
Research Article
Deep Reinforcement Learning for Scheduling in an Edge
Computing-Based Industrial Internet of Things

Jingjing Wu ,1 Guoliang Zhang ,1 Jiaqi Nie ,1 Yuhuai Peng ,1 and Yunhou Zhang 2

1School of Computer Science and Engineering, Northeastern University, Shenyang 110819, China
2Northeast Branch of State Grid Corporation of China, Shenyang 110180, China

Correspondence should be addressed to Yunhou Zhang; zhangyunhou@ne.sgcc.com.cn

Received 4 June 2021; Accepted 22 July 2021; Published 10 August 2021

Academic Editor: Xiaojie Wang

Copyright © 2021 Jingjing Wu et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

The demand for improving productivity in manufacturing systems makes the industrial Internet of things (IIoT) an important
research area spawned by the Internet of things (IoT). In IIoT systems, there is an increasing demand for different types of
industrial equipment to exchange stream data with different delays. Communications between massive heterogeneous industrial
devices and clouds will cause high latency and require high network bandwidth. The introduction of edge computing in the IIoT
can address unacceptable processing latency and reduce the heavy link burden. However, the limited resources in edge
computing servers are one of the difficulties in formulating communication scheduling and resource allocation strategies. In this
article, we use deep reinforcement learning (DRL) to solve the scheduling problem in edge computing to improve the quality of
services provided to users in IIoT applications. First, we propose a hierarchical scheduling model considering the central-edge
computing heterogeneous architecture. Then, according to the model characteristics, a deep intelligent scheduling algorithm
(DISA) based on a double deep Q network (DDQN) framework is proposed to make scheduling decisions for communication.
We compare DISA with other baseline solutions using various performance metrics. Simulation results show that the proposed
algorithm is more effective than other baseline algorithms.

1. Introduction

With the rapid development of the Internet of things (IoT),
an increasing number of daily services can easily obtain
seamless network connectivity everywhere. Among the IoT
extensions, the industrial Internet of things (IIoT) is consid-
ered a promising technology and has attracted much atten-
tion [1–3]. With the popularization of modern industry,
IIoT devices, such as wireless sensors, programmable logic
controllers (PLCs), remote terminal units (RTUs), and smart
switches, are used to improve manufacturing efficiency and
realize traditional industry intellectualization. In recent
years, the IIoT has been utilized in many fields, including
mining, healthcare monitoring, energy generation, and smart
factories. Nevertheless, with the explosive growth in IIoT
applications, the network environment becomes increasingly
complex, which leads to unprecedented challenges, e.g.,
intermittent wireless connections, scarce spectrum resources,

and high propagation delay. Further research needs to be
performed to address the aforementioned problems.

Interconnected sensors or smart devices can collect data
and interact through modern industrial network infrastruc-
ture via the Internet. In this case, these sensors and devices
generate large amounts of data that need further processing,
which provides intelligence to both continuous environmen-
tal monitoring and data analysis [4]. In traditional cloud-
based network architecture, all data must be uploaded to a
centralized server, and the processed solutions need to be
sent back from the cloud to terminal sensors and devices.
This process creates high communication latency between
end users and the cloud located far away from most end
users. Introducing the edge computing [5, 6] paradigm into
the IIoT is widely accepted as a promising technology to
address the aforementioned problems. According to this par-
adigm, heavy computational tasks or multiple functions can
be delivered at the edge of the network. In edge computing,

Hindawi
Wireless Communications and Mobile Computing
Volume 2021, Article ID 8017334, 12 pages
https://doi.org/10.1155/2021/8017334

https://orcid.org/0000-0002-0995-4340
https://orcid.org/0000-0002-9333-1698
https://orcid.org/0000-0002-4322-3875
https://orcid.org/0000-0001-9343-5377
https://orcid.org/0000-0002-5691-291X
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2021/8017334


the massive on-site data generated by different types of end
users can be analyzed at the network edge, rather than trans-
mitting data to distant centers to address delay and band-
width concerns. Compared with cloud computing, the
introduction of edge computing can reduce network conges-
tion and promote resource optimization. Edge computing is
more suitable for integrating with the IIoT with a large num-
ber of end users, and the architecture can be considered for
future IIoT infrastructures.

With the rapid growth in edge computing-based IIoT,
to be more competitive, a manufacturing system should
have good flexibility, fast response capabilities, and sophis-
ticated heterogeneous structures. Therefore, scheduling [7,
8] plays an important role in ensuring the reliability and
responsiveness of a manufacturing system. Communica-
tion devices are dedicated to transmitting data, while con-
trol devices perform real-time scheduling for dynamic
decision-making information. In an IIoT system, most of
the industrial devices generate regular packets, such as
the packets obtained by detecting or collecting on-site
environment. However, when emergency events occur,
some urgent packets are generated, which need to be
delivered to the destination node within a specified dead-
line [9]. Edge computing servers must provide different
levels of services to each request, which means that some
types of requests may have higher priorities than others.
Accordingly, scheduling algorithms for edge computing
must satisfy expectations for each type of IIoT request in
heterogeneous applications without wasting resources.

Additionally, the existing network protocols face tre-
mendous pressure in industrial applications with massive
data, limited transmission bandwidth, high data rates, and
low-latency requirements. When the actual states of the
network change and the transmission strategies need to be
adjusted, the existing network protocols lack intelligence.
Therefore, with the growth in network scale and the explo-
sion in data, artificial intelligence (AI) [10] has been drasti-
cally promoted in recent years. The AI technique has
already made breakthroughs in a variety of areas, such as
robot control, automatic drive, and speech recognition.
Compared with conventional methods, deep reinforcement
learning (DRL) [11] that emerged from AI has shown great
advantages in large-scale networks. For example, trained
architectures can be utilized to monitor data processing,
classification and decision-making with high accuracy.
Once abnormal traffic occurs, the DRL architectures can
quickly make judgments before deterioration spreads in
the networks. The reason for the abovementioned perfor-
mance improvement is that DRL can efficiently extract
the features from the sample data and learn the relation-
ships among multiple metrics by training a large quantity
of data. By accumulating action experiences from interac-
tions with the target by reinforcing actions leading to
higher rewards, DRL can learn successful policies progres-
sively. However, modeling and prediction of communica-
tion networks are very difficult because they have become
more sophisticated and dynamic. Hence, deploying a more
intelligent scheduling algorithm in networks is a necessary
condition for rational allocation network resources.

In this paper, we propose a deep intelligent scheduling
algorithm (DISA), an intelligence-driven experiential net-
work architecture that exploits edge computing and DRL
for scheduling. Our principal contributions are summarized
as follows.

(1) We use the idea of DRL to describe the scheduling
problem in edge computing-based IIoT and define
the corresponding state space, action space, reward
function, and value function

(2) We propose DISA, an edge computing-based net-
work architecture for communication scheduling.
DISA adapts the DDQN scheme, which guarantees
the stability of dynamically generated policies

(3) Effective simulation experiments demonstrate that
the proposed DISA can effectively create scheduling
strategies for traffic flows. Numerical results verify
the superiority of DISA over the typical baseline
algorithms

The remaining sections of this paper are organized as fol-
lows. Section 2 reviews the related work done in other studies
for the proposed problem. Then, problem descriptions and
scheduling models are discussed in Section 3. Section 4 intro-
duces the implementation details of our DISA. Thereafter,
simulation results are analyzed in Section 5. Finally, we con-
clude the paper in Section 6.

2. Related Work

This section discusses the major works that have been cited
in response to the problem raised in the preceding section.

2.1. Edge Computing-Based IIoT. There have been many
studies on edge computing in recent years, and edge comput-
ing provides computational and processing facilities at the
edge of the network. The authors in [12] presented an
edge-cloud interplay based on software-defined network
(SDN) to handle flow scheduling among edge and cloud
devices. In this respect, a multiobjective evolutionary algo-
rithm based on TChebycheff decomposition was designed
for scheduling in an IIoT environment. The authors in [13]
expounded the development and integration process of IIoT
and edge computing through an extensive review of the
research achievements. They proposed a reference architec-
ture of IIoT edge computing and carried out a comprehen-
sive explanation from a number of performance indicators.
The work in [14] drew on the idea of blockchain and solved
the problem of traffic classification in the Internet of things.
A voting-based consensus algorithm was designed to syn-
chronize and update the binary coding tree set and hash table
required for the classification of extended hash streams based
on edge nodes. In a survey paper [15], the authors investi-
gated the motivation of the edge cloud environment, the lat-
est research results, key enabling technologies and possible
future applications. The purpose was to fully understand
the edge computing issue through this comprehensive dis-
cussion. The authors in [16] roughly summarized the main

2 Wireless Communications and Mobile Computing



structure of edge computing technology as fog computing,
mobile edge computing and cloudlet. Under each model
structure, they gave detailed tutorials on principles, system
architecture, standards, and applications.

2.2. Scheduling Technologies in IIoT. Currently, an increasing
number of researchers and practitioners are attempting to
solve dynamic scheduling problems in the field of wireless
networks. Literature [17] proposed an efficient packet emer-
gency sensing scheduling algorithm for smart cities. The
algorithm divided data packets into three priority levels.
High-priority data packets were sent to the destination node
first, while low-priority data packets only need to be delivered
before the deadline. The sensor scheduling problem in power
constrained wireless networks was studied in Reference [18].
The communication channels in the wireless network were
modeled as ergodic Markov chains, and different transmis-
sion power levels were used in different channels to ensure
the success of service transmission. The authors in [19] pro-
posed an offline scheduling algorithm based on imitation
learning. Specifically, they described the scheduling problem
as an optimization problem, established the system model,
designed the imitation learning scheduling algorithm, and
obtained the optimal scheduling results. In [20], a real-time
scheduling scheme based on bargaining game was presented
to achieve real-time scheduling in the manufacturing work-
shop. This paper proposed a flexible workshop architecture,
which provided a new paradigm for manufacturing enter-
prises to improve real-time scheduling efficiency to eliminate
the impact of abnormal events. The authors in [21] adopted
Lyapunov optimization technology to solve the asymptoti-
cally optimal solution to the mobile edge computing offload-
ing scheduling problem under the condition of partial
network knowledge. The Lyapunov optimization problem is
decomposed into a knapsack problem for solving asymptoti-
cally optimal scheduling.

2.3. Intelligence-Driven Architecture in IIoT. Because tradi-
tional schemes rely heavily on manual processes when con-
figuring data transmission strategies, it is a great challenge
to design dynamic near-optimal control decisions in large
networks. Currently, a lot of research work has shifted its
focus to the direction of how to make the industrial IoT more
intelligent in data transmission and network management.
An online task scheduling algorithm based on imitation
learning was proposed in [22] to minimize system energy
consumption while meeting task delay requirements. This
article was an early endeavor to use intelligent learning for
online task scheduling in the vehicular edge computing net-
work, which allowed the learning agent to consistently follow
the expert’s strategy and had a tolerable theoretical perfor-
mance gap. The authors in [23] introduced deep learning of
the IoT to edge computing to make the network performance
optimized and user privacy security when uploading packets.
The edge computing technology reduced the network data
volume from IoT terminals to cloud servers, because the edge
nodes uploaded intermediate packets instead of input
packets. The work in [24] proposed a priority-aware rein-
forcement learning-based integrated design network subsys-

tem. This method automatically assigned sampling rates and
backoff delays to the control and network subsystems in the
industrial Internet of things system. In order to improve
the system performance of highly coupled industrial IoT,
according to the characteristics of industrial systems, Refer-
ence [25] leveraged reinforcement learning technology to
automatically configure control and network systems in
dynamic industrial environments. Three new strategies are
designed to accelerate the convergence of reinforcement
learning. The authors in [26] proposed a service quality-
aware secure routing protocol (DQSP) based on deep rein-
forcement learning. While ensuring QoS, this method
extracted knowledge from historical traffic demands by inter-
acting with the underlying network environment and
dynamically optimized routing strategies.

However, further studies are still necessary on dynamic
scheduling considering several performance metrics in IIoT
applications. Moreover, few studies have investigated schedul-
ing algorithms supported by intelligence-driven architectures.

3. Problem Definition and Models

3.1. Network Framework. In this section, we adopt a hierar-
chical structure to generalize all the contents in the IIoT net-
work, as shown in Figure 1. There are three layers in this
structure: the device layer, the edge intelligence layer, and
the centralized intelligence layer. The device layer is com-
posed of all objectives, workmen, users, and smart terminals
that can collect industrial data from live environments. The
edge intelligence layer provides distributed, low-latency,
and limited computing resources between the device layer
and the higher layer. Lightweight DRL-based data distributed
computing and edge processing features are implemented in
this layer. We introduce the DRL agent into the edge intelli-
gence layer to maintain equivalent performance and offload
computational tasks from the cloud. The centralized intelli-
gence layer consists of cloud data centers that aggregate data
from lower layers. DRL-based data validation and central
processing features are implemented in this layer. We intro-
duce the DRL agent into this layer to optimize network per-
formance and take global control.

The basic method by which smart devices, edge comput-
ing servers, and cloud data centers operate and interact is as
follows. In the network, different applications generate differ-
ent traffic types, which occupy different network resources.
Here, the collected industrial traffic flows are divided into
two categories: computing-intensive traffic flows and time-
sensitive traffic flows. Computing-intensive traffic flows
require more bandwidth, and the quality of transmission is
more crucial. In contrast, time-sensitive traffic flows are sen-
sitive to delay, and latency is more crucial. Thus, all the for-
warding decisions are determined by the gateway node set
in the corresponding layer. The device layer gateway can pro-
cess a traffic flow locally, transmit it to an edge computing
server, or transmit it to a cloud data center. The control flow
can be adopted by the gateway based on the traffic flow clas-
sification. The edge intelligence layer is an intermediate layer
and is closer to users than the cloud. Edge computing servers
can process traffic flow scheduling and routing or forward the

3Wireless Communications and Mobile Computing



control flows to the higher layer. Time-sensitive traffic flows
can be handled in this layer and reduce the overall service
delay. The centralized intelligence layer mainly processes
computing-intensive traffic flows or the flows forwarded by
the lower layer and sends the response back to the lower
users. The DRL module is installed in the data center to pro-
vide higher service and more efficient resource utilization.

3.2. Scheduling Model. We describe the edge computing-
based IIoT scheduling problem in this section. The network
topology is modeled as an undirected graph GðV , EÞ. Here,
V is the set of IIoT devices, and E = fði, jÞ ∣ i, j ∈ Vg is a set
of wireless links. A traffic flow is denoted as a tuple F = ðs, d
, b, tDÞ, where s ∈ V is the source node, d ∈ V is the destina-
tion node, b is the size of traffic flow generated by the device,
and tD is the deadline before which the flow must be trans-
mitted. We denote the set of traffic flows F = f1, 2,⋯,f g
and use f to refer to the f th traffic flow. The system operates
in a frame-based time-division-multiplexing manner, and
the set of time slots for scheduling is denoted as T = f0, 1,
⋯,tmaxg with frame length jtmaxj, as shown in Figure 2.
Assume there are K channels between two wireless nodes,
and the frame lengths on each channel are the same. Addi-
tional notations used in this paper are summarized in
Table 1.

In our scheduling model, we consider an incremental
traffic model. In this model, each traffic flow generated by
the end device is individual, and once resources are allocated
to it, the traffic flow in the network cannot be redistributed.
When network resources cannot successfully provide ser-
vices for a certain traffic flow, the flow is rejected immediately
without suspension. At every scheduling interval, the gate-
way in the device layer classifies the traffic flows. This step
determines at which higher layer the traffic flow can be han-
dled. If the traffic flow is assigned to the edge layer, then the
edge layer gateway determines whether the traffic flow can be
processed locally, submitted to the centralized layer or

rejected based on its deadline. We assume that the post back
of the analysis is small, so the feedback transmission delay is
identical. Hence, the analysis latency in edge computing
server l can be represented by

TANA
f = Tl

t,f + Tl
c,f + TFB

f : ð1Þ

If the traffic flow is submitted to the centralized layer
because of the lack of computing resources in the edge layer,
the analysis latency of flow f runs on the cloud can be calcu-
lated as

TANA
f = Tl

t,f + Tl ′
c,f + Tl−cloud

t,f + Tcloud
c,f + TFB

f : ð2Þ

Here, Tl ′
c,f represents the analysis latency of flow f when

the edge layer computing resources are insufficient, and Tl ′
c,f

< Tl
c,f . Thus, the analysis redundancy on the edge layer can

be reduced as much as possible.

Control flow
Wireless link
Data transmission path

Centralized intelligence layer

Edge computing server

Edge intelligence layer

Gateway Gateway Gateway

Camera
Mobile terminal Robotic

Workman

Workman WorkmanMonitoringPLC
Digital terminal

Robotic

Robot

Device layer PDA

Edge computing server Edge computing server

Cloud data centers
State

Reward

Action

State
Reward

Action

State
Reward

Action

State
Reward

Action

Figure 1: Network frame.

Channel cni,j …… ……

…… ……Channel cni,j

Frame 1 Frame 2

t1 t2 tmax

…

1

k

Figure 2: Scheduling model.

4 Wireless Communications and Mobile Computing



In the cloud analysis model, the analysis latency of flow f
can be represented by

TANA
f = Tcloud

t,f + Tcloud
c,f + TFB

f : ð3Þ

We assume that Tl
t,f + Tl−cloud

t,f = Tcloud
t,f , and we can infer

that the largest analysis latency comes from equation (2).
As long as TANA

f ≤ TD, the traffic flow can be served.
In the scheduling process, the network calculates the

channel and the number of time slots for the traffic flow.
For instance, traffic flow f is considered, and the size of the
traffic flow determines the transmission time slots for accom-
modating the flow.

t fn =
b
ci,j

: ð4Þ

We define the execution interval period for a traffic flow

denoted by EIPf
i,j, and

EIP f
i,j =

NF∙tmax

t fn
: ð5Þ

If a traffic flow has a large quantity of data, it has an
intensive execution frequency within the scheduling process;
here, NF represents the number of frames during scheduling.
Since a large data size results in a dense execution interval
period, computing-intensive traffic flows prefer to choose
the channel with more bandwidth, while time-sensitive traffic
flows prefer to choose the channel with minimum delay.
Once an appropriate channel is allocated, several time slots
are allocated to each of the flows corresponding to their indi-
vidual size. To avoid the overallocation of network resources,
flows with the same channel can be distinguished by time
slots, as shown in Figure 2.

4. Proposed DISA Mechanism

In this section, we formulate the scheduling problem as a
DRL process, including the state space S , action space A ,
and rewardsR. Then, we consider the unique characteristics
of dynamic time slot provisioning and enable the DRL agent
to optimize the problem.

4.1. DRL Formulation

4.1.1. State. Let st denote the network state at time t (st ∈ S),
which is composed of the source node, destination node,
number of transmission time slots, and time slot occupancy.
Therefore, we define the array as

st = i, j, t fn, tm,k
1 , tm,k

2 , tk3, tk4
n o

∣m ∈ 1,M½ �, k ∈ 1, K½ �
n o

, ð6Þ

which summarizes the network information at time interval
Δt. The features are explained as follows.

tm,k
1 is the available time slot of each execution interval

period of the total jMj execution periods according to the size
of the traffic flow in the kth channel of the total jKj channels
for link ði, jÞ.

tm,k
2 is the initial allocation index number of the available

time slots in every execution interval period. For ∃tm,k
1 = 0,

m ∈ ½1, 2,⋯,M�, k ∈ ½1, 2,⋯,K�, then tm,k
2 is invalid.

tk3 is the total number of available time slots, which
reflects the degree of occupancy situation along the link.

tk4 is the total number of continuously available time slot
blocks, which reflects the degree of fragmentation of
resources along the link. This feature helps the agent identify
those links that potentially divide the time slots into frag-
ments. Too much fragmentation in time slot may affect
access to subsequent traffic flows. Similar to the traditional
scheduling problems, these features enable the agent to per-
ceive the capacity, status, traffic load, and security of each
wireless link.

Figure 3 shows an example of constructing st in DISA.
For the sake of simplicity, we assume that there is only one
frame. We assume that all the nodes in the network are equal
and that there are three traffic flows that arrive in order.
There are 2 channels (K = 2) in the network, and the slot bit-
mask on each wireless link corresponds to its time slot utili-
zation. Based on the previous definition, we assume that the
three traffic flows require 1, 4, and 2 time slots. In this exam-
ple, one frame can be divided into 4 execution interval
periods at most (M = 4).

The first flow needs to select 1 time slot in one frame time
of the 2 channels. For instance, the available time slots in
channel 1 (m = 1, k = 1) have a value of t1,11 = 2, and the initial
allocation index number is t1,12 = 1. The remaining array ele-
ments for channel 1 are t13 = 6 and t14 = 3. Since the traffic flow
needs to be executed once within a frame, time slot 1 in chan-
nel 1 is allocated based on the principle of early processing.
For the second traffic flow, we determine that not every tm,k

2
of 4 execution interval periods in channel 1 is valid, so we
can only find idle time slots on channel 2. The four execution

Table 1: Definitions of notations.

Notation Definition

t fn The transmission time slots of flow f

cnki,j The kth channel connecting i and j

Δt The time interval of time slot t, t ≥ 0
ci,j The data rate a time slot can support for link i, jð Þ
TANA

f The analysis latency of flow f

Tl
t,f The transmission time between the device and the edge

Tl−cloud
t,f The transmission time between the edge and the cloud

Tcloud
t,f The transmission time between the device and the cloud

Tl
c,f The analysis time on edge computing server l

Tl ′
c,f The preanalysis time on edge computing server l

Tcloud
c,f The analysis time on the cloud data center

TFB
f The analysis feedback of flow f

5Wireless Communications and Mobile Computing



interval periods have 3, 5, 5, and 3 available time slots
(m = 1, 2, 3, 4, k = 2). Their initial allocation index numbers
are 2, 0, 0, and 0. To maintain equal execution intervals, we
choose the time slots with index number 3 in each execution
interval period. For the third traffic flow, which requires 2
time slots during scheduling, we need to allocate two execu-
tion interval periods in a frame. Other values of state st can
be seen in Table 2. For each st , we assume that both M and
K are constants. When the number of possible candidate exe-
cution frequencies or channels is less than the array dimen-
sion, we assign a constant array to ensure a unified format
of st .

4.1.2. Action. In the approach, the agent determines which
channel and time slot combination is available to assign to
the current network state, and the action space is denoted as

A = a1, a2,⋯,aK∙Mf g: ð7Þ

An action refers to a channel from the K th candidates and
one of the M time slots on the selected channel obtained by
the gateway. Therefore, the action space includes K∙M
actions.

4.1.3. Reward. The reward is the objective of the algorithm.
The agent relies on rewards to evaluate the effectiveness of
the action and further improve the policies. For any state st
∈ S , rt ∈R is the immediate reward that numerically charac-
terizes the performance of an action at from the discrete set.

The network receives a reward rt = 0 if traffic flow F is
successfully received. Otherwise, rt = −1. As a result, to avoid
congestion action for computing-intensive traffic flows and
reduce delay for time-sensitive traffic flows, the objective of
the algorithm should be expressed as finding the optimal pol-
icy. The details are described in the next section.

4.2. Process of DISA. To allocate channels and time slots effi-
ciently, we use the double deep Q network (DDQN) architec-
ture [24] with experience replay and a greedy policy to solve
the reinforcement learning problem. This architecture not
only yields more accurate value estimations but also leads
to much higher learning stability.

Figure 4 illustrates the DISA architecture, in which a DRL
trains and optimizes the actions to address channel selection
and transmission scheduling. DISA takes advantage of the
edge computing networking paradigm for centralized and
automated control of the IIoT device layer management. Spe-
cifically, a corresponding gateway interacts with the current
DRL agent to collect network states and traffic flow requests
and develop scheduling strategies. Upon receiving a traffic
flow F (step 1) generated by the end device, the layer gateway
fetches the current network state, including the in-service
wireless channels, time slot resources, and topology abstrac-
tion, and then generates tailored state data st for DISA (step
2). The neural network input is a given state st , while the out-
put is the value of each function. The action values can be
represented by Qðst , at ; θÞ, where θ denotes the parameters
of the neural network. For each action at ∈A in that given
state (step 3), which corresponds to a particular channel
and time slot combination (step 4), the layer gateway
attempts to set up the corresponding wireless connection
(step 5). The network receives the scheduling strategies
related to the previous operations as feedback and produces
an immediate reward rt for the agent; then, the network
moves to the next state st+1. Then, rt , st , at , and st+1 are stored
in a replay memory denoted byD (step 6), from which DISA
derives training signals for updating the DRL agent (step 7).

The important ingredient for training the traditional
DQN is that it maintains two independent and identical neu-
ral networks, a target DQN (Qðst , at ; θ′Þ) and an evaluate
DQN (Qðst , at ; θÞ). The evaluate DQN is utilized to compute
the Q value for each action, while the target DQN produces
the Q values to train the parameters of the evaluate DQN.
Afterward, the action with the maximum Q value is chosen
to set the transmission for F. Both the evaluate DQN and
the target DQN employ the same neural network structure
as the basic module, which uses a simple fully connected neu-
ral network, including one hidden layer. The neural network
starts in state st and follows the value of each action. It
attempts to minimize the loss function defined as

LDQN θð Þ = E YQ
t −Q st , at ; θð Þ� �2h i

: ð8Þ

0 1 2 3 4 0 1 2 3 4

EIP 0

F 1

F 2

0 1 2 3 4

EIP 2

0 1 2 3 4

EIP 3EIP 1

F 3

Channel 1

Channel 2

One frame

Channel 1

Channel 2

Channel occupancy before allocation

Channel occupancy a�er allocation

Figure 3: An illustration of state status in DISA.

Table 2: State values.

Channel 1 states before allocation

t1,11 = 2 t2,11 = 0 t3,11 = 4 t4,11 = 0
t13 = 6 t14 = 3

t1,12 = 1 t2,12 =∅ t3,12 = 1 t4,12 =∅

Channel 2 states before allocation

t1,21 = 3 t2,21 = 5 t3,21 = 5 t4,21 = 3
t23 = 16 t24 = 2

t1,22 = 2 t2,22 = 0 t3,22 = 0 t4,22 = 0

6 Wireless Communications and Mobile Computing



Here, YQ
t is the target Q value represented as

YQ
t = rt+1 + γ max

at+1
Q st+1, at+1 ; θ′
� �

: ð9Þ

In equation (9), state st+1 is the next state after perform-
ing action at in state st , and action at+1 is an optional action
in state st+1. γ ∈ ½0, 1� is a discount factor that trades off the
importance of immediate and later rewards. As mentioned
above, we can use the experience tuples (st , at , rt , st+1) stored
in the replay memory to train the neural network. The target
Q value YQ

t is determined according to the immediate reward
rt+1 and the maximum value of Qðst+1, at+1Þ obtained by
inputting st+1 into the target DQN. Therefore, Y

Q
t can be fur-

ther expanded as

YQ
t = rt+1 + γQ st+1, argmax

at

Q st+1, at ; θ′
� �

; θ′
 !

: ð10Þ

DQN uses the same network parameters for the selection
and evaluation of an action, which leads to overoptimistic
action values. To avoid this situation, DQN can decouple
selection and evaluation so that the double DQN method is
proposed. In DDQN, the target value of (10) can be written
as

YDoubleQ
t = rt+1 + γQ st+1, argmax

at

Q st+1, at ; θð Þ ; θ′
 !

: ð11Þ

We choose actions according to the parameters from the
evaluate DQN and use the target DQN parameters to mea-
sure the value of Qðst+1, at+1Þ. Then, the loss function is
defined as

LDDQN θð Þ = E YDoubleQ
t −Q st , at ; θð Þ

� �2� �
: ð12Þ

The overall algorithm is summarized in Algorithm 1.

5. Simulation and Analysis

In this section, we first present the experimental setup and
then demonstrate the performance of the proposed DISA
compared with several baseline schemes.

5.1. Simulation Setup. All simulation experiments are imple-
mented in a Python environment with TensorFlow. We use a
computer with a 5.0GHz Intel i7 CPU and 16GB of ARM.
We generate topologies of three sizes, namely, small,
medium, and large. Each network comprises 15, 22, and 30
gateways, and every gateway is attached to 3 to 5 end devices.
Figure 5 shows the experimental environment for this layered
structure. It is also assumed that all wireless links have equal
bandwidth and that the available channels on each wireless
link are set to 8. The number of time slots on each channel
is the least common multiple of the number of time slots
required by the traffic flows, and the length of each time slot
is 0.5ms. We generate two kinds of traffic flows between
nodes. Each traffic flow contains 100 data packets. The aver-
age data size of computing-intensive traffic flows is set to 200

… …

Evaluate DQN

… …

Target DQN

Loss function

Layer gateway

Environment

Action 
translator 
module

Replay
memory

Double DQN

2

Traffic flow

Network states

Actions

Scheduling schemes

Channel and 
time slots

Rewards

Training updating

…
…

…
…
…

…
…

…
…
…

…
…

st+1

rt

st,at

Q(st,at;𝜃′)

(st,at,rt,st+1)

6

1 5

4

7

3

Q(st,at;𝜃)

Figure 4: An illustration of the DDQN architecture.

7Wireless Communications and Mobile Computing



bytes, and the average data size of time-sensitive traffic flow is
set to 50 bytes. The period of each flow is randomly picked
within the range of 27~10 ms. The relative deadline of each
flow is equal to its period. Each simulation experiment with-
out training process is repeated 1000 times, and the average
value is obtained as the result of the experiment.

5.2. Result Analysis.We first study the training phase perfor-
mance of the proposed DISA. The loss function evaluation
and the analysis latency (TANA

f ) are two methods to deter-
mine how well the model is trained. Figure 6 shows the loss
function against the iteration steps of the proposed DISA
algorithm at different discount factors γ. The loss value in
Figure 6 is obtained during the training process according
to (12). It can be seen that all loss values decrease and con-
verge with the increase in the number of iteration steps. After
approximately 2,000 iteration steps, the loss value is stable at
a low level, which shows the convergence of the DISA algo-
rithm and the effectiveness of the training method. The dis-

count factors γ are set as 0.9, 0.8, and 0.7. We can see that
the DISA has the fastest convergence when γ = 0:9.

Figure 7 depicts the impact of three scale network topol-
ogies (small, middle, and large) with 200 data flows on the
convergence performance of the analysis latency. In
Figure 7, we can observe that the analysis latency is very high
at the beginning of the training process. However, as the
number of episodes increases, the curves descend and then
fluctuate slightly. This is because the Q value estimation
needs to gradually improve and the accumulative perfor-
mance reaches a stable state approximately 60 episodes after
the model has been fully trained. In addition, our scheme is
not sensitive to the network topology setting because the

1. Initialize the evaluate network with random weights and biases as θ;
2. Initialize the target network as a copy of the evaluate network weights and biases as θ′;
3. Initialize replay memory D;
4. for i=1 to MaxEpisodedo
5. Initialize state st in equation (6);
6. Input the system state st into the evaluate DQN;
7. Compute the Q value Qðst , at ; θÞ;
8. With probability ε, choose an action at ;
9. Execute action at , receive a reward rt and observe the next state st+1;
10. Store interaction tuple (st , at , rt , st+1) in D;
11. for j =1 to MaxStepdo
12. Sample a random transition ðsj, aj, r j, sj+1Þ from D;
13. Compute the target Q value

yj = rj+1 + γQðsj+1, argmax
aj

Qðsj+1, aj ; θÞ ; θ′Þ;

14. Train the network to minimize the loss function
LðθÞ = E½ðyj −Qðsj, aj ; θÞÞ2�;

15. Perform gradient descent with respect to θ;
16. Update target networks every NDDQN steps

θ′ ⟵ θ;
17. end for
18. end for

Algorithm 1: Procedures of DDQN-based DISA.

Figure 5: Topology considered in our experiment. Every gateway is
attached to 3 to 5 end devices.

0

𝛾 = 0.9
𝛾 = 0.8
𝛾 = 0.7

0 2000

Lo
ss

4000
Training steps

6000 8000

20

40

60

80

100

120

140

160

Figure 6: DISA loss function for different discount factors.

8 Wireless Communications and Mobile Computing



trends of the three curves are similar regardless of the specific
values. When the network topology is large, the analysis
latency after convergence is the highest, and the value is
higher than 6ms. When the network topology is small, the
analysis latency after convergence is the lowest, and the dif-
ference between the two topologies is nearly 4ms. We can
conclude that the larger the network topology is, the higher
the network complexity and the longer the analysis latency.

At a real industrial site, the schedule scheme is required
to generate an available schedule in seconds when a traffic
flow occurs. We compare the network performance of our
proposed DISA against the following three schemes.

(1) Rate monotonic (RM) scheduling [27]: in this
method, traffic priorities are assigned statically and
inversely proportional to the traffic periods

(2) Earliest deadline first (EDF) scheduling [28]: EDF
assigns priorities based on absolute deadlines, and
the traffic flow with the earliest deadline has the high-
est probability

(3) Genetic algorithm (GA) [29]: the GA converts two
separate sets of routing and scheduling constraints
into one set of constraints and uses a single step to
solve the scheduling problem

What the experiment considers to be schedulable is
whether the scheduler returns a feasible solution within the
time limit. Figure 8 illustrates the schedulability of the RM,
GA, EDF, and DISA algorithms under different network traf-
fic loads. As shown in Figure 8, all the algorithms are sche-
dulable when the number of traffic flows is below 125, and
the schedulability drops dramatically after the network load
increases. As the network load increases, additional con-
straints make it harder for the scheduler to find a feasible
solution. The schedulability of the four algorithms is always
100% with a network load less than 100. In addition, the
value obtained by the DISA is higher than that of RM, GA,
and EDF. We can see that, compared to the RM algorithm,

the DISA can provide scheduling for more than 50 traffic
flows because DISA can usually select more suitable time
slots and make more intelligent decisions than traditional
algorithms due to the DRL process.

Next, we present the bandwidth consumption of the RM,
GA, EDF, and DISA algorithms under different network traf-
fic loads. Here, bandwidth consumption is defined as the
ratio of the bandwidth occupied by the traffic flows to the
total bandwidth of the occupied wireless links. This ratio
reflects the frequency of use of the wireless link. The larger
the value is, the more consistently the resources are allocated.
In Figure 9, we test the bandwidth consumption performance
for the four algorithms. We assume that the network load is
below 150 because all traffic flows are scheduled. As shown
in Figure 9, the bandwidth consumption of the four algo-
rithms increases as the number of traffic loads increases
because the new incoming traffic flows need more bandwidth
resources. We can see that the RM algorithm and the EDF

0

Small
Middle
Large

0

10

20

30

40

50

20 40 60 80 100

A
na

ly
sis

 la
te

nc
y 

(m
s)

Episode

Figure 7: Analysis latency of DISA in different network topologies.

0

RM
GA

EDF

0

20

40

60

80

100

25 50 75 100 125 150 175 200 225 250 275

Sc
he

du
la

bi
lit

y 
(%

)

Number of flows

DISA

Figure 8: Schedulability of different scheduling algorithms.

0

RM
GA

EDF

0

5

10

15

20

25

30

35

40

10 20 30 40 50 60 70 80 90 100

Ba
nd

w
id

th
 co

ns
um

pt
io

n 
(%

)

Number of flows

DISA

Figure 9: Bandwidth utilization in different scheduling algorithms.

9Wireless Communications and Mobile Computing



algorithm have the highest bandwidth consumption because
they use a fixed scheduling strategy every time. Constraints in
the GA algorithm include load balancing, while the DISA can
intelligently arrange the network status, so their bandwidth
consumption is relatively low.

We also evaluate the average delivery time of the RM,
GA, EDF, and DISA algorithms under different network
traffic loads. Here, average delivery time includes the
end-to-end transmission time of the traffic flows and the
analysis latency of the traffic flows. As shown in
Figure 10, the average delivery time of the four algorithms
increases as the number of traffic loads increases because
the transmission delay is amortized on each traffic flow.
It can be observed that the average delivery time is closely
related to the bandwidth consumption of the link in the
network. High bandwidth consumption means that these
links have less bandwidth resources. Traffic flow through
these links will increase the transmission delay. High sche-
dulability of the DISA algorithm means shorter end-to-end
delay and better utilization of link bandwidth. DISA can
achieve load balancing on different links and has achieved
the optimal average delivery time. We can see that the RM
algorithm and the EDF algorithm have the longest average
delivery time, which is nearly 60ms higher than the short-
est DISA algorithm.

We analyze the probability of successful scheduling when
the network load is heavy and packet loss occurs. The com-
parison result for the four algorithms under different packet
loss ratios is shown in Figure 11. Here, we assume that the
experiment is running on a large topology and devices with
175 traffic flows. Due to insufficient network resources,
packet loss occurs randomly. The larger the packet loss ratio
is, the fewer idle time slots in the network for scheduling. In
Figure 11, we can see that when packet loss occurs in the net-
work, all scheduling algorithms have a failure ratio. The situ-
ation becomes increasingly worse. For instance, when the
packet loss ratio changes from 5% to 25%, a successful sched-
uling ratio for DISA can obtain up to a nearly 50% reduction.
The successful scheduling ratio for DISA is significantly

higher than that of the other three algorithms. DISA ensures
network resource allocation by sensing the network status
and thus achieves successful scheduling with a higher
probability.

Finally, in order to verify the efficiency of the DISA algo-
rithm, we analyze the runtime of the algorithm under differ-
ent network traffic loads. Here, we only compare the DISA
algorithm and the EDF algorithm because they are similar
in time scale. As shown in Figure 12, the running time of both
algorithms increases as the traffic load increases. Among
them, the running time of DISA algorithm has a gentle
upward trend, while the change trend of EDF algorithm is
more obvious. This is because the DISA algorithm has a
training process, and the requirement for computing
resources in the network has not changed much. On the
other hand, with the increase in traffic loads, the computa-
tional complexity of EDF algorithm increases, and its need
for CPU computing resources increases.

20

RM
GA

EDF

5

40

60

80

100

120

10 15 20 25 30 35 40

A
ve

ra
ge

 d
el

iv
er

y 
tim

e (
m

s)

Number of flows

DISA

Figure 10: Average delivery time in different scheduling algorithms.

0

RM
GA

EDF

20

40

60

80

100

5 10 15 20 25

Su
cc

es
sfu

l s
ch

ed
ul

in
g 

ra
tio

s (
%

)

Packet loss ratio (%)

DISA

Figure 11: Successful scheduling ratio in different scheduling
algorithms.

0.00

EDF

5

0.02

0.04

0.06

0.08

0.10

10 15 20 25 30 35 40

Ru
nt

im
e (

s)

Number of flows

DISA

Figure 12: Runtime in different scheduling algorithms.

10 Wireless Communications and Mobile Computing



6. Conclusions

Millions of IIoT end devices generate a billion bytes of data at
the edge of the network. Driven by this trend, the combina-
tion of edge computing and deep reinforcement learning
has received a tremendous amount of attention. In this paper,
we proposed a deep intelligent scheduling algorithm (DISA)
for the cloud-edge environment. By employing the classic
double deep Q network (DDQN) architecture in intelligent
scheduling, our DISA can identify reasonable channel and
time slot combinations with competitive performance. Fol-
lowing the DDQN framework, the agent separates selected
action from the target Q network, leading to more effective
parameter training. Extensive simulation experiments were
implemented, demonstrating that our DISA can obtain better
network performance than the traditional scheduling
schemes.

Data Availability

The authors confirm that the data supporting the findings of
this study are available within the article.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Acknowledgments

This work was supported in part by the National Key
Research and Development Program of China under Grant
2018YFB1702000 and in part by the Fundamental Research
Funds for the Central Universities under Grant N2116012,
Grant N2116013, and Grant N180708009.

References

[1] K. K. Raymond, G. Stefanos, and J. H. Park, “Cryptographic
solutions for industrial Internet-of-things: research challenges
and opportunities,” IEEE Transactions on Industrial Informat-
ics, vol. 14, no. 8, pp. 3567–3569, 2018.

[2] M. Z. Hasan and H. Al-Rizzo, “Optimization of sensor deploy-
ment for industrial Internet of things using a multiswarm algo-
rithm,” IEEE Internet of Things Journal, vol. 6, no. 6,
pp. 10344–10362, 2019.

[3] K. Tange, M. De Donno, X. Fafoutis, and N. Dragoni, “A sys-
tematic survey of industrial Internet of things security:
requirements and fog computing opportunities,” IEEE Com-
munications Surveys & Tutorials, vol. 22, no. 4, pp. 2489–
2520, 2020.

[4] X. Li, D. Li, J. Wan, C. Liu, and M. Imran, “Adaptive transmis-
sion optimization in SDN-based industrial Internet of things
with edge computing,” IEEE Internet of Things Journal,
vol. 5, no. 3, pp. 1351–1360, 2018.

[5] Z. Ning, P. Dong, X. Wang et al., “Mobile edge computing
enabled 5G health monitoring for Internet of medical things:
a decentralized game theoretic approach,” IEEE Journal on
Selected Areas in Communications, vol. 39, no. 2, pp. 463–
478, 2021.

[6] M. Aazam, K. A. Harras, and S. Zeadally, “Fog computing for
5G tactile industrial Internet of things: QoE-aware resource

allocation model,” IEEE Transactions on Industrial Informat-
ics, vol. 15, no. 5, pp. 3085–3092, 2019.

[7] V. Kotsiou, G. Z. Papadopoulos, P. Chatzimisios, and
F. Theoleyre, “LDSF: low-latency distributed scheduling func-
tion for industrial Internet of things,” IEEE Internet of Things
Journal, vol. 7, no. 9, pp. 8688–8699, 2020.

[8] Z. Ning, P. Dong, X. Wang et al., “Partial computation off-
loading and adaptive task scheduling for 5G-enabled vehic-
ular networks,” IEEE Transactions on Mobile Computing, p.
1, 2020.

[9] M. O. Ojo, S. Giordano, D. Adami, and M. Pagano, “Through-
put maximizing and fair scheduling algorithms in industrial
Internet of things networks,” IEEE Transactions on Industrial
Informatics, vol. 15, no. 6, pp. 3400–3410, 2019.

[10] Z. Ning, S. Sun, X. Wang et al., “Blockchain-enabled intelligent
transportation systems: a distributed crowdsensing frame-
work,” IEEE Transactions on Mobile Computing, p. 1, 2021.

[11] Z. Lv, Y. Han, A. K. Singh, G. Manogaran, and H. Lv, “Trust-
worthiness in industrial IoT systems based on artificial intelli-
gence,” IEEE Transactions on Industrial Informatics, vol. 17,
no. 2, pp. 1496–1504, 2021.

[12] K. Kaur, S. Garg, G. S. Aujla, N. Kumar, J. J. Rodrigues, and
M. Guizani, “Edge computing in the industrial Internet of
things environment: software-defined networks-based edge-
cloud interplay,” IEEE Communications Magazine, vol. 56,
no. 2, pp. 44–51, 2018.

[13] T. Qiu, J. Chi, X. Zhou, Z. Ning, M. Atiquzzaman, and D. O.
Wu, “Edge computing in industrial Internet of things: archi-
tecture, advances and challenges,” IEEE Communications Sur-
veys & Tutorials, vol. 22, no. 4, pp. 2462–2488, 2020.

[14] H. Qi, J. Wang, W. Li, Y. Wang, and T. Qiu, “A blockchain-
driven IIoT traffic classification service for edge computing,”
IEEE Internet of Things Journal, vol. 8, no. 4, pp. 2124–2134,
2021.

[15] J. Pan and J. McElhannon, “Future edge cloud and edge com-
puting for Internet of things applications,” IEEE Internet of
Things Journal, vol. 5, no. 1, pp. 439–449, 2018.

[16] Y. Ai, M. Peng, and K. Zhang, “Edge computing technologies
for Internet of things: a primer,” Journal of Digital Communi-
cations and Networks, vol. 4, pp. 77–86, 2018.

[17] T. Qiu, K. Zheng, M. Han, C. P. Chen, and M. Xu, “A data-
emergency-aware scheduling scheme for Internet of things in
smart cities,” IEEE Transactions on Industrial Informatics,
vol. 14, no. 5, pp. 2042–2051, 2018.

[18] H. Tang, J. Wang, L. Song, and J. Song, “Minimizing age of
information with power constraints: multi-user opportunistic
scheduling in multi-state time-varying channels,” IEEE Jour-
nal on Selected Areas in Communications, vol. 38, no. 5,
pp. 854–868, 2020.

[19] X. Wang, Z. Ning, S. Guo, M. Wen, and V. Poor, “Minimizing
the age-of-critical-information: an imitation learning-based
scheduling approach under partial observations,” IEEE Trans-
actions on Mobile Computing, 2021.

[20] J. Wang, Y. Zhang, Y. Liu, and N. Wu, “Multiagent and
bargaining-game-based real-time scheduling for Internet of
things-enabled flexible job shop,” IEEE Internet of Things Jour-
nal, vol. 6, no. 2, pp. 2518–2531, 2019.

[21] X. Lyu, W. Ni, H. Tian et al., “Optimal schedule of mobile edge
computing for Internet of things using partial information,”
IEEE Journal on Selected Areas in Communications, vol. 35,
no. 11, pp. 2606–2615, 2017.

11Wireless Communications and Mobile Computing



[22] X. Wang, Z. Ning, S. Guo, and L. Wang, “Imitation learning
enabled task scheduling for online vehicular edge computing,”
IEEE Transactions on Mobile Computing, 2020.

[23] H. Li, K. Ota, and M. Dong, “Learning IoT in edge: deep learn-
ing for the Internet of things with edge computing,” IEEE Net-
work, vol. 64, no. 6, pp. 96–101, 2018.

[24] H. Xu, X. Liu, W. G. Hatcher, G. Xu, W. Liao, andW. Yu, “Pri-
ority-aware reinforcement learning-based integrated design of
networking and control for industrial Internet of things,” IEEE
Internet of Things Journal, vol. 8, no. 6, pp. 4668–4680, 2021.

[25] H. Xu, X. Liu, W. Yu, D. Griffith, and N. Golmie, “Reinforce-
ment learning-based control and networking co-design for
industrial Internet of things,” IEEE Journal on Selected Areas
in Communications, vol. 38, no. 5, pp. 885–898, 2020.

[26] X. Guo, H. Lin, Z. Li, and M. Peng, “Deep-reinforcement-
learning-based QoS-aware secure routing for SDN-IoT,” IEEE
Internet of Things Journal, vol. 7, no. 7, pp. 6242–6251, 2020.

[27] H. Wang, L. Shu, W. Yin, Y. Xiao, and J. Cao, “Hyperbolic uti-
lization bounds for rate monotonic scheduling on homoge-
neous multiprocessors,” IEEE Transactions on Parallel and
Distributed Systems, vol. 25, no. 6, pp. 1510–1521, 2014.

[28] A. A. Ayele, V. S. Rao, K. G. Dileep, and R. K. Bokka, “Com-
bining EDF and LST to enhance the performance of real-
time task scheduling,” in International Conference on ICT in
Business Industry & Government (ICTBIG), Indore, India,
2016.

[29] M. Pahlevan and R. Obermaisser, “Genetic algorithm for
scheduling time-triggered traffic in time-sensitive networks,”
in IEEE 23rd International Conference on Emerging Technolo-
gies and Factory Automation (ETFA), vol. 1, pp. 337–344,
Turin, Italy, 2018.

12 Wireless Communications and Mobile Computing


	Deep Reinforcement Learning for Scheduling in an Edge Computing-Based Industrial Internet of Things
	1. Introduction
	2. Related Work
	2.1. Edge Computing-Based IIoT
	2.2. Scheduling Technologies in IIoT
	2.3. Intelligence-Driven Architecture in IIoT

	3. Problem Definition and Models
	3.1. Network Framework
	3.2. Scheduling Model

	4. Proposed DISA Mechanism
	4.1. DRL Formulation
	4.1.1. State
	4.1.2. Action
	4.1.3. Reward

	4.2. Process of DISA

	5. Simulation and Analysis
	5.1. Simulation Setup
	5.2. Result Analysis

	6. Conclusions
	Data Availability
	Conflicts of Interest
	Acknowledgments

