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Excessive mental workload affects human health and may lead to accidents. This study is motivated by the need to assess mental
workload in the process of human-robot interaction, in particular, when the robot performs a dangerous task. In this study, the
use of heart rate variability (HRV) signals with different time scales in mental workload assessment was analyzed. A humanoid
dual-arm robot that can perform dangerous work was used as a human-robot interaction object. Electrocardiogram (ECG)
signals of six subjects were collected in two states: during the task and in a relaxed state. Multiple time-scale (1, 3, and 5min)
HRV signals were extracted from ECG signals. Then, we extracted the same linear and nonlinear features from the HRV
signals at different time scales. The performance of machine learning algorithms using the different time-scale HRV signals
obtained during the human-robot interaction was evaluated. The results show that for the per-subject case with a 3min HRV
signal length, the K-nearest neighbor classifier achieved the best mental workload classification performance. For the cross-
subject case with a 5min time-scale signal length, the gentle boost classifier achieved the best mental workload classification
accuracy. This study provides a novel research idea for using HRV signals to measure mental workload during human-robot
interaction.

1. Introduction

Nowadays, robots, instead of humans, work in unstructured
environments, expanding the scope of human work.
Humans interact with robots through visual, tactile, and
other feedback [1–4]. The robot can be operated remotely
to complete a dangerous task; this operation can be challeng-
ing for humans. At present, research in the field of robotics
primarily focuses on how robots perform human control
instructions, how they perceive environmental information,
and how autonomous operation can be achieved [5, 6].
However, this research neglects the robot’s assessment of
the human’s psychological activity and the emotions of
humans interacting with the robot. Therefore, it is of great

significance to accurately measure the mental workload of
the operator during their interaction with the robot [7, 8].

Mental workload can be measured continuously and
objectively using physiological signals. In particular, heart
rate variability (HRV) signals have been widely studied
because they are easy to collect. In [9], the relationships
between mental workload and time-domain, frequency-
domain, and Poincare plot features of 5min signals were
analyzed. In [10], 5min HRV signal segments were used to
detect the mental workload of a worker. Several linear fea-
tures (time and frequency domains) were utilized. Then,
the combination of principal component analysis and sup-
port vector machine (SVM) achieved 84.4% accuracy. In
fact, the physiological system of the human body can be
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regarded as a nonlinear system. However, the nonlinear
nature of HRV signals cannot be reflected by linear analysis
methods [11, 12]. In [13], the mental workload of perform-
ing MATA-II tasks was measured using 5min scale HRV
signals. This study extracted the multiscale entropy features
of the HRV. Using those, it obtained a higher accuracy for
mental workload recognition than using traditional time-
and frequency-domain features. In [14], 5min length HRV
signal segments were utilized to evaluate the mental work-
load of hospital staff. A variety of conventional and multi-
scale HRV features were extracted, and SVM was used as
the classifier. The results showed that the multiscale features
obtain a better mental workload recognition effect. In [15],
the respiratory and HRV signals were extracted using
5min scale electrocardiogram (ECG) signals. This study
introduced a novel method that fused respiratory and HRV
signals to assess subtle variations in sympathovagal balance
using ECG recordings during the MATA-II mission. Stan-
dard short-term HRV analysis is usually performed on
5min recordings [16], and shorter recordings of HRV sig-
nals are being researched, aiming at a faster detection of
mental workload. In [17], human HRV signals were col-
lected during human-robot interaction through different
types of wearable devices. Using signals of 3min length,
the linear features of HRV signals collected by different
wearable devices were extracted, compared, and analyzed
under different mental workload levels. In [18], 3min HRV
signals were used, and linear and nonlinear features were
utilized. Several machine learning algorithms have been uti-
lized for assessing the mental workload of humans while
operating a dual-arm robot. In [19], 2.5min HRV signals
were detected by a consumer smart watch. Subsequently,
the mental workload of human interaction with multiple
robots was studied. However, analysis of mental workload
recognition with HRV signals at different time scales is not
sufficiently researched. In [20], a nonparametric statistical
test method was utilized to analyze the significant differences
between rest and stress phases with time scales of 30 s and 1,
2, 3, and 5min. However, HRV signals were obtained from
healthy subjects during an examination and in a resting con-
dition, not during human-robot interaction.

Humans use visual, haptic, and other feedback informa-
tion to remotely perceive the environment information dur-
ing human-robot interaction, and the robot is remotely
operated to complete the task. The entire human-robot
interaction process requires the joint perception and
decision-making of human hands, eyes, ears, brain, and
other limbs and organs, which may be very challenging for
the operator. At present, there is a lack of mental workload
measurement analysis during human-robot interactions
using HRV with different time scales. Therefore, in this
study, the differences among HRV signals of multiple time
scales in measuring mental workload were analyzed; six tra-
ditional machine learning methods were used to evaluate the
performances of HRV signals with different time scales. Tra-
ditional machine learning methods were used because they
are more suitable for small sample sizes. Although deep
learning methods have been widely studied, many training
samples are required.

The contribution of this study can be summarized as
follows:

(i) During human-robot interaction, HRV signals were
collected based on a single physiological signal. In
addition, linear and nonlinear features of different
time-scale HRV signals were extracted, and statisti-
cal differences between the mental workloads in the
two states were analyzed

(ii) A variety of representative machine learning algo-
rithms were applied. Differences in the perfor-
mances of the machine learning algorithms with
statistically different linear and nonlinear features
extracted from HRV signals of different time scales
in evaluating mental workload were analyzed

(iii) Finally, the different performances of the algorithms
with HRV signals of various time scales in evaluat-
ing mental workload are discussed

The remainder of this paper is organized as follows. Sec-
tion 2 introduces the data collection and preprocessing algo-
rithms. The mental workload assessment results of
algorithms using different time scales of HRV signals and a
discussion of the results are presented in Section 3. The con-
cluding remarks are presented in Section 4.

2. Data and Method

The research block diagram is shown in Figure 1. It can be
seen that the ECG signals were obtained from volunteers
while they operated the dual-arm robot and in the rest state.
HRV signals were then extracted from the ECG signals.
Using a sliding window of different time scales (1, 3, and
5min), the HRV signals were divided to obtain a collection
of sample data of different time scales. Then, linear and non-
linear features of different time scales were extracted. In
addition, an SVM, K-nearest neighbor (KNN) classifier, gen-
tle boost (GB), linear discriminant analysis (LDA), naive
Bayes (NB), and decision tree (DT) were utilized to identify
the task-performing and rest states. The performance differ-
ences of the classifiers in the mental workload evaluation
with HRV signals at different time scales were compared
and analyzed.

2.1. Data. In this subsection, the subjects and data acquisi-
tion processes are described. Then, a preprocessing algo-
rithm is introduced to obtain the HRV signals from the
collected ECG signals. In addition, multiple time-scale
HRV signal segments are obtained using sliding windows
of different time scales.

2.1.1. Participants. The ECG signals used for mental work-
load assessments were obtained from six male participants.
A description of the six subjects is provided in Table 1. They
were recruited from the Shenyang Institute of Automation,
Chinese Academy of Sciences. Their average age was 25.16
(±2.93). They had normal or corrected vision and were all
healthy, with no nervous system diseases. Before starting
the experimental data collection, all participants were
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informed of the entire data collection process and
precautions.

2.1.2. Data Acquisition. In this study, the operating object
was a dual-arm robot shown in Figure 2. It can be seen that
the robot consists of six wheels and two arms. Moreover,
each wheel is independent, and each arm has seven degrees
of freedom to access all positions in space. In addition, the
top of the robot is equipped with a binocular camera for
environmental observations. The robot controller is an exo-
skeleton device that can be worn by an operator (Figure 3).
The exoskeleton controller also has two arms, and each
arm has seven degrees of freedom, similar to the dual-arm
robot. The ECG signal collection process is shown in
Figure 4. A portable sensor was placed on the chest of the
operator for the acquisition of ECG signals. The captured
ECG signals were sent to a computer via Bluetooth for pro-
cessing. ECG signals were collected in two states of the oper-
ator: during the operation of the dual-arm robot and during
rest.

2.1.3. Signal Preprocessing. The HRV signals refer to a time
series consisting of intervals between each pair of heartbeats.

Therefore, to obtain the HRV signals, it is necessary to detect
the peak and trough values of the ECG signals. Therefore,
the Q, R, and S waves of the ECG signal were detected using
a QRS wave group detection method [21]. However, there
may be an abnormal point in the output RR interval
sequence. Therefore, a classical median-filtering algorithm
was applied to the output RR interval sequence [22]. The
RR interval sequence was regarded as an HRV signal. As
shown in Figures 5–7, sliding windows at different time
scales (1, 3, and 5min) were used with an overlap of
30 s. HRV signals were then divided into six groups: M-
1, R-1, M-3, R-3, M-5, and R-5 groups. The M group sig-
nals represent the operator in the task-performing state,
and the R group signals represent the operator in the rest
state.

The proposed mental workload assessment preprocess-
ing algorithm is described in Algorithm 1, where xiðtÞ is
the ECG data recorded from the ith participant, and I is
the number of participants. The purpose of Steps 1 to 6 is
to obtain the HRV signals yiðtÞ from xiðtÞ signals. The
HRV signals yiðtÞ are segmented into different time-scale
(1, 3, and 5min) segments y1i ðtÞ, y3i ðtÞ, and y5i ðtÞ in Steps 7
to 10.
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Figure 1: Framework of multiple time-scale HRV analysis for mental workload assessment. HRV: heart rate variability; ECG:
electrocardiogram; SVM: support vector machine; KNN: K-nearest neighbors; GB: gentle boost; LDA: linear discriminant analysis; NB:
naive Bayes; DT: decision tree; TP: true positive; TN: true negative; FP: false positive; FN: false negative.

Table 1: Participant characteristics.

Subject 1 Subject 2 Subject 3 Subject 4 Subject 5 Subject 6

Height (cm) 180 175 173 180 175 178

Weight (kg) 67.5 78.5 58 55 75 72.5

Age (years) 24 24 31 23 24 25

Body mass index (kg/m2) 20.8 25.6 19.4 17.0 24.5 22.9
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2.2. Method. Linear and nonlinear analysis methods are the
most commonly used HRV signal analysis methods. There-
fore, in this subsection, the linear and nonlinear features
used in this study are described. The collection of physiolog-
ical signals during human-robot interaction requires consid-
erable manpower and energy; thus, it is difficult to collect
large-scale sample data. However, machine learning algo-
rithms do not require large-scale sample data for efficient
feature recognition [23, 24]. Therefore, in this study, several
different types of machine learning algorithms (SVM, KNN,
GB, LDA, NB, and DT) were used to compare the effects of
feature recognition.

2.2.1. Feature Extraction. First, the linear and nonlinear fea-
tures used in this study are presented. In human-robot inter-

action, the fluctuation of the operator’s mental workload is
related to the fluctuation of the human autonomic nervous
system (ANS). The ANS consists of the sympathetic and
parasympathetic nervous systems. The time- and
frequency-domain features of HRV signals can reflect fluctu-
ations in the sympathetic and the parasympathetic nervous
systems. In addition, nonlinear features can reflect the non-
linear dynamic characteristics of the HRV signal [25, 26].

The linear features include time- and frequency-domain
features. First, we introduce time features.

SDNN denotes the standard deviation of all RR intervals:

SDNN =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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RMSSD denotes the root mean square of the adjacent RR
interval difference:

RMSSD =
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pNN50 denotes the ratio of the number of pairs of adja-
cent RR intervals with a difference of more than 50ms:

PNN50 =
num RRsi+1 − RRsið Þ > 50ms½ �

N − 1
: ð3Þ

In addition, all RR intervals were integrated and divided
by the maximum density distribution parameter, and the
mean and median of the HRV signals were also extracted
as time-domain features.

In this study, all frequency-domain features were
obtained based on the power spectral density [27]. Further-
more, the basic frequency-domain features are defined as
the sum of the power spectra at different frequency ranges:
aTotal = 0 – 0:4Hz; aVLF = 0:003 – 0:04Hz; aLF = 0:04 –
0:15Hz; and aHF = 0:15 – 0:4Hz. The ratio of aLF and
aHF is defined as

LF
HF

=
aLF
aHF

: ð4Þ

The percentage of aVLF, aLF, and aHF are defined as

pVLF =
aVLF
aTotal

,

pLF =
aLF

aTotal
,

pHF =
aHF
aTotal

:

ð5Þ

The respective ratios of aLF and aHF to aLF + aHF are

Driven wheel

Dual-arm

Figure 2: Dual-arm robot experiment platform.
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Figure 3: Exoskeleton robot controller.

ECG sensor

Figure 4: Process of ECG signal collection. ECG:
electrocardiogram.
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defined as

nLF =
aLF

aLF + aHF
,

nHF =
aHF

aLF + aHF
:

ð6Þ

Finally, two typical nonlinear analysis methods applied
in this study are presented. These are sample entropy (SaEn)
and detrended fluctuation analysis (DFA). On the one hand,
SaEn is a method for investigating the dynamics of HRV sig-
nals. It has the advantages of strong antinoise and antijam-
ming abilities. In addition, it can be used to analyze
shorter HRV signals. In the case of large differences in the
parameter value range, good consistency is still achieved.
On the other hand, DFA is suitable for the analysis of non-
stationary time series, and HRV signals have this character-

istic. In addition, the DFA method can filter out the trend
components in the HRV signal. Therefore, it can effectively
avoid the disturbance of false correlations owing to noise
and signal instability.

2.2.2. Mental Workload Recognition. In this subsection, the
abstracted feature vector of HRV signals at different time
scales is used to evaluate the mental workload. The different
time-scale HRV features were analyzed using the t-test to
obtain the statistical significance of the difference between
task-performing and relaxed states; p < 0:05 was considered
statistically significant [28]. Then, linear and nonlinear fea-
tures with statistical differences were used to construct fea-
ture vectors as inputs to machine learning algorithms. Six
different machine learning methods, SVM, KNN, LDA,
GB, NB, and DT, were used in this study to exclude the
effects of performance differences in machine learning
algorithms.

After the initial HRV signal preprocessing, 1, 3, and
5min time-scale HRV signals for mental workload can be
assessed using Algorithm 2. The linear and nonlinear fea-
tures of the ith subject were extracted in Steps 2 to 5. ~Fsi is
defined as the feature vector in the human task-performing
state, and F̂si is defined as the feature vector in the human
relaxed state. Steps 6 to 11 define the process of per-subject
mental workload assessment. F̂si Train and F̂si Test are the train-
ing and testing sets of the ith subject, respectively. Steps 12
to 18 define the process of cross-subject mental workload
assessment. The extracted HRV features ~Fsi and F̂si of all sub-
jects in task-performing and relaxation states are merged
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into matrices ~Fs and F∧s in Steps 13 and 14, respectively.
Then, in Steps 15 to 17, the merged matrices ~Fs and F∧s

are prepared for model construction and mental workload
assessment.

3. Experimental Results

In this section, the mental workload recognition perfor-
mance of classifiers with HRV signals of different time scales
is presented. The statistical differences of the linear and non-
linear features extracted in this study among different men-
tal workload levels were analyzed via a t-test, and the feature
vectors were composed of per-subject and cross-subject
mental workload assessments.

To evaluate the performance of mental workload classi-
fication with different time scales, accuracy was used, which
is defined as follows:

Accuracy : Acc =
TP + TN

TP + FP + TN + FN
× 100%, ð7Þ

where TP is true positive, FP is false positive, FN is false neg-
ative, and TN is true negative.

3.1. Per-Subject Mental Workload Evaluation. The results of
per-subject mental workload evaluation at different time
scales (1, 3, and 5min) are presented. The samples of each
subject were randomly divided into two sets. One was used
for training the machine learning model, and the other was

Input:ECG signals xiðtÞ for each i subject.
Output:Multiple time-scale HRV signals for all subjects.
1: For each i such that 1 ≤ i ≤ I do
2: Q wave, R wave, and S wave of ECG signals xiðtÞ are detected.
3: RR internal sequence is obtained.
4: Abnormal points in the output RR internal sequence are removed by median filtering.
5: HRV signals yiðtÞ are obtained.
6: End for
7: For each i such that 1 ≤ i ≤ I do
8: Segment the yiðtÞ signals into 1min, 3min, and 5min time-scale segments defined as
9: y1i ðtÞ, y3i ðtÞ, and y5i ðtÞ, respectively.
10: End for

Algorithm 1: Mental workload assessment preparation.

Input:Multiple time-scale HRV segments for all subjects.
Output:Per-subject and cross-subject probability of mental workload.
1: For each time scale s, s = 1, 3, 5.
2: For each i such that 1 ≤ i ≤ I do
3: Extract linear and nonlinear features ~Fsi for each ysiðtÞsignal at task-performing state.
4: Extract linear and nonlinear features F̂si for each ysiðtÞsignal at relaxation state.
5: End for
6: If per-subject mental workload assessment
7: For each i such that 1 < i < I do
8: Train classifiers (SVM, KNN, LDA, GB, NB, and DT) based on the training set F̂si Train randomly selected from

F̂si .
9: Obtain the probability of mental workload based on the testing set F̂si Test, which is defined as F̂si‐F̂si Train.
10: End for
11: End if
12: If cross-subject mental workload assessment
13: Merge matrices ~Fs1, ~F

s
i ,…, ~FsI into one matrix ~Fs.

14: Merge matrices F̂s1, F̂si ,…, F̂sI into one matrix F∧s.
15: Train machine learning method (SVM, KNN, LDA, GB, NB, and DT) based on the training set F̂sTrain and

~FsTrain randomly selected from F∧s and ~Fs, respectively.
16: Obtain probability of mental workload based on the testing set F̂sTest and ~FsTest, which are defined as F∧s‐F̂sTrain and

~Fs‐~FsTrain, respectively.
17: End if
18: End for

Algorithm 2: Mental workload assessment after preprocessing.
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used for testing the model. In addition, to increase the reli-
ability of the results, the average of the results repeated 500
times was regarded as the final classification result.

3.1.1. Results of Statistically Significant Features of 1, 3, and
5min Length. Figure 8 shows the statistics of the significantly
different (p < 0:001, p < 0:01, and p < 0:05) features at differ-
ent time scales of each subject. It can be seen that Subject 1
has more significantly different (p < 0:001) features at the
3min time scale, followed by the 1min and 5min time
scales. Subject 2 showed more significantly different features
at the 3min time scale and at the 1min time scale; the sum
of the most significantly different (p < 0:001) features and
the significantly different (p < 0:01 and p < 0:05) features
was the largest. Subject 3 and Subject 4 have the most signif-
icantly different (p < 0:001) features at the 3min time scale.
Subject 5 and Subject 6 have the most significantly different
(p < 0:001) features at the 5min time scale.

3.1.2. Classification Accuracy of Different Classifiers with
Different Time Scales. Figure 9 shows the classification accu-
racy of the mental workload using different classifiers with
different time scales. Figure 9(a) shows the classification
accuracy using SVM. It can be seen that the time scale with
which the SVM achieved the highest average recognition
accuracy was 3min. In addition, the average classification
accuracies of Subject 1 to Subject 6 with the 1, 3, and
5min time scales were 95.30%, 97.54%, and 95.11%, respec-
tively. Figure 9(b) shows the classification accuracy using
KNN. It can be seen that the time scale with which the
KNN obtained the highest average recognition accuracy
was 3min. In addition, the average classification accuracies
of Subject 1 to Subject 6 with the 1, 3, and 5min time scales
were 96.09%, 98.77%, and 96.21%, respectively. Figure 9(c)
shows the classification accuracy using GB; it achieved the
highest average recognition accuracy with the 3min time

scale. In addition, the average classification accuracies of
Subject 1 to Subject 6 with the 1, 3, and 5min time scales
were 93.17%, 95.90%, and 90.61%, respectively.

Figure 9(d) shows the classification accuracy using LDA; it
did not achieve good classification performance with any of the
three types of time scales. The average classification accuracies
of Subject 1 to Subject 6 with the 1, 3, and 5min time scales were
52.02%, 52.27%, and 52.28%, respectively. Figure 9(e) shows the
classification accuracy usingNB. It can be seen thatNB achieved
the highest average recognition accuracy with the time scale of
3min. The average classification accuracies of Subject 1 to Sub-
ject 6 with the 1, 3, and 5min time scales were 80.52%, 84.99%,
and80.07%, respectively. Finally, Figure 9(f) shows the classifica-
tion accuracy using DT. The average classification accuracies of
Subject 1 to Subject 6 with the 1, 3, and 5min time scales were
80.52%, 84.99%, and 80.07%, respectively.

3.2. Cross-Subject Mental Workload Evaluation. The results
of cross-subject mental workload evaluation at different time
scales (1, 3, and 5min) are presented in this subsection. The
sample data of five of the six subjects were selected to train
the machine learning model. At the same time, the sample
data of the remaining subject were selected to test the
machine learning model.

3.2.1. Statistically Significant Analysis of Features. Table 2
shows the statistical differences between the two groups at
the time scales of 1, 3, and 5min. From Table 2, we can
see that there were 17 features in the most significantly dif-
ferent category (p < 0:001) and 2 features with significant
differences (p < 0:01) between groups M-1 and R-1. There
were eighteen features in the most significantly different cat-
egory (p < 0:001) and two features of the significantly differ-
ent category (p < 0:01) between groups M-3 and R-3. There
were 17 features in the most significantly different category
(p < 0:001) between groups M-5 and R-5.
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Figure 8: Results with statistically significant features of per-subject analysis at different time scales.
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3.2.2. Classification Accuracy of Different Classifiers with
Different Time Scales. Figure 10 shows the classification
accuracy of the mental workload using different classifiers
at different time scales. Figure 10(a) shows the classification
accuracy using SVM. It can be seen that when Subject 3 was
used as the test subject, the classifier achieved the worst clas-
sification accuracy. The average classification accuracies of
the classifier across all subjects with the 1, 3, and 5min time
scales were 77.59%, 75.06%, and 78.51%, respectively.
Figure 10(b) shows the classification accuracy using KNN.
Again, when Subject 3 was the test subject, the worst classi-
fication accuracy was achieved. The average classification
accuracies of the classifier across all subjects with the 1, 3,
and 5min time scales were 69.24%, 70.40%, and 73.53%,
respectively. Figure 10(c) shows the classification accuracy
using GB. It can be seen that GB showed the worst classifica-

tion accuracy with the time scale of 1min and the best accu-
racy with the time scale of 5min, both when Subject 2 was
the test subject. The average classification accuracies of Sub-
ject 1 to Subject 6 with the 1, 3, and 5min time scales were
63.53%, 71.55%, and 80.56%, respectively. Figure 10(d)
shows the classification accuracy using LDA. It can be seen
that the classifier showed the worst classification accuracy
with the time scale of 3min and the best accuracy with the
time scale of 5min, both when the data of Subject 3 were
used as the test set. The average classification accuracies with
the 1, 3, and 5min time scales were 44.44%, 35.92%, and
53.92%, respectively. Figure 10(e) shows the classification
accuracy using NB. It achieved the worst classification accu-
racy with Subject 3 as the test subject and the time scale of
5min. It obtained the best accuracy with Subject 2 and the
time scale of 5min. The average classification accuracies
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Figure 9: Classification accuracies of per-subject mental workload by different classifiers at different time scales: (a) support vector machine,
(b) K-nearest neighbors, (c) gentle boost, (d) linear discriminant analysis, (e) naïve Bayes, and (f) decision tree.
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with the 1, 3, and 5min time scales were 64.53%, 66.48%,
and 66.50%, respectively. Figure 10(f) shows the classifica-
tion accuracy using DT. It can be seen that DT showed the
worst classification accuracy with Subject 1 and the time
scale of 5min and the best accuracy with Subject 4 and the
time scale of 5min. The average classification accuracies
with the 1, 3, and 5min time scales were 65.03%, 67.91%,
and 59.48%, respectively.

3.3. Discussion. Studies have shown that HRV can be used to
measure and evaluate the mental workload of operators dur-
ing human-robot interaction. Different time scales of HRV
signals for mental workload measurement analysis have
been widely studied. However, they were not based on a
dataset of human-robot interaction. In addition, for the
same dataset, the mental workload measurement analysis
of human-robot interaction using HRV signals of different
time scales was not reported, and there is no relevant public
dataset. Hence, in this study, ECG signals were collected
from six volunteers during task performance and rest. The
fluctuation in the mental workload is closely related to the
fluctuation state of the ANS, and HRV signals can react to
the fluctuating state of the ANS. HRV signals of different

lengths show levels of nervous activity information about
the mental workload. This study presented a detailed com-
parative analysis.

First, the HRV signals at different time scales (1, 3, and
5min) of the same individual were analyzed. Using a t-test,
the statistical differences between the task-performing and
rest states were analyzed. The results are shown in
Figure 8. These are the p values of 1, 3, and 5min time-
scale HRV signals and the results with statistically significant
features per subject at different time scales. It can be seen
from Figure 8 that Subject 1 to Subject 4 show the most sig-
nificantly different features at the 3min time scale, whereas
Subject 5 and Subject 6 have slightly less than the 5min time
scale. Moreover, there were a total of 75, 87, and 78 features
with the most significant differences (p < 0:001) for the
1min, 3min, and 5min time-scale HRV signals of the six
subjects, respectively. It is shown that at the time scale of
3min, there are more significantly different features than at
the other time scales. The classification analysis of mental
workload was performed using the features with statistical
differences (p < 0:05) and six types of classifiers. The results
are shown in Figure 9. It can be seen that the average accu-
racy across the six subjects with the 3min time scale was the
highest, i.e., 98.77% with the KNN classifier. The average
accuracy across the six subjects at 1min and 5min were
96.09% (KNN) and 96.21% (KNN), respectively. This differ-
ence may be because the 1min time-scale signal contains a
limited amount of information. Although the 5min time-
scale signal contains a sufficient amount of information,
the number of samples split from the collected signal is rel-
atively small, which affects the training accuracy of the clas-
sification model. The signal length of 3min contains
sufficient time- and frequency-domain information, and
more samples can be divided from the collected signals.
Therefore, at a time scale of 3min, the HRV signal analysis
of the same individual obtained a high average classification
accuracy. In addition, using 1, 3, and 5min signals achieved
high overall recognition accuracy and further verified that
HRV signals can reflect the operator’s mental workload
changes during human-robot interaction.

HRV signals between different individuals were then
analyzed. Using a t-test, the statistical differences between
the task-performing and rest states were analyzed. The
results are presented in Table 2. Table 2 shows that 17, 18,
and 17 features were the most significantly different
(p < 0:001) for 1min, 3min, and 5min time-scale HRV sig-
nals of the six subjects, respectively. The classification analy-
sis of mental workload was performed using the features
with statistical differences (p < 0:05) and six types of classi-
fiers. The sample data of five of the six individuals were used
as the training set, and the sample data of one individual
were left as the test set. The results are shown in Figure 10.
It can be seen that the average accuracy of cross-subject
identification is highest at 80.56% (GB) with the 5min time
scale, and the accuracies with 1 and 3min time scales were
77.59% (SVM) and 75.06% (SVM), respectively. We found
that the accuracy of cross-subject mental workload recogni-
tion was much lower than the per-subject mental workload
recognition. This is because there are strong individual

Table 2: Statistical analysis results of features under multiple time
scales.

M-1 and
R-1

M-3 and
R-3

M-5 and
R-5

Time domain

HRVTi 0∗∗∗ 0∗∗∗ 0∗∗∗

Mean 0∗∗∗ 0∗∗∗ 0∗∗∗

SDNN 0∗∗∗ 0∗∗∗ 0∗∗∗

Median 0∗∗∗ 0∗∗∗ 0∗∗∗

pNN50 0∗∗∗ 0∗∗∗ 0∗∗∗

RMSSD 0∗∗∗ 0∗∗∗ 0∗∗∗

Frequency
domain

aHF 0∗∗∗ 0∗∗∗ 0∗∗∗

aLF 0∗∗∗ 0∗∗∗ 0∗∗∗

aTotal 0∗∗∗ 0∗∗∗ 0∗∗∗

aVLF 0∗∗∗ 0∗∗∗ 0∗∗∗

LF/HF 0∗∗∗ 0.054 0∗∗∗

nHF 0∗∗∗ 0∗∗∗ 0.001∗∗

nLF 0∗∗∗ 0∗∗∗ 0.002∗∗

pHF 0.80 0∗∗∗ 0∗∗∗

pLF 0.003∗∗ 0.60 0.194

pVLF 0.006∗∗ 0∗∗∗ 0∗∗∗

Nonlinear

SaEn 0∗∗∗ 0∗∗∗ 0∗∗∗

Alpha 0∗∗∗ 0∗∗∗ 0∗∗∗

Alpha1 0∗∗∗ 0∗∗∗ 0∗∗∗

Alpha2 0∗∗∗ 0∗∗∗ 0∗∗∗

∗, ∗∗, and ∗∗∗ represent p < 0:05, p < 0:01, and p < 0:001, respectively. M-
1 : 1 min signals of the task-performing state; R-1 : 1 min signals of the rest
state; M-3 : 3 min signals of the task-performing state; R-3 : 3min signals
of the rest state; M-5: 3 min signals of the task-performing state; R-
5 : 5 min signals of the rest state.
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differences in HRV signals. Although HRV signals can reflect
the fluctuating state of the ANS, there are differences in the
psychological and physical qualities of different individuals.
Therefore, to study cross-subject mental workload recogni-
tion, we need to further investigate the HRV signal to reflect
the common characteristics of different individuals and to
establish a universal mental workload recognition model.

4. Conclusion

In this paper, the differences in the recognition of the mental
workload during human-robot interaction using multiple
time-scale HRV signals were analyzed. First, ECG signals were
obtained from six subjects while they were performing a task
and while staying relaxed. Then, HRV signals were extracted
based on the ECG signals. Furthermore, the HRV signals were
divided into different groups using sliding windows of 1, 3,
and 5min. Then, several linear and nonlinear features of

HRV signals were extracted for these different groups. Finally,
six different machine learning algorithms were used to assess
the mental workload performance. For the per-subject evalua-
tion of mental workload with different time scales, the HRV
signals of each individual were used for training, and then this
individual’s mental workload was assessed by the trained
model. In the case of a 3min signal length, the KNN method
obtained an average accuracy of 98.77%. For the cross-
subject mental workload evaluation, the HRV signals of five
of six individuals were used to train the model. Then, the
trainedmodel identified themental workload of the remaining
individual. The highest average classification accuracy was
obtained by the GB algorithm using the 5min time scale,
and its average accuracy was 80.56%. This study explores the
problems of the operator’s mental workload recognition dur-
ing human-robot interaction using different time-scale HRV
signals. However, the sample size in this study was limited;
in the future, more data will be collected for analysis to provide
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Figure 10: The classification accuracy of cross-subject mental workload by different classifiers at different time scales: (a) support vector
machine, (b) K-nearest neighbors, (c) gentle boost, (d) linear discriminant analysis, (e) naïve Bayes, and (f) decision tree.
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generalizable experimental results. In addition, online identifi-
cation of human-robot interaction mental workload will be
studied. Furthermore, different machine learning algorithms
will be combined to choose the best recognition result of
mental workload by voting.

Data Availability

Because the physiological signal of the human body involves
personal privacy, so the experimental data will not be made
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