on YOLOv1 to YOLOv3 [18], researchers
propose an efficient and powerful object detection model
called YOLOv4 [19]. A variety of modules are mixed in the
YOLOv4, such as Weighted Residual Connections (WRC),
Cross Stage Partial (CSP) connections, Cross Minibatch Nor-
malization (CmBN), Self-Adversarial Training (SAT), Mish-
activation, Mosaic data augmentation, CmBN, DropBlock
regularization, and CIoU loss. The introduction of these
modules increased the calculation time yet greatly improved
the accuracy. While YOLOv5 shows the fastest speed among
the series of YOLO algorithms and is comparable to YOLOv4
in terms of accuracy, YOLOv5 is remarkably lightweight.

The following methods are the most classic deep learning
object detection methods from different schools in the past
two years. RFBNet [20] simply employs dilated convolutions
to enlarge the receptive field and achieves good vision of the
extracted features; although it could be learnable for image
recognition, its performance is not satisfactory. LRF [15] is
a lightweight scratch network (LSN) that is trained from
scratch taking a downsampled image as input and passing
it through a few convolutional layers to efficiently construct
low- and middle-level features. However, learning from both
scratch and pretrained sacrifices too much time efficiency,
and the network is so complex that the inference speed is
slower than in one-stage methods. CenterMask [21] com-
bines instance segmentation and object detection into one
task, and it goes even further by using the instance segmenta-
tion to achieve the recognition of class and position that
object detection demands. EfficientDet [22] balances the net-
work depth for speed and feature flow connection strategy
for accuracy, ignoring the attention mechanism to enhance
the performance without occupying large resources.

Considering the mentioned advantages and weaknesses,
we propose an attention-wise YOLO, which handles the fea-
ture extraction flow in a reasonable way by designing a multi-
path refinement framework. In addition, pass-wise connection
meets the demands in terms of balancing time efficiency and
prediction accuracy. To learn semantic information wisely,
attention-wise modules are introduced between the backbone
and the neck.

2.2. Attention Module. The main focus of attention models in
computer vision is to focus on interesting things and ignore
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irrelevant information. Recently, attention models have been
classified into three groups: hard attention [23] and soft
attention [16], global attention [16, 17] and local attention
[24, 25], and self-attention [16]. Hard attention models have
been widely used for a long model without preprocessing.
The computational cost of local attention is lower than that
of global attention because it does not need to consider the
hidden layer state of all encoders. The self-attention mecha-
nism improves the attention model, which reduces the
dependence on external information and is capable of cap-
turing internal correlation of data features. As self-attention
shows good performance, it is widely used on computer
vision tasks.

The attention model mechanism is important in deep
learning methods. The first to propose the self-attention
mechanism were Vaswani et al. [25]. It relies on global
dependencies between inputs and outputs and was applied
in machine translation. In computer vision area, attention
modules have been also adopted. Zhang et al. [26] created
an image generator that leverages adjacent regions to object
shapes rather than local regions of fixed shape for image gen-
eration by the self-attention mechanism. An adapted atten-
tion module for object detection that uses the relative
geometry between objects was proposed [27]. There is a suc-
cessful application in space-time dimension for videos with
nonlocal operation [28]. Fu et al. designed DANet [29] based
on the newly Fully Convolutional Networks (FCNs) [30]
with position attention mechanism (PAM) and channel
attention mechanism (CAM). DANet settles the problems
of object detection in some confusing categories and objects
with different appearance. In addition, Fu et al. [31] proposed
a DRANet which makes an improvement in self-attention
modules based on DANet. DRANet adopts the compact
PAM (CPAM) and the compact CAM (CCAM), reducing
computational complexity.

2.3. Detection Bounding Boxes. Current object detection algo-
rithms may not perform good results on detecting oriented
targets [32]. State-of-the-art object detection methods rely
on rectangular-shaped, horizontal/vertical bounding boxes
drawn over an object to accurately localize its position. Such
orthogonal bounding boxes ignore object pose, resulting in
reduced object localization, and limiting downstream tasks
such as object understanding and tracking. Rotated faster
R-CNN [33] based on the faster R-CNN [34] adds a regres-
sion branch to predict the oriented bounding boxes for aerial
images. It could improve the performance on tiny things in
high resolution by introducing balanced FPN. R4Det [35] is
an end-to-end detector which could address the problems
of images with large aspect ratios, dense distributions, and
extremely imbalanced categories. Moreover, from experi-
mental results, we could see that the detector shows strong
robustness against adversarial attacks.

3. Implementation

3.1. Network Architecture. The whole network architecture is
shown in Figure 2. We propose a heavily reconstructed Edge
Attention-wise Convolutional Neural Network (EAWNet). It

employs the multipath refinement flow network (MRFNet)
[36] as the backbone, which makes it easier to extract multi-
level scale features from patches. We consider not only the
efficiency between the backbone and neck through MRFNet
but also the fusion effect of extracting features aided by a
pass-wise connection (PWC) strategy. Furthermore, this
framework is learnable for multiclass and multiscale objects
because we design various attention-wise modules to make
the training and validation more reasonable and extract fea-
tures in a global perspective. Also, we modify the above
model by adding rotating bounding boxes and design a syn-
thesis loss function to constrain the training process and to
boost the training convergence using the multipath refine-
ment flow network (MRFNet).

The MRFNet architecture is shown in Figure 2(b). It
combines each convolution layer and dataflow branches.
Specifically, there are two path channels a0 = ½a0′ , a0″�. Every
stage has a downsampled fusion layer, ½a0′ , a1,⋯,ak�, which
will be downsampled to lower dimensions and larger output
numbers. Then, the output of this refinement transfer results
inaτ, which will be concatenated witha0′and undergo another
transition layer to finally generate the outputaU . Equations
(1) and (2) are the feed-forward pass and weight update of
MRFNet, respectively. wk, wτ, and wU are the weights of
ground truth patches g0′ , gk, andg0″, respectively. f k, f T ,
and f U are the transformation function of downsampled
layers, transfer results, and transition layer outputs, respec-
tively.

ak =wk ∗ a0′ , a,⋯,ak−1½ �,
aτ =wτ ∗ a0″ , a1,⋯,ak½ �,
aU =wU ∗ a0′ , aτ½ �,

ð1Þ

wK′ = f k wk, g0″ , g1,⋯,gk−1f gð Þ,
wT′ = f T wT , g0″ , g1,⋯,gkf gð Þ,

wU′ = f U wU , g0′ , gTf gð Þ:
ð2Þ

We compared our architecture with mainstream CNN
architectures (ResNeXt, ResNet, and DenseNet). The results
are usually a linear and nonlinear combination of the outputs
of intermediate layers. Thus, the output of a k-layer CNN is

y = F a0ð Þ = ak =Hk ak−1,Hk−1 ak−2ð Þ,Hk−2 ak−3ð Þ,⋯,H1 a0ð Þ, a0ð Þ,
ð3Þ

where the whole model of the convolutional neural network
is denoted by F, the mapping function from a0 to y, and Hk
is the k-th layer of CNN. Generally, a set of convolutional
layers and a nonlinear activate function consist of the Hk.
As for ResNet and DenseNet, we can also formulate their
models into the following:

ak = Rk ak−1ð Þ + ak−1 = Rk ak−1ð Þ + Rk−1 ak−2ð Þ+⋯+R1 a0ð Þ + a0,
ð4Þ
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ak = Ck ak−1ð Þ, ak−1½ � = Ck ak−1ð Þ, Ck−1 ak−2ð Þ,⋯,C1 a0ð Þ, a0½ �,
ð5Þ

where R and C represent the operational computation of
the residual layers and convolutional layers, respectively;
both are reproduced by two or three convolutional blocks.

From the above equations, it follows that the inputs of
convolutional layers originated from the previous convolu-
tional outputs. Under this circumstance, the gradient flow
could be propagated more efficiently due to the minimum
path length of the gradient. However, this design would
result in the reverse propagation into all layers from k − 1
to 1, which is redundant for a repeated training process.
Figure 3 illustrates the EAWNet reusing the initial features
and simultaneously preventing iteratively propagating gradi-
ent information by cutting down the gradient flow. The
insightful vision of the design is to separate gradient flow
and refinement features and fuse the last convolutional
layers, which enhances feature extraction efficiency.

The specific multipath refinement flow network exhibits
the advantage of multiscale feature extraction as RefineNet
[36] and CSPDarkNet-53 [19], deeply modified by introduc-
ing lightweight and residual strategy, pass-wise connection,
and attention modules to enhance speed and accuracy.

3.2. Pass-Wise Connection. In this section, we design two
extra paths to pass features to the next extraction stage:

pass-wise and residual connections. The main purpose of
pass-wise and residual connections is to learn robust features
and train deeper networks. They can address gradient van-
ishing problems and enhance the capabilities of locating
positions and propagating strong responses of low-level
patterns.

It is based on the fact that high-level features responding
to edges or instance parts are a strong indicator to accurately
localize instances. To this end, regardless of the complicated
multipath refinement dataflow, we additionally add two
direct connections to pass feature maps. As depicted in
Figure 3, one line in red directly passes the first layer patches
of the backbone to the last layer of the neck. Another line in
green directly passes the first convolutional results to the last
layer of data augmentation. The data augmentation layer and
the neck layer extract features in a parallel way, sacrificing
memory usage to enhance the accuracy and benefit feature
extraction.

3.3. Attention-Wise Module. At present, of the multimodel
method can be used for semantic segmentation and object
detection [37], but the multimodel method leads to too much
training cost.

We keenly find that when the edge generation method is
used to assist the attention module to perceive the object
structure, the object category is guided and searched by
dynamically adjusting the receptive field of the recognition
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Figure 2: Overall network architecture of EAWNet comprising four parts: (a) backbone architecture, (b) multipath refinement fusion unit,
(c) attention modules, and (d) neck consisting of the network. In addition, inside the dotted lines is the explicit implementation of the
counterparts. (a) The backbone is responsible for the multiscale feature extraction and is optimized by pass-wise connection to avoid
gradient disappearance. (b) The multipath refinement fusion (MRF) unit is responsible for making fusion from the edge prior which is
extracted from the ground truth and refined patches. (c) The attention modules learn information of category and structure wisely quickly
aided by the edge prior. The position-wise and channel-wise attention modules (in the dotted lines) consist of the attention modules in a
parallel manner. (d) The neck is the decoder for object detection which is modified into rotated bounding boxes for better visual effects.
All four parts are illustrated in the following sections.
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frame, and then, the target is detected. This not only
improves the performance of object detection but also over-
comes the performance loss of semantic segmentation guid-
ing the attention module. Therefore, we propose the
EAWNet network structure, which perceives the object
structure in a lightweight way through edge description and
uses the attention module to improve the search efficiency.
Finally, with the help of the multiscale network structure
for object detection, it achieves the purpose of improving
the training convergence detection performance.

We use a multipath refinement fusion (MRF) unit to fuse
the information from the edge prior that is extracted from the
ground truth and refined patches. Then, attention modules
learn category and structure information and are quickly aided
by the edge prior. The position-wise and channel-wise atten-
tion modules (depicted in the dotted lines of Figure 2(c)) con-
sist of the attention modules in a parallel configuration.

3.4. Edge Prior and Attention Mechanism. Attention plays an
important role in human visual recognition [30, 38, 39]. An
important feature of the human visual system is that people
do not try to deal with the whole scene at once. Instead, to
better capture the visual structure, humans use a series of
local glimpses and selectively focus on significant parts [40].
We propose a residual attention network using encoding
and decoding attention modules. By improving the feature
mapping, the network not only has good performance but
also has strong robustness to noise input. Instead of calculat-
ing attention scores directly, we decompose the process into a
learning channel and position attention information. The
individual attention score generation process of the feature
map is less than that of [37]; thus, it can be regarded as a
plug-and-play module for the existing basic convolutional
neural networks. Hu et al. [41] introduced a compact module
to take advantage of the relationship between channels. In
their squash and trigger modules, they used the global aver-
age set feature to calculate channel attention. We find that
these are suboptimal features, and we recommend using the
maximum set feature. They also missed out on spatial atten-
tion, which plays an important role in determining the “loca-
tion” of focus, as shown in [42]. Here, we utilize both channel

and position attention based on an effective architecture and
verify that using these two kinds of attention is better than
using channel attention only [41]. Experiments show that
the model is effective in detection tasks (MS-COCO and
DOTA). We only need to place our module on the existing
single detector [33] in the DOTA test set to achieve the most
advanced performance.

Among the edge detection methods, Canny usually has
the best edge restoration effect on small local objects, holisti-
cally nested edge detection (HED) [16] has the best edge res-
toration effect on the whole contour, and the edge of
generative edge restoration training is often slightly intermit-
tent, but the overall complex structure is the best, so we
choose generative edge restoration for joint training.

On the one hand, one-stage detectors aim to handle
images in a lightweight manner, making instance recognition
fast and easy. On the other hand, one vital property of a
visual CNN system is that it does not attempt to handle the
whole scene at once. We propose to resolve this contradiction
by adding the attention module between the backbone and
the neck. The whole network MRF belongs in the one-stage
method, while also using the attention-wise (AW) modules
to preprocess the feature patches and assessing the contextual
and position information several times in a multiscale man-
ner. The design of contextual attention-wise unit and posi-
tion refinement-wise unit is depicted in Figure 2(c).

Local features generated by traditional convolutional
layers would result in misrecognition of specific things. It
could also lead to a high computation cost searching for spe-
cific objects from the background. To model rich contextual
relationships over local features, we continue to analyze the
refinement features from the context attention-wise unit
and pass the patches to the position refinement-wise unit to
figure out the coherency transformation to the latent posi-
tion. The position refinement-wise unit enhances their repre-
sentation capability by encoding a wider range of channel
and spatial information into local features,

A target associated with background scenarios could be
grasped by the contextual attention module. In the mean-
time, object positions are located by a position refinement-
wise module. Specifically, the attention results could be seen
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Figure 3: Pass-wise connection benefits the feature extraction and fusion.
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Figure 4: Continued.
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in Figures 4(e), 4(f), and 4(g). First, the multipath refinement
patches flow into the context attention-wise module, which is
aimed at calculating the coherency between the bounding
box and the background. This unit simplifies the channel,
height, and width (C ×H ×W) patches into a softmax func-
tion and then combines the copies with matrix multiplica-

tion. We apply a softmax layer to obtain the context
attention map mij:

mij =
exp Pi · Pj

� �
∑C

i=1exp Pi · Pj

� � : ð6Þ

(f)

(g)

Figure 4: Multifeature extraction for edge and sharpness.

Figure 5: Our validation visual results on DOTA using EAWNet backbones.
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The original patches Pi and reshaped branches Pj are
aggregated into an average. In addition, we multiply the
result by a scalable item α and add mij to obtain the output
result Rij:

Rij = α〠
C

i=1
xijPi

� �
+mij: ð7Þ

The output result R is separated into the width, abscissa,
and ordinate: Wi, Xj, Yi; then, Wi and xij are reshaped and

sent to the softmax function and combined as Rij:

Rij =
exp Wi · Xj

� �
∑N

i=1exp Wi · Xj

� � : ð8Þ

Meanwhile, the Yi is also combined with the reshaped Sij
using the sum function. We multiply it by a scalar item α and
do an element-wise sum operation with the features Yi to
obtain the result SijϵR

C×H×W
ij as follows, and Aj is a fixed con-

stant:

Sij = α〠
N

i=1
RijYi

� �
+ Aj: ð9Þ

According to recent studies of the single object detectors,
there are three ways to obtain the features that concern us.
Firstly, the network uses a softmax function to weight the
importance of the latent meaningful objects obtained from
the background.

Then, the algorithm uses the location and class coherency
to get the attention scores. This is not a promising method
because the weak supervised methods cannot achieve high
enough detection precision. Secondly, the object detection
and the instance segmentation are combined; however, the
abundant feature extraction and training computational cost
are too high. Thirdly, we combine these two branches and
follow a trade-off strategy: we adopt the lightweight spatial
and class feature extraction channels to recognize the latent
object classes, and then, the attention features are refined
by the edge information to reinforce the boundary features
for further inference. In this way, we use the edge informa-
tion instead of instance segmentation to avoid the iterative
training process and its computational cost. Thus, the

Figure 6: Visual comparison of general and rotated training processes.
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attention-wise modules also attain the location and coher-
ency information with lightweight and refinement.

As shown in Figure 2(b), we can consider the training
process in the feature extraction view instead of the network
dataflow. Patches with convolutional refined features are
combined with the edge feature patches which are extracted
from the ground truth counterparts. We control the propor-
tion by α in Equation (7) of the edge information and the
background recognition feature extraction.

Then, the fusion middle results are sent to the attention-
wise modules and finally make the inferences for object
detection average precision.

Figures 4(b) and 4(c) show the input images and the edge
feature maps and the attention heat maps as middle outputs
which could benefit the EAWNet for efficient recognition.
When we change the perceptive field radius for different
object scales, heat map visualization shows the dense small
objects. Owing to the smart design of network feature extrac-
tion and efficient searching latent attention strategy, this
rotated attention-wise network EAWNet achieves fast real-
time recognition speed and significant precision enhance-
ment among the state-of-the-art methods.

3.5. Rotated Bounding Box and Loss Design. Horizontal and
vertical bounding boxes are drawn over an object for accurate
localization. However, for dense VIOT object detection, the
anchors are close and boundaries are overlapped. Therefore,
we designed rotating bounding boxes to obtain tighter and
more precise detections.

We use five parameters x, y,w, h, θ to represent the loca-
tion of the rotating bounding boxes. If ðx, yÞ are the coordi-

nates of the center of the latent object, wh are its width and
height, and θ is the angle of rotation in polar coordinate, then
t is the angle of each coordinate:

tx =
x − xa
ωa

, ty =
y − ya
ha

,

tω = log ω

ωa

� �
, th = log h

ha

� �
, tθ = θ − θa,

ð10Þ

tx′ =
x′ − xa
ωa

, ty′ =
y′ − ya
ha

, tω′ = log ω′
ωa

 !
, t ′ = log h′

ha

 !
, tθ′ = θ′ − θa:

ð11Þ
x is the anchor boxes, and x’ is a prediction of bounding

boxes. Thus, the loss function is expressed as

L = λ1
N

Lattention +
λ2
N

L2 +
λ3
N

LAW + λ4
N

LCLS +
λ5
N

LObj +
λ6
N

LX,Y ,W,H ,

ð12Þ

where N denotes the number of anchors and the hyper-
parameters λk control the trade-off setting to one by default
[1, 43]. The classification loss LCLS is implemented by focal
loss and smooth L2 loss. LObj is the object detection loss.
LAW is the attention-wise loss. We also add the xy loss and
wh loss LX,Y ,W,H for the bounding box position precision
and the object loss to analyze how many objects are missing.
Figure 5 shows that the model is trained to detect dense and
small objects in real-time VIOT fast and accurately. Thus, the
rotated bounding boxes and hybrid loss function design are

Table 1: Our model is attention-wise. The LRF also uses learnable strategies and acts more lightweight and fast; however, the accuracy is
much lower than that of EAWNet. CenterMask learns in an efficient way by searching from the object center and achieves balanced
performance. However, EAWNet showed a more significant improvement in learning strategy (adding attention module and rotated tight
bounding boxes makes a significant progress on reconstructed deep learning models) and does achieve comparable results to similar
algorithms such as LRF, RFBNet, CenterMask, EfficientDet, and YOLOv3. We can conclude that EAWNet outperforms most existing
methods in terms of both accuracy and speed. The percentage of average precision on category on DOTA shows our model performs well
on unbalanced and anomaly data categories.

Method PL BD BR GTF SV LV SH TC BC ST SBF RA HA

RFBNet [20] 40.57 10.21 1.68 14.12 1.32 1.43 2.19 17.22 28.57 10.34 28.26 10.11 4.12

LRF [15] 40.59 21.29 37.74 24.20 9.93 2.19 5.86 45.44 39.45 35.72 17.22 38.73 48.34

CenterMask [21] 90.60 81.97 6.57 67.08 71.12 79.66 79.16 91.81 86.26 85.42 62.91 64.77 69.12

EfficientDet [22] 90.02 82.31 47.11 72.86 72.96 78.34 80.54 91.96 85.14 85.62 57.69 62.13 65.25

YOLOv4 [19] 91.13 82.13 50.28 72.64 72.78 80.43 80.47 91.89 85.76 85.73 60.12 62.64 68.09

EAWNet 90.08 86.56 54.01 74.94 76.75 82.52 81.32 91.83 87.96 86.34 65.14 61.85 70.17

Table 2: Ablation studies of network architecture (size 512 × 512).

Model AP (%) AP50 (%) AP75 (%)

MRFNet [36] 37.1 58.2 38.2

MRFNet+PWC 37.3 58.1 39.8

MRFNet+RC 37.6 58.6 41.5

MRFNet+PWC+RC 36.9 59.1 44.7

EAWNet 37.9 59.7 45.2

Table 3: Average precision for ablation experiments of attention
modules (size 512 × 512).

Model (with optimal setting) AP (%) AP50 (%) AP75 (%)

MRFNet [36] 37.6 59.8 41.3

MRFNet+CAW 37.5 59.6 41.0

MRFNet+PRW 37.5 59.3 41.2

MRFNet+CAW+PRW 37.6 60.2 41.5
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beneficial for better visual effect and training process conver-
gence as displayed in Figures 6 and 7.

4. Experiments

We conducted comparative experiments between EAWNet,
RFBNet [20], LRF [15], YOLOv3 [18], CenterMask [21],
and EfficientDet [22] in FPS, AP, and visual effects.

Frames per second (FPS) are raised by 6.25%, and AP
average precision (AP) is increased by 1.51%. The results
obtained with other state-of-the-art object detectors are dis-
played in Figure 8. Our EAWNet on the red line is on the
Pareto optimality curve and is the fastest and most accurate
detector.

4.1. Experimental Setup. We implemented our model with
PyTorch. The model was trained with Adam (β1 = 0:9, β2
= 0:999). A batch size of 16 was used for training in four
NVIDIA RTX2080Ti GPUs with 11GB RAM. At the begin-
ning of each epoch, the learning rate was initialized as 10−4

and subsequently diminished by half every 10 epochs. We
trained 100 epochs on COCO and 150 epochs on DOTA.

4.2. Dataset and Augmentation. We assessed our method on
two well-known benchmarks in VIOT for city and aerial sce-
narios: COCO [44] and DOTA [45]. The comparative exper-
iments were performed under equivalent conditions
(training on same GPU and dataset). The image size from
DOTA was 1024 × 1024, while that from COCO was 256 ×
256. The COCO benchmark is a large-scale object detection,

Table 4: Item FPS and AP of different object detectors.

Method Backbone Size FPS
AP
(%)

AP50
(%)

AP75
(%)

APs
(%)

APm
(%)

APl
(%)

YOLOv4: optimal speed and accuracy of object detection [19]

YOLOv4 CSPDarknet-53 416 30 35.6 57.8 38.2 17.3 39.2 52.1

YOLOv4 CSPDarknet-53 512 22 37.9 60.0 41.9 19.8 41.5 49.8

YOLOv4 CSPDarknet-53 608 16 38.2 60.9 42.5 21.7 42.1 47.4

Learning rich features at high speed for single-shot object detection [15]

LRF VGG-16 300 39.0 26.8 46.7 29.4 8.3 30.3 42.6

LRF ResNet-101 300 36.2 29.2 50.0 32.2 8.6 33.2 45.9

LRF VGG-16 512 27.9 31.9 51.7 33.8 14.7 35.4 44.3

LRF ResNet-101 512 19.7 32.6 53.2 35.1 15.2 38.0 45.4

Receptive field block net for accurate and fast object detection [20]

RFBNet VGG-16 300 32.0 25.3 44.5 27.1 6.9 27.2 41.3

RFBNet VGG-16 512 22.5 29.2 50.1 31.2 11.7 32.4 42.5

RFBNet-E VGG-16 512 17.3 29.6 50.7 31.5 12.9 31.8 42.7

YOLOv3: an incremental improvement [18]

YOLOv3 Darknet-53 320 27 23.3 46.8 25.1 7.2 25.8 38.4

YOLOv3 Darknet-53 416 23 26.4 50.6 27.8 10.3 28.2 38.2

YOLOv3 Darknet-53 608 14 28.0 53.0 29.6 13.7 30.7 36.9

YOLOv3-SPP Darknet-53 608 16 31.2 56.2 33.5 15.6 33.4 41.4

CenterMask: real-time anchor-free instance segmentation [21]

CenterMask-Lite MobileNetV2-FPN 600x 27 25.5 — — 9.2 27.1 36.3

CenterMask-Lite VoVNetV-19-FPN 600x 20 31.2 — — 14.9 33.0 41.2

CenterMask-Lite VoVNetV-39-FPN 600x 12 35.7 — — 17.8 38.6 48.5

EfficientDet: scalable and efficient object detection [22]

EfficientDet-D0 Efficient-B0 512 26 29.0 47.2 31.2 7.3 33.3 46.2

EfficientDet-D1 Efficient-B1 640 23 34.6 53.8 37.5 13.1 39.8 51.0

EfficientDet-D2 Efficient-B2 768 16 38.2 57.3 41.2 17.9 42.4 53.6

EfficientDet-D3 Efficient-B3 896 13 41.3 60.6 44.6 21.6 45.1 55.1

EAWNet: an Edge Attention-wise Convolutional Neural Network for real-time object detection

EAWNet EAWNet 416 31 36.1 59.3 39.1 18.5 40.0 53.3

EAWNet EAWNet 512 24 38.8 60.8 42.7 20.8 42.4 50.7

EAWNet EAWNet 608 17 39.7 62.2 43.3 23.1 42.8 48.6

FPS, AP, AP50, AP75, APs, APm, and APl represent the frame per second, average precision, reach to 50% average precision, reach to 75%, average precision,
and average precision for small-, medium-, and large-scale objects, respectively.
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segmentation, and captioning dataset. It has 330k images,
more than 200k labelled images, and 80 object categories,
which is beneficial for object detection training.

The DOTA benchmark is the largest and most challeng-
ing dataset with oriented bounding box annotations for aerial
image object detection. These images have been annotated by
experts using 16 common object categories, and Table 1
shows that our approach has an excellent performance in
terms of category balance and accuracy. The object categories
include helicopter (HC), large vehicle (LV), small vehicle
(SV), tennis court (TC), ground track field (GTF), basketball
court (BC), soccer field (SBF), baseball diamond (BD), stor-
age tank (ST), swimming pool (SP), and roundabout (RA).

In terms of data augmentation, images are flipped hori-
zontally and vertically and rotated at random angles. For

color, RGB channels are replaced randomly. For image color
degradation, saturation in the HSV color space is multiplied
by a random number in [0, 5].

We also conducted ablation experiments on COCO and
DOTA by adopting different attention modules as shown in
Table 2. Here, MRFNet is considered as the benchmark.
PWC represents the pass-wise connection. RC represents
the benchmark which adopts the residual connection tech-
niques. EAWNet adopts the above strategies and modules
to enhance the percentage of average precision (AP) and
the inference speed of frames per second (FPS).

4.3. Experiment Analysis. We adopted different feature
extraction methods and network structures as presented in
Table 3. CAW represents the contextual attention-wise

Figure 9: Some visual result tests on EAWNet show that the attention modules benefit prediction stability and training precision.

Figure 10: Visual results of rotated bounding boxes.
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modules and PRW represents the position refinement-wise
modules. EAWNet adopted all the above approaches.
Tables 1 and 4 illustrate the details of Figure 9 as well as
the details of the experiments conducted. The experiments
on COCO and DOTA validate the visual effect in dense
and real-time object detection; the average precision is better
than all other approaches in the comparative experiments. In
addition, the results of the ablation experiments also shed
light on different aspects of the connection strategies and
enhancements on applying attention modules. The results
further highlight the necessity of streamlining and optimiz-
ing the network structure and the effectiveness of using the
attention mechanism to improve the efficiency of visual
perception.

EAWNet outperforms YOLOv4 in terms of accuracy as
shown in Table 4. With the same training process and data-
set, we simply use the advanced MRFNet backbone as the
benchmark and then add an attention-wise module.

The speed is slightly higher than YOLOv4 except for the
additional module. Considering the significant accuracy
improvement and fast training convergence speed, it is
worthwhile to modify the model’s name into an attention-
wise multipath refinement flow counterpart. The average
precision is shown in Figure 10. Tighter and specific detec-
tion bounding boxes benefit the training process.

As for FPS, the speed is higher than in comparative
experiments. Compared to the LRF, YOLOv3, and YOLOv4,
our method is slower but shows a significant improvement in
terms of accuracy. Our method outperforms RFBNet, Cen-
terMask, and EfficientDet with regard to both speed and
accuracy. Therefore, our method presents a trade-off between
accuracy and cost compared with YOLOv4 and outperforms
most of the recent state-of-the-art methods.

5. Conclusions

Object detection has been widely used in the field of VIOT.
Therefore, it is an important issue for reconstructing a smart
city. However, very large images, complex image back-
grounds, uneven size, and quantity distribution of training
samples make detection tasks challenging, especially for
small and dense objects. To solve these problems, an object
detector Edge Attention-wise Convolutional Neural Network
(EAWNet) is proposed in this paper. Firstly, a better training
method with multiflow fusion network is designed to
improve the detection accuracy. Secondly, self-attention
modules are adopted to underline the meaningful informa-
tion of feature maps while disregarding useless information.
Finally, pass-wise connection makes key semantic features
propagate effectively. Comparative experiments are con-
ducted on the benchmark dataset COCO with state-of-the-
art methods. The results indicate that our proposed object
detection methods outperform the existing models. Extensive
experiments and comprehensive evaluations on large-scale
DOTA and daily COCO datasets demonstrate the effective-
ness of the proposed framework on real-time and dense
object detection inference.

In this work, we proposed a framework called EAWNet
with edge attention-wise modules for real-time visual inter-

net of things. The patches flow in the multipath refinement
flow network, and features are extracted by a pass-wise con-
nection that contributes to a considerable training efficiency.
The model was evaluated on two public datasets and com-
pared to state-of-the-art approaches. It performed quite sat-
isfactorily in terms of both accuracy and speed under the
same conditions.

In the future, we will redesign the attention modules for
lower computation cost. Then, continuous improvements
on object detection detectors could be conducted by applying
different data augmentation skills and various feature extrac-
tion methods and network enhancement approaches as well.
We are also interested in establishing whether rotated
boundaries could be replaced by the instance segmentation
to achieve better results on specific tasks such as an adversar-
ial training process.
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