
Research Article
A Privacy-Preserving Reinforcement Learning Approach for
Dynamic Treatment Regimes on Health Data

Xiaoqiang Sun ,1,2 Zhiwei Sun ,3 Ting Wang,3 Jie Feng,4,5 Jiakai Wei,6 and Guangwu Hu1

1School of Computer, Shenzhen Institute of Information Technology, Shenzhen 518172, China
2Guangdong Key Laboratory of Intelligent Information Processing, College of Electronics and Information Engineering,
Shenzhen University, Shenzhen 518060, China
3School of Artificial Intelligence, Shenzhen Polytechnic, Shenzhen 518055, China
4Guangzhou Institute of Technology, Xidian University, Guangzhou 510555, China
5Shaanxi Key Laboratory of Information Communication Network and Security, Xi’an University of Posts & Telecommunications,
Xi’an, Shaanxi 710121, China
6Department of Neonatology, Xi’an Children’s Hospital, Xi’an Jiaotong University, Xi’an 710003, China

Correspondence should be addressed to Zhiwei Sun; smeker@szpt.edu.cn

Received 13 September 2021; Accepted 22 October 2021; Published 23 November 2021

Academic Editor: Celimuge Wu

Copyright © 2021 Xiaoqiang Sun et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Based on the clinical states of the patient, dynamic treatment regime technology can provide various therapeutic methods, which
is helpful for medical treatment policymaking. Reinforcement learning is an important approach for developing this technology.
In order to implement the reinforcement learning algorithm efficiently, the computation of health data is usually outsourced to the
untrustworthy cloud server. However, it may leak, falsify, or delete private health data. Encryption is a common method for
solving this problem. But the cloud server is difficult to calculate encrypted health data. In this paper, based on Cheon et al.’s
approximate homomorphic encryption scheme, we first propose secure computation protocols for implementing comparison,
maximum, exponentiation, and division. Next, we design a homomorphic reciprocal of square root protocol firstly, which only
needs one approximate computation. Based on the proposed secure computation protocols, we design a secure asynchronous
advantage actor-critic reinforcement learning algorithm for the first time. Then, it is used to implement a secure treatment
decision-making algorithm. Simulation results show that our secure computation protocols and algorithms are feasible.

1. Introduction

As a recent healthcare tendency, personalized medicine [1]
enables the patient to obtain early diagnoses, risk estimation,
optimal treatments with low costs by using molecular and
cellular analysis technologies, diagnosis results, genetic
information, etc. Personalized medicine is usually imple-
mented by the dynamic treatment regime technology [2,
3], which can provide various therapeutic methods accord-
ing to the time-varying clinical states of the patient. This
technology is particularly suitable for coping with complex
chronic illnesses, such as diabetes, mental diseases, alcohol
dependence, and human immunodeficiency virus infection,
which have various stages.

Reinforcement learning [4], which is implemented by
trial-and-error and interaction with the dynamic environ-
ment, is an important method for developing dynamic
treatment regimes, industry automation, vehicular net-
works [5, 6], and other scenarios [7–12]. Meanwhile, with
the developing technologies of internet of things and cloud
computing, dynamic treatment regimes that are based on
reinforcement learning are becoming increasingly attrac-
tive. For example, wearable devices are helpful for moni-
toring the patient’s health data, which include heart rates
and blood sugar levels. Next, collected health data are
stored on the cloud. Then, the reinforcement learning
algorithm can be implemented on these health data for
making treatment decisions.

Hindawi
Wireless Communications and Mobile Computing
Volume 2021, Article ID 8952219, 16 pages
https://doi.org/10.1155/2021/8952219

https://orcid.org/0000-0003-3838-4030
https://orcid.org/0000-0002-9798-141X
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2021/8952219


Unfortunately, because of the patient’s limited computa-
tion ability, health data are usually outsourced to the cloud
server for implementing the reinforcement learning algo-
rithm. Because the cloud server may be untrusted, it is likely
that health data will be illegally accessed, forged, tampered,
or discarded in the process of transmission and computa-
tion. In addition, it may be harmful for personal privacy,
economic interests, and even the security of human life.
For example, as a billing service company, American Medi-
cal Collection Agency was intruded in 2019 [13]. This attack
affects the health data of about 12 million patients. Besides,
the parent firm of this company has filed for bankruptcy.
Furthermore, unlike financial data or other types of
human-generated data [14], health data are permanent bio-
logical data. They cannot be modified or wiped to avoid the
damage, which is caused by health data disclosure.

In order to protect health data, we can encrypt health
data by using a traditional encryption algorithm. Unfortu-
nately, the reinforcement learning algorithm cannot be exe-
cuted on the encrypted health data easily and flexibly.
Homomorphic encryption [15] supports the operations on
the ciphertext. Hence, the cloud server can run the reinforce-
ment learning algorithm on the encrypted health data per-
fectly by using homomorphic encryption without leaking
patient privacy. Finally, the encrypted computation result
is returned to the patient. The computation result can be
obtained by using the patient’s secret key.

In this paper, we endeavor to study the security of health
data in the above realistic scenario and focus on the secure
implementation of the asynchronous advantage actor-critic
(A3C) reinforcement learning algorithm. Taking into
account the privacy and computation of health data on the
untrusted cloud servers, we adopt homomorphic encryption
as the main encryption primitive to carry out our research.
Eventually, we make the following three contributions:

(1) Because the efficiency of Cheon et al.’s approximate
homomorphic encryption scheme [16] is better than
that of fully homomorphic encryption (FHE), we use
it to design secure computation protocols, namely,
homomorphic comparison protocol, homomorphic
maximum protocol, homomorphic exponential pro-
tocol, and homomorphic division protocol. Based on
these protocols, we first design the homomorphic
reciprocal of square root protocol, which needs only
one approximate computation

(2) Based on the proposed secure computation protocols,
we design the secure A3C reinforcement learning
algorithm for the first time. Then, we use it to imple-
ment a secure treatment decision-making algorithm

(3) Finally, we simulate the proposed secure computa-
tion protocols and algorithms on the personal com-
puter’s virtual machine. Then, we demonstrate the
efficiency of our secure computation algorithms
according to the thorough analysis

The layout of this paper is as follows. Section 2 analyzes
related work about homomorphic encryption and secure

computation of encrypted health data. Preliminaries are pre-
sented in Section 3. Section 4 shows related work about
secure dynamic treatment regimes on health data. Building
blocks are discussed in Section 5. Section 6 describes the
proposed privacy-preserving A3C reinforcement learning
algorithm and treatment decision-making algorithm. Perfor-
mance results are shown and analyzed in Section 7. Finally,
this paper is concluded in Section 8.

2. Related Work

In this section, we introduce related work about reinforce-
ment learning, homomorphic encryption, and the computa-
tion of encrypted health data, which are described as follows.

Reinforcement learning can be mainly classified as
value-based algorithms, policy-based algorithms, and actor-
critic algorithms. Value-based algorithms usually compute
the optimum cumulative reward and give a suggested policy.
As a typical value-based algorithm, Q-learning is used for
estimating the utility of the individual pair that consists of
a state and an action. Q-learning has been applied for path
planning [17, 18] in vehicular networks. Policy-based algo-
rithms can evaluate the optimum policy directly. Williams
[19] proposed a policy-based algorithm REINFORCE.
Actor-critic algorithms combine the advantages of value-
based algorithms and policy-based algorithms. The A3C
reinforcement learning algorithm [20] is an actor-critic algo-
rithm. It can work in discrete action spaces as well as contin-
uous action spaces [21].

The concept of homomorphic encryption begins from
privacy homomorphism [15]. According to the types of sup-
ported homomorphic operations, homomorphic encryption
can be divided into partial homomorphic encryption
(PHE), somewhat homomorphic encryption (SWHE), and
FHE. PHE only supports homomorphic addition or homo-
morphic multiplication. SWHE is the basis of FHE. SWHE
supports finite homomorphic addition and homomorphic
multiplication. FHE supports arbitrary homomorphic addi-
tion and homomorphic multiplication.

In 2009, Gentry [22] designed the first FHE scheme,
which is based on ideal lattices. Since then, homomorphic
encryption has become a research hotspot. Next, in order
to improve the efficiency of homomorphic operations, Gen-
try et al. [23] first constructed the FHE scheme, which is
based on the approximate eigenvector method. In this
scheme, the ciphertext noise increases linearly after each
homomorphic multiplication. Although homomorphic mul-
tiplication of this scheme is efficient, it does not support the
technique of single instruction multiple data (SIMD) [24].
Then, based on the learning with errors over rings (RLWE)
[25] assumption and relinearization technique [24], Brake-
rski et al. [24] designed a FHE scheme, which supports the
SIMD technique. However, this scheme does not support
approximate homomorphic operations. Hence, based on
Brakerski et al.’s scheme [24], Cheon et al. [16] proposed
an improved homomorphic encryption scheme.

In terms of the computation of encrypted health data by
using homomorphic encryption, there exist following several
schemes. Khedr and Gulak [26] first proposed an optimized

2 Wireless Communications and Mobile Computing



homomorphic encryption scheme, which is based on Gen-
try’s scheme [23]. Then, the proposed scheme is applied
for secure medical computations, which include comparison,
Pearson goodness-of-fit test, and logistic regression. Sun
et al. [27] implemented secure average heart rate, long QT
syndrome detection, and chi-square tests by using Dowlin
et al.’s FHE scheme [28]. Based on Boneh et al.’s homomor-
phic encryption scheme [29], Poon et al. [30] implemented
the secure Fisher’s exact test algorithm, which is often used
to guarantee the statistical stability of genetic analysis. Rai-
saro et al. [31] used homomorphic encryption to explore
genomic cohorts securely in a real scenario. In 2019, based
on the distributed two trapdoors public-key algorithm [32]
and Q-learning algorithm, Liu et al. [2] constructed a secure
reinforcement learning model, which is helpful for making
treatment decisions dynamically. Based on Fan’s SWHE
scheme [33], Jiang et al. [34] performed secure and efficient
feature point detection and image matching for retinal
images of diabetic retinopathy.

However, most of the above schemes are based on PHE,
which only supports homomorphic addition or homomor-
phic multiplication. PHE may not support homomorphic
multiplication. If homomorphic multiplication is required
in some schemes, excessive rounds of interactions are
needed. FHE can avoid this problem. But FHE confronts
the problem of the efficiency of homomorphic operations.
Furthermore, the Q-learning algorithm is usually used as
the reinforcement learning algorithm in the above schemes.
There does not exist an approach that can implement the
A3C reinforcement learning algorithm securely.

3. Preliminaries

In this section, we begin with basic notations and definition
of Cheon et al.’s approximate homomorphic encryption
scheme. Then, we give the introduction of the A3C
algorithm.

3.1. Basic Notations. Let ½z� = ðz − 1/2, z + 1/2�, where z is a
real number. Let ½z�p = z − ½z/p� · p ∈ ð−p/2, p/2�, where p
denotes an integer.

Let R =ℤ/hΦmðxÞi denote the ring modulo ΦmðxÞ,
where λ is the security parameter, m is a positive integer,
and ΦmðxÞ is the mth cyclotomic polynomial. Rq =ℤq½x�/h
ΦmðxÞi represents the ring modulo q and ΦmðxÞ, where q
is the prime modulus, q ≥ 2.

As for an integer h > 0, the distribution HWT ðhÞ is
selected from f0,±1g randomly with the Hamming weight
h. As for a rational number σ > 0, the distribution DGðσ2Þ
outputs a vector, which coefficients are selected from the dis-
crete Gaussian distribution with the variance σ2. As for a
rational number 0 ≤ ρ ≤ 1, the distribution ZOðρÞ is chosen
from f0,±1g randomly, where ρ/2 is the probability that ±1
is selected and 1 − ρ is the probability that 0 is selected.

3.2. Learning with Errors over Rings. In 2010, Lyubashevsky
et al. [25] first proposed the RLWE assumption, which is
described as follows.

Definition 1 (RLWE). The RLWEλ,q,χ assumption is to dis-
tinguish two distributions, namely, ða, a · s + eÞ ∈ Rq × Rq

and ða, cÞ ∈UnifðRq × RqÞ, where a ∈ Rq and s ∈ Rq, e is an
error term, and Unif represents uniform random. Lyuba-
shevsky et al. [25] proved that the security of RLWE
assumption relies on ideal lattices.

3.3. Cheon et al.’s Homomorphic Encryption Scheme. In this
subsection, we introduce Cheon et al.’s approximate homo-
morphic encryption scheme AHE = ðKeyGen, Enc, Add,
Sub, Mul, Dec, ReScale, Ecd, DcdÞ [16] as follows:

(i) AHE:KeyGenð1λ, p, LÞ: given the security parame-
ter λ, an integer p, and a level L, this algorithm first
sets ql = pl · q0, where q0 is a fixed integer, l = L,
⋯, 1. It selects a power-of-two integer M =Mðλ,
qLÞ, an integer P = Pðλ, qLÞ, and a rational number
σ = σðλ, qLÞ. Next, it chooses a vector s from H

WT ðhÞ. The secret key sk is set as ð1, sÞ. A ring
element a is sampled from RqL

. An error term e is
sampled from DGðσ2Þ. The public key pk is set
as ðb, aÞ ∈ R2

qL
, where b = −a · s + eðmod qLÞ. Then,

a ring element a′ is sampled from RP·qL . An error

term e′ is sampled from DGðσ2Þ. The evaluation
key evk is set as ðb′, a′Þ ∈ R2

P·qL
, where b′ = −a′ · s

+ e′ðmod P · qLÞ
(ii) AHE:Encðpk,mÞ: in order to encrypt a plaintext m

, this algorithm samples an integer v from ZOð
0:5Þ. In addition, it chooses two error terms e0
and e1 from DGðσ2Þ. m is encrypted as the cipher-
text c = v · pk + ðm + e0, e1Þðmod qLÞ

(iii) AHE:Decðsk, cÞ: in this algorithm, c = ðb, aÞ is
decrypted as b + a · sðmod qlÞ

(iv) AHE:Addðc′, c′′Þ: in this algorithm, input param-
eters include two ciphertexts c′ = ð½c′0�ql , ½c′1�qlÞ
and c′′ = ð½c′′0�ql , ½c′

′
1�qlÞ, which are under the same

secret key. Then, the additive ciphertext cadd =
ð½c0�ql + ½c′′0�ql , ½c1�ql + ½c′′1�qlÞ

(v) AHE:Mulðevk, c′, c′′Þ: in this algorithm, input
parameters include evk, two ciphertexts c′ = ð
½c′0�ql , ½c′1�qlÞ and c′′ = ð½c′′0�ql , ½c′

′
1�qlÞ, where c′

and c′′ are under the same secret key. Then, the

ciphertext ctemp = ðc0, c1, c2Þ = ð½c′0 · c′′0�ql ,
½c′0 · c′′1 + c′1 · c′′0�ql , ½c′1 · c′

′
1�qlÞ. The multiplicative

ciphertext cmul = ðc0, c1Þ + ½P−1 · c2 · evk�ðmod qlÞ
(vi) AHE:ReScalel⟶l′ðcÞ: as for a ciphertext c ∈ R2

ql
at

the level l, the new ciphertext c′ = ½ðql′/qlÞc�ðmod
q′lÞ

3Wireless Communications and Mobile Computing



(vii) AHE:Ecdðz, ΔÞ: as for a vector z = ðz0, z1,⋯,
zN/2−1Þ ∈ℂN/2 and a scaled factor Δ > 0, this algo-
rithm outputs z′ = ½σ−1ðΔ · zÞ� ∈ R, where σ−1 is
the inverse operation of a canonical embedding
map σð·Þ

(viii) AHE:Dcdðz′, ΔÞ: as for z′ ∈ R, this algorithm out-
puts z = Δ−1 · σðmÞ ∈ℂN/2

In Cheon et al.’s scheme, the decryption noise should be
bounded by 8

ffiffiffi
2

p
· σ ·N + 6σ ·

ffiffiffiffi
N

p
+ 16σ ·

ffiffiffiffiffiffiffiffiffiffi
h ·N

p
for the cor-

rectness of decryption. In addition, the noise of the rescaling
ciphertext is at most

ffiffiffiffiffiffiffiffi
N/3

p
· ð3 + 8

ffiffiffi
h

p Þ. Furthermore, the
noise of the multiplicative ciphertext should be less than
P−1 · ql · 8σ ·N/

ffiffiffi
3

p
+

ffiffiffiffiffiffiffiffi
N/3

p
· ð3 + 8

ffiffiffi
h

p Þ. The details about
the analysis of Cheon et al.’s scheme can be found in [16].

3.4. Asynchronous Advantage Actor-Critic Reinforcement
Learning Algorithm. In 2016, Mnih et al. [20] proposed the
asynchronous advantage actor-critic reinforcement learning
algorithm, which is based on combining the value-based
method and the policy-based method. One advantage of
the A3C algorithm is that it can work in discrete action
spaces as well as continuous action spaces. In addition, in
order to improve the learning efficiency of the A3C algo-
rithm, multiple asynchronous actor-learners, which can
interact with the environment and acquire various indepen-
dent exploration policies, are running in parallel. The details
of the A3C algorithm are described as follows.

In the A3C algorithm, there is a policy function πðat ∣ st
; θÞ and a value functionVðst ; θvÞ, where at denotes an action
at the time step t, st denotes a state at the time step t, and θ and
θv are two parameters. In addition, Vðst ; θvÞ and πðat ∣ st ; θÞ
will be updated tmax times, where tmax denotes the maximum
step. Vðst ; θvÞ and πðat ∣ st ; θÞ are usually approximated by
a single convolutional neural network. Specifically, Vðst ;
θvÞ is based on a linear layer. πðat ∣ st ; θÞ is relied on a
softmax layer. Namely, Vðst ; θvÞ = xðstÞ · θv, where xðstÞ
is a function which is related to st . πðat ∣ st ; θÞ = ef ðat ∣stÞ·θ/
∑tmax

j=0 e
f ðaj∣sjÞ·θ, aj is an action at the time step j, and f ðaj

∣ sjÞ is a function which is related to aj and sj.
Furthermore, the A3C algorithm uses two loss functions,

namely, policy loss function and value loss function, which
are described as follows. On the one hand, the policy loss func-
tion

f π θð Þ = ln π at ∣ st ; θð Þ · R −V st ; θvð Þð Þ + β ·H π st ; θð Þð Þ,
ð1Þ

where R is the reward and the parameter k depends on the state.
In addition, the upper bound of k is tmax. rt+i is the immediate
reward. The discount factor γ ∈ ð0, 1�. The entropy function
Hðπðst ; θÞÞ can be set as −Σk

i=0 f ðat ∣ stÞ · θ · ln πðst ; θÞ. The
hyperparameter β can adjust the intensity of the entropy regu-
lation term. Then, we can conclude that

f π θð Þ = f at ∣ stð Þ − Σtmax
j=0 f aj ∣ sj

� �� �
· θ · R − x stð Þ · θvð Þ

+ β · −Σk
i=0 f at ∣ stð Þ · f at ∣ stð Þ − Σtmax

j=0 f aj ∣ sj
� �� �

· θ2
� �

:

ð2Þ

Hence, the differentiation of f πðθÞ with respect to θ is

∂f π θð Þ
∂θ

= f at ∣ stð Þ − Σ
tmax
j=0 f aj ∣ sj

� �� �

� R − x stð Þ · θvð Þ + 2β · θ · f at ∣ stð Þ
· f at ∣ stð Þ − Σtmax

j=0 f aj ∣ sj
� �� �

:

ð3Þ

On the other hand, the value loss function

f v θvð Þ = R −V st ; θvð Þð Þ2 = R − x stð Þ · θvð Þ2: ð4Þ

Hence, the differentiation of f vðθvÞ with respect to θv is

∂f v θvð Þ
∂θv

= 2 R − x stð Þ · θvð Þ ∂R
∂θv

− x stð Þ
� �

: ð5Þ

Based on the above two loss functions and corresponding
differentiation, the A3C reinforcement learning algorithm is
defined in Algorithm 1, which is described as follows. Algo-
rithm 1 requires input parameters θ, θv, θ′, θ′v, T, t, tmax,
Tmax, tg, η, W, and α, where the definition of these param-
eters are shown in Table 1. In order to implement Algo-
rithm 1, we first set T = 0, t = 1. If T < Tmax and
w ∈ ½1,W�, we implement the iteration, which is shown as
follows. Global gradients dθ and dθv are set as 0. θ′ and
θ′v are synchronized as θ and θv, respectively. We set t0
= t and obtain the system state S t ∈ S, where S is a state
set, S = ðS0,⋯,Sφ−1Þ, and φ is the number of states. Next,
we repeat a subalgorithm until t − t0 ≠ tmax. In this subalgo-
rithm, the action A t ∈A is obtained by using πðA t ∣ S t ;
θ′Þ, where A is an action set, A = ðA0,⋯,Aχ−1Þ, and χ

is the number of actions. We execute A t , get the reward Rt
, and observe the next state S t+1, where Rt is set as Σ

k−1
i=0 γ

i ·
rt+i + γk · VðS t+k ; θ′vÞ = Σk−1

i=0 γ
i · rt+i + γk · xðS t+kÞ · θ′v. In

addition, we set t = t + 1. After the implementation of the
above subalgorithm, we observe whether t%tg equals to 0. If
S t is terminal, we set R = 0. If S t is nonterminal R =VðS t ;
θ′vÞ = xðS tÞ · θ′v. Then, we repeat a subalgorithm from i = t
− 1 to i = t0. In this subalgorithm, R is set asRt + γ · R, namely,
R = Σk−1

i=0 γ
i · rt+i + γk · xðS tÞ · θ′v + γ · R. We compute

∂f π θ′
� �

∂θ′
= f A t ∣ S tð Þ − 〠

tmax

j=0
f A t ∣ S tð Þ

 !

� R − x S tð Þ · θvð Þ + 2β · θ′ · f A t ∣ S tð Þ

� f A t ∣ S tð Þ − 〠
tmax

j=0
f A t ∣ S tð Þ

 !

,

ð6Þ

4 Wireless Communications and Mobile Computing



where ∂f πðθ′Þ/∂θ′ is the differentiation of f πðθ′Þwith respect
to θ′. dθ is set as dθ + ∂f πðθ′Þ/∂θ′. We compute

∂f v θ′v
� �

∂θ′v
= 2 R − x S tð Þ · θ′v
� �

·
∂R
∂θ′v

, ð7Þ

where ∂f vðθ′vÞ/∂θ′v is the differentiation of f vðθ′vÞ with
respect to θ′v and ∂R/∂θ′v is the differentiation of R with
respect to θ′v. Finally, θ and θv can be updated by using equa-
tions θ = θ − ηðdθ/ ffiffiffiffiffiffiffiffiffiffi

g + ε
p Þ and θv = θv − ηðdθv/ ffiffiffiffiffiffiffiffiffiffiffiffi

gv + ε
p Þ,

respectively, where g = α · g + ð1 − αÞðdθÞ2 and gv = α · gv +
ð1 − αÞðdθvÞ2.

4. Secure Dynamic Treatment Regimes on
Health Data

4.1. System Model. As shown in Figure 1, the system model
of secure dynamic treatment regimes on health data consists
of four parts, namely, undiagnosed patient, key generation
center, cloud servers, and historical data owners, which are
described as follows:

(i) The undiagnosed patient’s current state is collected
by using wearable devices, which integrate modules
of physiological sensors, weak computation, and
communication. Wearable devices include smart
bracelet, smart glasses, sleep monitoring sensors,
and smart watch. They can collect a variety of health
data, such as body temperature, heart rate, blood
sugar, and blood volume index. Then, these health

A3Cðθ, θv , θ′, θ′v , T , t, tmax, Tmax, tg, η,W, αÞ:
Input: θ, θv , θ′, θ′v , T , t, tmax, Tmax, tg, η, W, α.
Output: θ, θv .
Set T = 0, t = 1.
While T < Tmax do.

For w = 1 to W do.
Set dθ = 0, dθv = 0.
Synchronize θ′ = θ, θ′v = θv .
Set t0 = t and get S t .
Repeat.

Get A t according to πðA t ∣ S t ; θ′Þ.
Execute A t , get Rt and observe S t+1.
t = t + 1.

Until t − t0 = tmax
If S t is terminal, R = 0.
If S t is non-terminal, R = xðS tÞ · θ′v .
For i = t − 1 to t0 do

R = Rt + γ · R.
Compute ∂f πðθ′Þ/∂θ′ = ð f ðA t ∣ S tÞ −∑tmax

j=0 f ðA t ∣ S tÞÞ
ðR − xðS tÞ · θvÞ + 2β · θ′ f ðA t ∣ S tÞ · ð f ðA t ∣ S tÞ − ∑tmax

j=0
f ðA t ∣ S tÞÞ.
Compute dθ = dθ + ð∂f πðθ′Þ/∂θ′Þ.
Compute ∂f vðθ′vÞ/∂θ′v = 2ðR − xðS tÞ · θ′vÞ · ð∂R/∂θ′vÞ.
Compute dθv = dθv + ð∂f πðθ′vÞ/∂θ′vÞ.

End for.
Compute g = α · g + ð1 − αÞðdθÞ2, gv = α · gv + ð1 − αÞðdθvÞ2.
Compute θ = θ − ηðdθ/ ffiffiffiffiffiffiffiffiffiffi

g + ε
p Þ, θv = θv − ηðdθv/ ffiffiffiffiffiffiffiffiffiffiffiffi

gv + ε
p Þ.

End for
End while

Algorithm 1: A3C reinforcement learning algorithm.

Table 1: Notations.

Symbol Description

θ, θv Shared parameter vectors in the global network

θ′, θ′v Thread-specific parameter vectors in the local network

T Global counter

t Local step counter

tmax, Tmax Upper bounds

tg An integer

η Learning rate

W Number of agents

α Momentum

5Wireless Communications and Mobile Computing



data are transmitted to cloud servers for computa-
tion. Based on the returned computation result,
the patient can obtain the diagnosis

(ii) Key generation center is an indispensable and inde-
pendent entity, which is trusted by the other entities
in this system model. It is responsible for distribut-
ing and managing all the public keys and private
keys of Cheon et al.’s homomorphic encryption
scheme for wearable devices and undiagnosed
patients via a secure channel

(iii) Cloud servers have the powerful data storage space.
Hence, they store and manage ciphertexts, which
come from undiagnosed patients and wearable
devices. Additionally, they can perform some com-
putations on these ciphertexts

(iv) Historical data owners have a sequence of medical
data and their corresponding decision results. These
encrypted data are transmitted and stored on cloud
servers. Cloud servers can compute these cipher-
texts for training the reinforcement learning model

4.2. Attack Model. In this paper, we suppose that the entities
in the system model are honest-but-curious. Namely, the
entities strictly follow the designed protocols. But they are
interested in acquiring medical data of other entities. We
suppose that there is an adversary A∗

1 in the attack model.

The goal of A∗
1 is to guess the plaintexts of the challenge his-

torical data owners’ ciphertexts or the challenge wearable
devices’ ciphertexts.

In order to acquire the ciphertexts of historical data
owners and wearable devices, middle ciphertext results dur-
ing the execution of privacy-preserving A3C reinforcement
learning algorithm and treatment decision-making algo-
rithm (Section 6), A∗

1 eavesdrops on the communication
links among the entities in the system model. However,
these ciphertexts are based on Cheon et al.’s approximate
homomorphic encryption scheme [16]. Hence, A∗

1 cannot
decrypt these ciphertexts without knowing their secret keys.
It can be guaranteed by using the semantic security of Cheon
et al.’s scheme. In addition, the key generation center distrib-
utes key pairs to historical data owners and wearable devices
in a secure way. Furthermore, due to the lack of private keys
of these ciphertexts, A∗

1 cannot generate evaluation keys.
Hence, A∗

1 cannot transform these ciphertexts into some
domains that A∗

1 can decrypt. Besides, A∗
1 cannot get useful

information by adding or multiplying a plaintext with these
ciphertexts. In a conclusion, the proposed model is secure.

4.3. System Setup and Overview. Our secure model of
dynamic treatment regimes consists of two phases, which
are described as follows.

(i) Training dataset outsourcing and initialization: his-
torical data owners initialize input parameters θ, θv ,

Smart glasses

Sensors for 
monitoring sleep

Smart watchSmart bracelet
Smart shoes

Smart clothing

Undiagnosed Patient

Key Generation Center

Historical Data Owners

Cloud Servers

Figure 1: The model of secure dynamic treatment regimes on health data.

6 Wireless Communications and Mobile Computing



learning rate η, and discount factor γ. The state set
S = ðS0,⋯,Sφ−1Þ and action set A = ðA0,⋯,Aχ−1Þ
are encrypted as cS = ðcS0

,⋯,cSφ−1
Þ and cA = ðcA0

,⋯
,cAχ−1

Þ. Then, historical data owners send cS , cA , η,

γ, and other parameters to cloud servers for storage
and computation, where j = 0,⋯, n − 1, and n is
the number of historical data owners

(ii) Outsourced sequential treatment decision making:
in order to achieve sequential treatment decision
making, the undiagnosed patient’s current state x,
which comes from wearable devices, is encrypted as
cx. Then, cx is transmitted to cloud servers for treat-
ment decision making. Based on our privacy-
preserving A3C reinforcement learning algorithm
and treatment decision-making algorithm, cloud
servers output the encrypted treatment decision ca.
The undiagnosed patient decrypts ca to obtain the
treatment decision a by using his own secret key

5. Building Blocks

5.1. Encoding Rational Number. In order to implement the
privacy-preserving A3C reinforcement learning algorithm,
we need to encrypt health data. Health data are usually ratio-
nal numbers. However, most of the homomorphic encryp-
tion schemes only support homomorphic operations over
integers. They cannot cope with rational numbers. Hence,
in this paper, we take Cheon et al.’s encoding technique
[16], which can encode a rational number. Then, the rational
number can be converted to a ring element just like using
the integer encoding technique. We can use Cheon et al.’s
scheme [16] to encrypt the converted result.

5.2. Homomorphic Comparison Protocol. In order to imple-
ment comparison for our secure computation algorithms,
we design a homomorphic comparison protocol by using
Cheon et al.’s scheme [16] and Sun et al.’s method [35].
We suppose that the user owns plaintexts m0 and m1. Then,
the user uses Cheon et al.’s scheme to encrypt these plain-
texts. The ciphertexts are c0 and c1, respectively. The user
owns the secret key sk. The cloud server is responsible for
storing the ciphertexts. As shown in Algorithm 2, the cloud
server first computes the ciphertext cb = t + c0 − c1, where t is
the plaintext modulus. Next, the cloud server transmits cb to
the user. The user uses sk to decrypt cb. The decryption
result is b. If b > t, m0 >m1. If b = t, m0 =m1. If b < t, m0 <
m1. For example, we suppose that t = 2, m0 = 0, m1 = 1,
and then cb = 2 + c0 − c1, where c0 and c1 are ciphertexts of
0 and 1, respectively. The decryption result of cb equals to
1. Hence, m0 <m1.

5.3. Homomorphic Maximum Protocol. In order to compute
the encrypted index of the largest plaintext, we design a
homomorphic maximum protocol by using the above proto-
col and Sun et al.’s method [35]. We suppose that the user
owns m0, ⋯, mk−1, where k is the number of plaintexts.
The user uses Cheon et al.’s scheme [16] to encrypt these
plaintexts. The ciphertexts are c0, ⋯, ck−1, respectively. The

user owns the secret key sk. As shown in Algorithm 3, the
cloud server computes cb = compðcmax, ciÞ, where cmax is ini-
tialized as c0. If the decryption result b < t, cmax = ci, i = i + 1.
The cloud server continues to compare cmax and ci until i
> k − 1. Finally, the user can obtain the index of the largest
plaintext by decrypting cmax. For example, there exist cipher-
texts c2, c3, and c4, whose plaintexts are 2, 3, and 4, respec-
tively. We set cmax = c2. Next, we first compare cmax and c3.
cmax is updated as c3. Then, we compare cmax and c4. cmax
is updated as c4. After the decryption of cmax, the user gets
the maximum result 4.

5.4. Homomorphic Exponential Protocol. In this section,
based on the Taylor series, we begin to describe the homo-
morphic exponential protocol. We suppose that the user
owns the plaintext m. Next, it is encrypted as cm by using
Cheon et al.’s homomorphic encryption scheme. Only the
user has the secret key. Then, cm is stored on the cloud
server. In the homomorphic exponential protocol (Algo-
rithm 4), the cloud server first computes the ciphertext cem
= 1 + cm + c2m/2!+c3m/3!+⋯ + cnm/n! without decryption,
where n denotes an integer. The precision of em increases
with the increasing of n. Then, cem is returned to the user.
The user gets the exponential result em by using his secret
key. For example, we can set m = 4, n = 3, and then ce2 = 1
+ c4 + c24/2!+c34/3!, where ce2 and c4 are ciphertexts of e2

and 4, respectively. After the decryption of ce2 , the user gets
the exponential result e2.

5.5. Homomorphic Division Protocol. In this section, we
begin to describe the homomorphic division protocol. We
suppose that the user owns plaintexts m0, m1, and m2. Then,
they are encrypted as cm0

, cm1
, and cm2

by using Cheon et al.’s

compðc0, c1Þ:
Input:c0 and c1.
Output:cb.
1. Compute cb = t + c0 − c1.
2. Return cb to the user.
3. If b > t, m0 >m1.
If b = t, m0 =m1.
If b < t, m0 <m1.

Algorithm 2: Homomorphic comparison protocol.

argmaxðc0, c1,⋯,ck−1Þ:
Input:c0, c1,⋯, ck−1.
Output:cmax.
1. Set cmax = c0.
2. For i = 1 to k − 1 do.
3. cb = compðcmax, ciÞ.
4. Decrypt cb to get b.
5. If b = 1, cmax = ci.
6. i = i + 1.
End for

Algorithm 3: Homomorphic maximum protocol.

7Wireless Communications and Mobile Computing



homomorphic encryption scheme. Only the user has the
secret key. Then, cm0

, cm1
, and cm2

are transmitted to the
cloud server. In order to output the ciphertext cdiv of the
plaintext m2/ðm0 +m1Þ, we design the homomorphic divi-
sion protocol (Algorithm 5), which is described as follows.
The cloud server first computes the ciphertext cadd = cm0

+
cm1

without decryption, where the plaintext of cadd is add =
m0 +m1. Then, cadd is returned to the user. The user gets
the plaintext add by using his secret key. The user calculates
rev = 1/add. rev is encrypted as crev by using Cheon et al.’s
scheme. crev is transmitted to the cloud server. The cloud
server calculates the ciphertext cdiv = cm2

· crev . Finally, cdiv
is returned to the user. After the decryption of cdiv, the user
gets the division result div =m2/ðm0 +m1Þ. For example, we
set m0 = 6, m1 = 1, and m2 = 2. Then, the cloud server calcu-
lates cadd = cm0

+ cm1
= c3, where the plaintext of c3 is 3. c3 is

returned to the user. After the decryption of c3, the user cal-
culates rev = 1/3 = 0:33. The ciphertext crev is sent to the
cloud server. The cloud server calculates cdiv = cm2

· crev =
c0:33×6 = c1:98, where the plaintext of c1:98 is 1.98.

5.6. Homomorphic Reciprocal of Square Root Protocol. In this
section, we begin to describe the homomorphic reciprocal of
square root protocol. The traditional method is to compute
the ciphertext of the approximate square root firstly. Then,
it computes the approximate reciprocal of square root
homomorphically. However, two approximate computations
will affect the precision of the final result. Hence, based on
Lomont’s fast inverse square root algorithm [36], we design
a new homomorphic reciprocal of square root protocol
(Algorithm 6), which only needs one approximate computa-
tion. In our protocol, we suppose that the user owns the
floating number m = ð1 +m0Þ2m1−127, where 0 <m0 < 1 and

0 <m1 < 255. It is encrypted as cm by using Cheon et al.’s
homomorphic encryption scheme. Only the user has the
secret key. cm is stored on the cloud server. cm is first trans-
mitted to the user. The user decrypts cm by his secret key.
The decryption result m is converted to an integer m′ =m1
· 223 +m0 · 223. m′ is encrypted as cm′ by using Cheon
et al.’s scheme. Next, cm′ is transmitted to the cloud server.
The cloud server computes the intermediate ciphertext

ctemp =
3
2

127 − 0:045ð Þ223 − 0:5cm′ , ð8Þ

where the plaintext of ctemp is the floating number temp.
Then, the cloud server sends ctemp to the user. The user
decrypts ctemp to obtain temp = temp1 · 223 + temp0 · 223,
where 0 < temp0 < 1 and 0 < temp1 < 255. temp is converted
to an integer temp′ = ð1 + temp0Þ2temp1−127. temp′ is
encrypted as ctemp′. ctemp′ is transmitted to the cloud server.
The cloud server computes the ciphertext

c1/ ffiffiffimp =
3
2
ctemp′ −

1
2
cm · c3temp′ : ð9Þ

Then, c1/ ffiffiffimp is returned to the user. The user gets the
reciprocal of square root 1/

ffiffiffiffi
m

p
by using his secret key. For

example, we set m = ð1 + 0:25Þ124−127 = 0:156. Then, m is
converted to m′ = 62 · 223 + 0:125 · 223. The ciphertext cm′
of m′ is sent to the cloud server. The cloud server computes

ctemp =
3
2

127 − 0:045ð Þ223 − 0:5cm′ : ð10Þ

The user decrypts ctemp to obtain temp = 128 · 223 +
0:3075 · 223. temp is converted to temp′ = ð1 + 0:3075Þ
2128−127 = 2:615. The ciphertext ctemp′ of temp′ is sent to

exp ðcm, nÞ:
Input:cm, n.
Output:cem .
1. Compute cem = 1 + cm +⋯ + ðcnm/n!Þ.
2. Return cem to the user.

Algorithm 4: Homomorphic exponential protocol.

div ðcm0
, cm1

, cm2
Þ:

Input:cm0
, cm1

and cm2
.

Output: The ciphertext cdiv .
1. Compute cadd = cm0

+ cm1
.

2. Return cadd to the user.
3. Decrypt cadd to obtain add.
4. Calculate rev = 1/add.
5. rev is encrypted as crev .
6. crev is transmitted to the cloud server.
7. Calculate cdiv = cm2

· crev .
8. cdiv is returned to the user.

Algorithm 5: Homomorphic division protocol.

1/ ffiffiffiffiffi
cm

p
:

Input: The ciphertext cm.
Output:c1/ ffiffiffimp .
1. Transmit cm to the user.
2. Decrypt cm to obtain m = ð1 +m0Þ2m1−127.
3. Convert m to obtain m′ =m1 · 223 +m0 · 223.
4. Encrypt m′ as cm′.
5. Transmit cm′ to the cloud server.
6. Compute ctemp = 3/2ð127 − 0:045Þ223 − 0:5cm′.
7. Transmit ctemp to the user.
8. Decrypt ctemp to obtain temp = ðtemp1 + temp0Þ · 223.
9. Convert temp to temp′ = ð1 + temp0Þ2temp1−127.
10. Encrypt temp′ as ctemp′.
11. Transmit ctemp′ to the cloud server.

12. Compute c1/ ffiffiffimp = 3/2ctemp′ − 1/2cm · c3temp′.

13. Return c1/ ffiffiffimp to the user.

Algorithm 6: Homomorphic reciprocal of square root protocol.

8 Wireless Communications and Mobile Computing



the cloud server. The cloud server computes the ciphertext

c1/
ffiffiffiffiffiffiffiffi
0:156

p =
3
2
ctemp′ −

1
2
cm · c3temp′ : ð11Þ

The user decrypts c1/ ffiffiffimp to obtain 1/
ffiffiffiffiffiffiffiffiffiffiffi
0:156

p
= 3/2 ·

2:615 − 1/2 · 0:156 · 2:6153 ≈ 2:528.

6. Privacy-Preserving Computation Algorithms

6.1. Privacy-Preserving A3C Reinforcement Learning
Algorithm. In this section, we begin to describe how to
implement a privacy-preserving A3C reinforcement learning
algorithm by using Cheon et al.’s approximate homomor-
phic encryption scheme [16]. As shown in Algorithm 7, we
describe the privacy-preserving A3C reinforcement learning

algorithm as follows. Algorithm 7 requires input parameters θ,
θv, θ′, θ′v, T, t, tmax, Tmax, tg, η, W, α, cS , and cA . Set T = 0,
t = 1. If T < Tmax and w ∈ ½1,W�, we implement the iteration,
which is shown as follows. dθ and dθv are set as 0. θ′ and θ′v
are synchronized as θ and θv, respectively. We set t0 = t and
obtain the encrypted system state cS t

∈ cS . Next, we repeat a
subalgorithm until t − t0 ≠ tmax. In this subalgorithm, the
encrypted action cA t

∈ cA is obtained based on argmaxðcπ0
,

cπ1
,⋯,cπtmax

Þ, where cπ j
= ef ðcA j

∣cS j
Þ·θ′

, j = 0, 1,⋯, tmax. We exe-

cute cA t
and get the encrypted reward

cRt
= Σk−1

i=0 γ
i · rt+i + γk · x cS t+k

� �
· θv: ð12Þ

We observe the next encrypted state cS t+1
∈ cS . In addition,

PA3Cðθ, θv , θ′, θ′v , T , t, tmax, Tmax, tg, η,W, α, cS , cA Þ:
Input: θ, θv , θ′, θ′v , T , t, tmax, Tmax, tg, η, W, α, cS , cA .
Output: θ, θv .
Set T = 0, t = 1.
While T < Tmax do
For w = 1 to W do

Set dθ = 0, dθv = 0. Synchronize θ′ = θ, θ′v = θv .
Set t0 = t, get cS t

.
Repeat
Get cA t

according to argmaxðcπ0
,⋯,cπtmax

Þ.
Execute cA t

, get cRt
.

Observe cS t+1
, t = t + 1.

Until t − t0 = tmax
If cS t

is terminal, cR = 0.
If cS t

is non-terminal, cR = xðcS t
Þ · θ′v .

For i = t − 1 to t0 do
If cS t

is terminal

cR = Σk−1
i=0 γ

i · rt+i + γk · xðcS t
Þ · θ′v .

Compute c∂f πðθ′Þ/∂θ′ , c∂f vðθ′vÞ/∂θ′v .
End if
If cS t

is non-terminal

cR = Σk−1
i=0 γ

i · rt+i + γk · xðcS t
Þ · θ′v + γ · xðcS t

Þ · θ′v .
Compute c∂f πðθ′Þ/∂θ′ , c∂f vðθ′vÞ/∂θ′v .

End if
Compute cdθ = cdθ + c∂f πðθ′Þ/∂θ′ .
Compute cdθv = cdθv + c∂f πðθ′vÞ/∂θ′v .

End for
c′dθ and c′dθv are returned to the cloud server.

Compute cg = αcg + ð1 − αÞðcdθÞ2, cgv = αcgv + ð1 − αÞðcdθv Þ
2.

c′g and c′gv are sent to the cloud server.

Set cg = c′g, cgv = c′gv .
Compute cθ = θ − ηðc′dθ/

ffiffiffiffiffiffiffiffiffiffiffi
cg + ε

p Þ, cθv = θv − ηðc′dθv /
ffiffiffiffiffiffiffiffiffiffiffiffi
cgv + ε

p Þ.
cθ and cθv are returned to the user.
Decrypt cθ and cθv to obtain θ and θv .

End for
End while

Algorithm 7: Privacy-preserving A3C reinforcement learning algorithm.

9Wireless Communications and Mobile Computing



we set t = t + 1. After the implementation of the above subal-
gorithm, we observe whether cS t

is terminal. Then, we repeat
a subalgorithm from i = t − 1 to i = t0. In this subalgorithm,
if cS t

is terminal, cR is set as

cR = Σk−1
i=0 γ

i · rt+i + γk · cx S tð Þ · θ′v: ð13Þ

The cloud server computes

c∂ fπ θ ′ð Þ
∂θ ′

= f cA t
∣ cS t

� �
− Σ

tmax
j=0 f cA t

∣ cS t

� �� �

� Σk−1
i=0 γ

i · rt+i + γk · x cS t

� �
· θ′v − x cS t

� �
· cθv

� �

+ 2β · cθ′ · f cA t
∣ cS t

� �

� f cA t
∣ cS t

� �
− Σtmax

j=0 f cA j
∣ cS j

� �� �
:

ð14Þ

The cloud server computes

c∂ f v θ′vð Þ
∂θ′v

= 2 Σk−1
i=0 γ

i · rt+i + γk · x cS t

� �
· cθ′v − x cS t

� �
cθ′v

� �

· γk · x cS t

� �
− x cS t

� �� �
:

ð15Þ

If cS t
is nonterminal, cR is set as

cRt
+ γcR = Σk−1

i=0 γ
i · rt+i + γk · x cS t

� �
· cθv′ + γ · x cS t

� �
· θv′:
ð16Þ

The cloud server computes

c∂ fπ θ ′ð Þ
∂θ ′

= f cA t
∣ cS t

� �
− Σtmax

j=0 f cA t
∣ cS j

� �� �

� Σk−1
i=0 γ

i · rt+i + γk · x cS t

� �
· θ′v + γ · x cS t

� ��

· θ′v − x cS t

� �
· θv
�
+ 2β · θ′ f cA t

∣ cS t

� �

· f cA t
∣ cS t

� �
− Σtmax

j=0 f cA t
∣ cS j

� �� �
,

ð17Þ

where c∂f πðθ′Þ/∂θ′ is the ciphertext of ∂f πðθ′Þ/∂θ′. The cloud
server computes

c∂ f v θ′vð Þ
∂θ′v

= 2 Σk−1
i=0 γ

i · rt+i + γk · x cS t

� �
· θ′v + γ · x cS t

� ��

· θ′v − x cS t

� �
θ′v
�
· γk · x cS t

� �
+ γ · x cS t

� �
− x cS t

� �� �
,

ð18Þ

where c∂f vðθ′vÞ/∂θ′v is the ciphertext of ∂f vðθ′vÞ/∂θ′v. Then, cdθ
is set as cdθ + c∂f πðθ′Þ/∂θ′. cdθv is set as cdθv + c∂f πðθ′vÞ/∂θ′v . The

cloud server computes cg = αcg + ð1 − αÞðcdθÞ2 and cgv = αcgv
+ ð1 − αÞðcdθvÞ

2. The cloud server sends cdθ and cdθv to the

user. The user decrypts cdθ and cdθv to obtain dθ and dθv. dθ

and dθv are encrypted as c′dθ and c′dθv . c′dθ and c′dθv are
returned to the cloud server. In order to reduce the depth of
homomorphic multiplication for the calculation of cg and cgv ,
the cloud server sends cg and cgv to the user. The user decrypts

cg and cgv to obtain g and gv. g and gv are encrypted as c′g and
c′gv . The user sends c′g and c′gv to the cloud server. The cloud

server sets cg = c′g and cgv = c′gv . Finally, based on the above
homomorphic reciprocal of square root protocol, θ and θv
can be updated by using equations cθ = θ − ηðc′dθ/

ffiffiffiffiffiffiffiffiffiffiffi
cg + ε

p Þ
and c′θv = θv − ηðcdθv /

ffiffiffiffiffiffiffiffiffiffiffiffi
cgv + ε

p Þ, respectively. After the execu-
tion of Algorithm 7, we can get the encrypted optimized param-
eters cθ and cθv , which are returned to the user. The user
decrypts cθ and cθv to obtain θ and θv, which can be used the
implementation of secure treatment decision-making
algorithm.

In order to better understand Algorithm 7, we give an
example, which is described as follows. In this example, as
shown in Table 2, we set the initial values of related
parameters. We suppose that ðcS0

,⋯,cS4
Þ are ciphertexts

of S = ðS0,⋯,S4Þ = ð0:1,0:1,0:15,0:3,0:35Þ, respectively. ðcA0
,

⋯,cA4
Þ are ciphertexts of A = ðA0,⋯,A4Þ = ð

0:1,0:1,0:15,0:3,0:35Þ, respectively. For the convenience of
computation, we let xðcS j

Þ = cS j
, f ðcA j

∣ cS j
Þ = cA j

cS j
, πðA j ∣

S jÞ = ef ðA j∣S jÞ, i = 0, 1, 2, 3, 4, j = 0, 1, 2, 3, 4. The cloud server

first computes cπ0
= ef ðcA0 ∣cS0 Þ · θ′ and cπ1

= ef ðcA1 ∣cS1 Þ · θ′,
where the ciphetext of cπ0

is e0:1×0:1×0:5 = e0:005 and the cypher-
text of cπ1

is e0:1×0:1×0:5 = e0:005. Based on the implementation of
the protocol argmaxðcπ0

, cπ1
Þ,A1 is executed. The cloud server

computes cRt
= rt + γxðcS t

Þθv, where

Rt = rt + γx S tð Þθv = 0:5 + 0:6 × 0:1 × 0:5 = 0:505: ð19Þ

Table 2: Symbols and initial values.

Symbol Initial value

θ, θv 0.5

θ′, θ′v 0.5

Tmax, tmax 1

t0 1

k 1

γ 0.6

r1, r2 0.5

β 0.1

W 1

g, gv 0

α 0.5

ε 0.01

η 0.1

10 Wireless Communications and Mobile Computing



Set t = 2. Because S2 is nonterminal, the cloud server com-
putes cR = xðcS2

Þ · θ′v, where

R = x S2ð Þ · θv′= 0:15 × 0:5 = 0:075: ð20Þ

Then, the cloud server computes

cR = r2 + γ · x cS2

� �
· θv′ + γ · x cS2

� �
· θv′, ð21Þ

where

R = r2 + γ · x S2ð Þ · θ′v + γ · x S2ð Þ · θ′v = 0:5 + 0:6 × 0:15
× 0:5 + 0:6 × 0:15 × 0:5 = 0:59:

ð22Þ

The cloud server computes

c
∂f π θ′Þ/∂θ′ = f cA2 ∣ cS2ð Þ − Σ1

j=0 f cA j
∣ cS j

� �� �
r2 + γ · x cS2ð Þð

�

· θv′+ γ · x cS2

� �
· θv′− x cS2

� �
θvÞ + 2β · θ′ · f cA2

∣ cS2

� �

· f cA2
∣ cS2

� �
− Σ1

j=0 f cA j
∣ cS j

� �� �
,

ð23Þ

where

∂f π θ′
� �

∂θ′
= f A2 ∣ S2ð Þ − Σ1

j=0 f A j ∣ S j

� �� �
r2 + γ · x S2ð Þð

· θ′v + γ · x S2ð Þ · θ′v − x S2ð ÞθvÞ
+ 2β · θ′ · f A2 ∣ S2ð Þ · f A2 ∣ S2ð Þ − Σ1

j=0 f A j ∣ S j

� �� �

= 0:15 × 0:15 − 0:1 × 0:1 + 0:1 × 0:1ð Þð Þ
� 0:5 + 0:6 × 0:15 × 0:5 + 0:6 × 0:15 × 0:5 − 0:15 × 0:5ð Þ
+ 2 × 0:1 × 0:5 × 0:15 × 0:15 0:15 × 0:15ð
− 0:1 × 0:1 + 0:1 × 0:1ð ÞÞ = 0:0013:

ð24Þ

The cloud server computes

c∂f v θ′vð Þ/∂θ′v = 2 r2 + γ · x cS2

� �
· cθ′v + γ · x cS2

� ��

· θ′v − x cS2

� �
θ′vÞ · γ · x cS2

� ��

+ γ · x cS2

� �
− x cS2

� �Þ,
ð25Þ

where

∂f v θ′v
� �

∂θ′v
= 2 r2 + γ · x S2ð Þ · θ′v + γ · x S2ð Þ · θ′v − x S2ð Þθ′v
� �

· γ · x S2ð Þ + γ · x S2ð Þ − x S2ð Þð Þ
= 2 0:5 + 0:6 × 0:15 × 0:5 + 0:6 × 0:15 × 0:5 − 0:15ð

× 0:5Þ 0:6 × 0:15 + 0:6 × 0:15 − 0:15ð Þ = 0:0309:
ð26Þ

Set cdθ = 0, cdθv = 0. The cloud server computes cdθ = cdθ
+ c∂f πðθ′Þ/∂θ′, where

dθ = dθ +
∂f π θ′
� �

∂θ′
= 0:0013: ð27Þ

We compute cdθv = cdθv + c∂f πðθ′vÞ/∂θ′v , where

dθv = dθv +
∂f π θ′v
� �

∂θ′v
= 0:0309: ð28Þ

With the help of the user, the cloud server gets refreshed
ciphertexts cdθv and cdθv . The cloud server computes cg = αcg
+ ð1 − αÞðcdθÞ2, where

g = αg + 1 − αð Þ dθð Þ2 = 1 − 0:5ð Þ × 0:00132 = 0:000000845:
ð29Þ

The cloud server computes cgv = αcgv + ð1 − αÞðcdθvÞ
2,

where

gv = αgv + 1 − αð Þ dθvð Þ2 = 1 − 0:5ð Þ × 0:03092 = 0:000477405:
ð30Þ

After the cloud server obtains ciphertexts c′g and c′gv , we set
cg = c′g and cgv = c′gv . The cloud server computes cθ = θ − ηðc
′dθ/

ffiffiffiffiffiffiffiffiffiffiffi
cg + ε

p Þ, where

θ = θ − η
dθ
ffiffiffiffiffiffiffiffiffig + ε

p = 0:5 − 0:1
0:0013

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:000000845 + 0:01

p ≈ 0:4987:

ð31Þ

The cloud server computes cθv = θv − ηðc′dθv /
ffiffiffiffiffiffiffiffiffiffiffiffi
cgv + ε

p Þ,
where

θv = θv − η
dθvffiffiffiffiffiffiffiffiffiffiffiffi
gv + ε

p = 0:5 − 0:1
0:0309

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:000477405 + 0:01

p ≈ 0:4698:

ð32Þ

The user can obtain refreshed θ ≈ 0:4987 and θv ≈ 0:4698
by using his secret key.

6.2. Secure Treatment Decision-Making Algorithm. In this
subsection, based on the above privacy-preserving A3C rein-
forcement learning algorithm, secure treatment decision-
making algorithm TDMðθ, θv , cx, cS , cAÞ is implemented in
Algorithm 8, which is described as follows. In this algorithm,
input parameters include θ, θv, and the undiagnosed
patient’s encrypted current state cx , cS , and cA . Set the index
col = 0. The ciphertext ci,j is initiated, where i = 0,⋯, χ − 1
and j = 0,⋯, φ − 1. Firstly, cS ’s element cS j

is compared with

cx by using the above homomorphic comparison protocol

11Wireless Communications and Mobile Computing



compðcS j
, cxÞ. cb is the encrypted comparison result. After

the decryption of cb, if the comparison result b = t, it means
that S j = x, set col = j, where j = 0,⋯, φ − 1. Next, the cloud
server computes the value function’s encrypted value cv =
VðcScol

; θvÞ = xðcS j
Þ · θv, where the plaintext of cv is VðScol

; θvÞ. Set the ciphertext chor = c0. The cloud server computes
the policy function’s encrypted value

cπ,i = π cA i
∣ cScol

� �
=

ef cA i
∣cScolð Þθ

∑tmax
j=0 e

f cA j
∣cS j

� �
θ

, ð33Þ

where the plaintext of cπ,i is πðA i ∣ ScolÞ. The cloud
server computes homomorphic multiplication between cv
and cπ,i, namely, ci,col = cv · cπ,i, where ci,col is the

TDMðθ, θv , cx , cS , cA Þ:
Input: θ, θv , cx , cS , cA .
Output: cdr .
For i = 0 to χ − 1.

For j = 0 to φ − 1.
Initiate ci,j.
End for

End for
Initiate cb.
For j = 0 to φ − 1.

cb = compðcS j
, cxÞ.

End for
Decrypt cb to obtain b.
If b = t.
Set col = j.
cv =VðcScol

; θvÞ = xðcS j
Þθv .

Set chor = c0.
For i = 0 to χ − 1.

cπ,i = πðcA i
∣ cScol

Þ = ef ðcA i
∣cScol Þθ/∑tmax

j=0 e
f ðcA j

∣cS j
Þθ
.

ci,col = cv · cπ,i.
End for
Set index = 0.
chor,col = argmaxðc0,col,⋯,cχ−1,colÞ.
Set index = hor.
cdr = cA index

.

Algorithm 8: Secure treatment decision-making algorithm.

Table 3: The distribution of the encrypted probability.

Encrypted probability
Encrypted actions

cA0
cA1

cA2
cA3

Encrypted states

cS0
c0,0 c1,0 c2,0 c3,0

cS1
c0,1 c1,1 c2,1 c3,1

cS2
c0,2 c1,2 c2,2 c3,2

cS3
c0,3 c1,3 c2,3 c3,3

0

690

460

230

Log q

oc = 1
oc = 2

oc = 3
oc = 4

400 500 600 700

Ru
nn

in
g 

tim
e (

m
s)

Figure 2: The efficiency of our homomorphic comparison protocol.

0

2400

1600

800

Ru
nn

in
g 

tim
e (

m
s)

Log q

om = 1
om = 2

om = 3
om = 4

400 500 600 700

Figure 3: The efficiency of our homomorphic maximum protocol
(k = 5).

0

3000

2000

1000

Ru
nn

in
g 

tim
e (

m
s)

log q

om = 1
om = 2

om = 3
om = 4

400 500 600 700

Figure 4: The efficiency of our homomorphic maximum protocol
(k = 6).

12 Wireless Communications and Mobile Computing



ciphertext of VðScol ; θvÞπðA i ∣ ScolÞ, i = 0,⋯, χ − 1. Set
index = 0. Finally, the cloud server computes the cipher-
text chor,col by using the homomorphic maximum protocol
argmaxðc0,⋯,cχ−1Þ. Set index = hor. Hence, the treatment
decision is cdr = cA index

. Then, cdr will be transmitted to
the undiagnosed patient. In order to obtain the treatment
decision dr, cdr can be decrypted by using his own secret
key.

In order to better understand Algorithm 8, we give an
example, which is described as follows. In this example, we
set χ = 4, φ = 4, θ = 0:5, θv = 0:5, and tmax = 3. We suppose
that ðcS0

,⋯,cS3
Þ are ciphertexts of ð0:1,0:2,0:3,0:4Þ, respec-

tively. ðcA0
,⋯,cA3

Þ are ciphertexts of ð0:1,0:2,0:3,0:4Þ,
respectively. For the convenience of computation, we let xð
cS j

Þ = cS j
, f ðcA i

∣ cS j
Þ = cA i

cS j
, πðA i ∣ S jÞ = ef ðA i∣S jÞ, i = 0, 1,

2, 3, j = 0, 1, 2, 3. The calculation of ci,j =VðcS j
; θvÞπðcA i

∣

cS j
Þ is the key component for the execution of Algorithm 8,

where the corresponding plaintext of ci,j is VðS j ; θvÞπðA i

∣ S jÞ. In this example, the distribution of ci,j can be shown
in Table 3.

If the patient requires a diagnostic service, the encrypted
current state cx is input for the implementation of Algo-
rithm 8. Then, cSbe

is compared with cx by the execution of
the protocol cb = compðcSbe

, cxÞ, where be = 0. If the compar-
ison result b = t, set col = be. If the comparison result b ≠ t,
the next element cSbe+1

will be compared with cx until be +
1 > 3. We suppose that x = S1, namely, col = 1. Hence, cv =
xðcS1

Þθv = xðcS1
Þ0:5, where the plaintext of cv is 0:2 × 0:5 =

0:1. We compute ciphertexts cπ,0, cπ,1, cπ,2, and cπ,3, which
corresponding plaintexts are e0:01/temp, e0:02/temp, e0:03/
temp, and e0:04/temp, respectively, where temp = e0:01 + e0:02

+ e0:03 + e0:04. Then, we compute ciphertexts c0,1, c1,1, c2,1,

0

3900

2600

1300

Ru
nn

in
g 

tim
e (

m
s)

400 500 600 700

log q

om = 1
om = 2

om = 3
om = 4

Figure 5: The efficiency of our homomorphic maximum protocol
(k = 7).

0

15900

10600

5300

400 500 600 700

log q

oe = 1
oe = 2

oe = 3
oe = 4

Ru
nn

in
g 

tim
e (

m
s)

Figure 6: The efficiency of our homomorphic exponential protocol
(n = 2).

0

15900

10600

5300

400 500 600 700

log q

oe = 1
oe = 2

oe = 3
oe = 4

Ru
nn

in
g 

tim
e (

m
s)

Figure 7: The efficiency of our homomorphic exponential protocol
(n = 3).

0

16500

11000

5500

400 500 600 700

Ru
nn

in
g 

tim
e (

m
s)

log q

oe = 1
oe = 2

oe = 3
oe = 4

Figure 8: The efficiency of our homomorphic exponential protocol
(n = 4).

13Wireless Communications and Mobile Computing



and c3,1, which corresponding plaintexts are 0:1e0:01/temp,
0:1e0:02/temp, 0:1e0:03/temp, and 0:1e0:04/temp, respectively.
Based on the execution of the protocol argmaxðc0,1, c1,1,
c2,1, c3,1Þ, we can obtain the output ciphertext is c3,1. The
encrypted treatment decision is cA3

, which corresponding
plaintext is A3.

7. Performance Results

In this section, based on Cheon et al.’s homomorphic
encryption scheme, we analyze the efficiency of our secure
computation protocols, secure A3C reinforcement learning
algorithm, and secure treatment decision-making algorithm.
We use the virtual machine to implement experiments with-
out the GPU hardware platform. In our experimental envi-
ronment, the operating system is macOS 10.14.6. Our

personal computer has two Intel (R) Core (TM) i5 CPU pro-
cessors, which runs at 2.3GHz with 8.00GB RAM. The
operation system of a virtual machine is ubuntu 16.04. The
virtual machine is allocated single Intel (R) Core (TM) i5
CPU processor with 1.0GB RAM. In order to implement
high-level numeric algorithms, we choose the NTL library.
We use the GCC platform to compile our C++ codes. We
adopt the UC Irvine Machine Learning Repository (http://
archive.ics.uci.edu/ml/index.php) for implementing the
experiments. For convenience, we set log q ranging from
400 to 700, the scaling factor log p = 30.

Figure 2 shows the efficiency of our homomorphic com-
parison protocol, where the number of comparison oc ranges
from 1 to 4. As shown in Figure 2, the running time of our
homomorphic comparison protocol increases significantly
with the increasing of oc. Figures 3–5 show the efficiency
of our homomorphic maximum protocol, where the number

0

18000

9000

27000

400 500 600 700

log q

os = 1
os = 2

os = 3
os = 4

Ru
nn

in
g 

tim
e (

m
s)

Figure 10: The efficiency of our homomorphic reciprocal of square
root protocol.

0

250000

200000

150000

100000

50000

400 500 600 700

log q

ot = 1
ot = 2

ot = 3
ot = 4

Ru
nn

in
g 

tim
e (

m
s)

Figure 11: The efficiency of our secure A3C reinforcement learning
algorithm.

51000

34000

17000

log q

dm = 1
dm = 2

dm = 3
dm = 4

400 500 600 700

Ru
nn

in
g 

tim
e (

m
s)

Figure 12: The efficiency of our secure treatment decision-making
algorithm.

0

8100

5400

2700

400 500 600 700

log q

od = 1
od = 2

od = 3
od = 4

Ru
nn

in
g 

tim
e (

m
s)

Figure 9: The efficiency of our homomorphic division protocol.

14 Wireless Communications and Mobile Computing

http://archive.ics.uci.edu/ml/index.php
http://archive.ics.uci.edu/ml/index.php


of maximum om ranges from 1 to 4 and the number of
plaintexts k ranges from 5 to 7. It can be easily observed that
the running time of our homomorphic maximum protocol
increases significantly with the increasing of k and om.
Figures 6–8 show the efficiency of our homomorphic expo-
nential protocol, where the number of exponential operation
oe ranges from 1 to 4 and the integer n ranges from 2 to 4.
We can observe that the running time of our homomorphic
exponential protocol increases rapidly with the increasing of
oe and n.

Then, Figure 9 shows the efficiency of our homomorphic
division protocol, where the number of division od ranges
from 1 to 4. We can observe the changing trend of the run-
ning time of our homomorphic division protocol. This pro-
tocol has an obvious growth of running time with the
increasing of od and log q. Figure 10 shows the efficiency
of our homomorphic reciprocal of square root protocol,
where os ranges from 1 to 4; os denotes the number of oper-
ations of reciprocal of square root. With the increasing of os
and log q, more running time is needed for implementing
our homomorphic reciprocal of square root protocol. It
can be observed that its running time is longer than the
above homomorphic comparison, maximum, exponential,
and division protocols. Figure 11 shows the efficiency of
our secure A3C reinforcement learning algorithm, where ot
ranges from 1 to 4; ot denotes the number of operations of
A3C training algorithm. With the increasing of ot and log
q, our A3C reinforcement learning algorithm requires more
running time. This algorithm is responsible for training the
parameters θ and θv. Hence, this algorithm is complicated.
We can observe too much running time is needed for this
algorithm, which can demonstrate the above viewpoint.
Figure 12 shows the efficiency of our secure treatment
decision-making algorithm, where dm ranges from 1 to 4;
dm denotes the number of operations of treatment
decision-making algorithm. The running time of this algo-
rithm grows with the increasing of dm. This algorithm uses
the optimized θ and θv. Hence, this algorithm is less compli-
cated than the secure A3C algorithm. The running time of
this algorithm is shorter than the secure A3C algorithm,
which can verify the above viewpoint. In a conclusion, the
above efficiency analysis shows the feasibility of our secure
computation protocols and algorithms.

8. Conclusion

Reinforcement learning is helpful for implementing
dynamic treatment regimes on health data. However, private
health data may be illegally leaked, falsified, or deleted in the
execution of the reinforcement learning algorithm. Hence,
we study secure dynamic treatment regimes on health data.
In this paper, we have designed homomorphic comparison
protocol, homomorphic maximum protocol, homomorphic
exponential protocol, homomorphic division protocol, and
homomorphic reciprocal of square root protocol. Based on
these secure computation protocols, we have proposed a
privacy-preserving A3C reinforcement learning algorithm
for the first time. Then, it is used for implementing the
secure treatment decision-making algorithm. Finally, we

simulate the proposed secure computation protocols and
algorithms. Simulation results show that our secure compu-
tation protocols and algorithms are feasible.

In the future research, we will use homomorphic encryp-
tion to implement other machine learning algorithms, such
as distributed learning [37] and federated reinforcement
learning [38], which can successfully dominate multiple real
devices that have the same type and slightly different
dynamics. In addition, we plan to evaluate the performance
of the secure A3C algorithm in other real-world scenarios,
for example, vehicular ad hoc network.

Data Availability

The data of secure computation protocols and algorithms
used to support the findings of this study are available from
the corresponding author upon request.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Acknowledgments

This work was supported by the Science and Technology
Innovation Projects of Shenzhen
(JCYJ20190809152003992), Shenzhen Science and Technol-
ogy Program (JCYJ20210324100813034), the Guangdong
Basic and Applied Basic Research Foundation
(2020A1515110496), and the College-Enterprise Collabora-
tion Project of Shenzhen Institute of Information Technol-
ogy (11400-2021-010201-010199).

References

[1] I. M. Tayler and R. S. Stowers, “Engineering hydrogels for per-
sonalized disease modeling and regenerative medicine,” Acta
Biomaterialia, vol. 132, pp. 4–22, 2021.

[2] X. Liu, R. Deng, K. K. Raymond Choo, and Y. Yang, “Privacy-
preserving reinforcement learning design for patient-centric
dynamic treatment regimes,” IEEE Transactions on Emerging
Topics in Computing, vol. 9, no. 1, pp. 456–470, 2021.

[3] Y. Liu, B. Logan, N. Liu, Z. Xu, J. Tang, and Y. Wang, “Deep
reinforcement learning for dynamic treatment regimes on
medical registry data,” in Proceedings of 2017 IEEE Interna-
tional Conference on Healthcare Informatics, pp. 380–385,
Park City, UT, USA, 2017.

[4] R. S. Sutton and A. G. Barto, “Reinforcement learning,” A
Bradford Book, vol. 15, no. 7, pp. 665–685, 1998.

[5] L. Liu, C. Chen, Q. Pei, S. Maharjan, and Y. Zhang, “Vehicular
edge computing and networking: a survey,” Mobile Networks
and Applications, vol. 26, no. 3, pp. 1145–1168, 2021.

[6] X. Sun, F. R. Yu, and P. Zhang, “A survey on cyber-security of
connected and autonomous vehicles (CAVs),” IEEE Transac-
tions on Intelligent Transportation Systems, pp. 1–20, 2021.

[7] T. Yang, L. Kong, N. Zhao, and R. Sun, “Efficient energy and
delay tradeoff for vessel communications in SDN based mari-
time wireless networks,” IEEE Transactions on Intelligent
Transportation Systems, vol. 22, no. 6, pp. 3800–3812, 2021.

15Wireless Communications and Mobile Computing



[8] T. Yang, M. Qin, N. Cheng, W. Xu, and L. Zhao, “Liquid
Software-Based Edge Intelligence for Future 6G Networks,”
IEEE Network, 2021.

[9] T. Yang, J. Chen, and N. Zhang, “AI-empowered maritime
internet of things: a parallel-network-driven approach,” IEEE
Network, vol. 34, no. 5, pp. 54–59, 2020.

[10] L. Liu, J. Feng, Q. Pei et al., “Blockchain-enabled secure data
sharing scheme in mobile-edge computing: an asynchronous
advantage actor–critic learning approach,” IEEE Internet of
Things Journal, vol. 8, no. 4, pp. 2342–2353, 2020.

[11] X. Sun, F. R. Yu, P. Zhang, Z. Sun, W. Xie, and X. Peng, “A sur-
vey on zero-knowledge proof in blockchain,” IEEE Network,
vol. 35, no. 4, pp. 198–205, 2021.

[12] S. Mao, J. Wu, L. Liu, D. Lan, and A. Taherkordi, “Energy-effi-
cient cooperative communication and computation for wire-
less powered mobile-edge computing,” IEEE Systems Journal,
pp. 1–12, 2020.

[13] C. Cimpanu, “Amca data breach has now gone over the 20mil-
lion mark,” 2019, https://www.zdnet.com/article/amca-data-
breach-has-nowgone-over-the-20-million-mark/.

[14] W. Zhang, M. Li, R. Tandon, and H. Li, “Online location trace
privacy: an information theoretic approach,” IEEE Transac-
tions on Information Forensics and Security, vol. 14, no. 1,
pp. 235–250, 2019.

[15] R. L. Rivest, L. Adleman, and M. L. Dertouzos, “On data banks
and privacy homomorphisms,” Foundations of Secure Compu-
tation, vol. 4, no. 11, pp. 169–180, 1978.

[16] J. H. Cheon, A. Kim, M. Kim, and Y. Song, “Homomorphic
encryption for arithmetic of approximate numbers,” in Pro-
ceedings of Advances in Cryptology - ASIACRYPT 2017,
pp. 409–437, Hong Kong, China, 2017.

[17] H. Kim and W. Lee, “Real-time path planning through Q-
learning’s exploration strategy adjustment,” in Proceedings of
2021 International Conference on Electronics, Information,
and Communication, pp. 1–3, Jeju, Republic of Korea, 2021.

[18] C. Wu, Z. Liu, F. Liu, T. Yoshinaga, Y. Ji, and J. Li, “Collabora-
tive learning of communication routes in edge-enabled multi-
access vehicular environment,” IEEE Transactions on Cogni-
tive Communications and Networking, vol. 6, no. 4,
pp. 1155–1165, 2020.

[19] R. Williams, “Simple statistical gradient-following algorithms
for connectionist reinforcement learning,” Machine Learning,
vol. 8, no. 3-4, pp. 229–256, 1992.

[20] V. Mnih, A. Badia, M. Mirza et al., “Asynchronous methods
for deep reinforcement learning,” in Proceedings of the 33rd
International Conference on Machine Learning, pp. 1928–
1937, New York, USA, 2016.

[21] J. Feng, F. Richard Yu, Q. Pei, X. Chu, J. du, and L. Zhu,
“Cooperative computation offloading and resource allocation
for blockchain-enabled mobile-edge computing: a deep rein-
forcement learning approach,” IEEE Internet of Things Jour-
nal, vol. 7, no. 7, pp. 6214–6228, 2020.

[22] C. Gentry, “Fully homomorphic encryption using ideal lat-
tices,” in Proceedings of the 41st annual ACM symposium on
Symposium on theory of computing - STOC '09, pp. 169–178,
New York, USA, 2009.

[23] C. Gentry, A. Sahai, and B. Waters, “Homomorphic encryp-
tion from learning with errors: conceptually-simpler, asymp-
totically-faster, attribute-based,” in Advances in Cryptology –
CRYPTO 2013, pp. 75–92, Springer, 2013.

[24] Z. Brakerski, C. Gentry, and V. Vaikuntanathan, “(Leveled)
fully homomorphic encryption without bootstrapping,” ACM
Transactions on Computation Theory, vol. 6, no. 3, pp. 1–36,
2014.

[25] V. Lyubashevsky, C. Peikert, and O. Regev, “On ideal lattices
and learning with errors over rings,” in Advances in Cryptology
– EUROCRYPT 2010, pp. 1–23, Springer, 2010.

[26] A. Khedr and G. Gulak, “Securemed: secure medical computa-
tion using gpu-accelerated homomorphic encryption scheme,”
IEEE Journal of Biomedical and Health Informatics, vol. 22,
no. 2, pp. 597–606, 2018.

[27] X. Sun, P. Zhang, M. Sookhak, J. Yu, and W. Xie, “Utilizing
fully homomorphic encryption to implement secure medical
computation in smart cities,” Personal and Ubiquitous Com-
puting, vol. 21, no. 5, pp. 831–839, 2017.

[28] N. Dowlin, R. Gilad-Bachrach, K. Laine, K. Lauter, M. Naehrig,
and J. Wernsing, “Manual for using homomorphic encryption
for bioinformatics,” Proceedings of the IEEE, vol. 105, no. 3,
pp. 1–16;, 2017.

[29] D. Boneh, E.-J. Goh, and K. Nissim, “Evaluating 2-DNF for-
mulas on ciphertexts,” in Proceedings of Theory of Cryptogra-
phy Conference, pp. 325–341, Cambridge, USA, 2005.

[30] A. Poon, S. Jankly, and T. Chen, “Privacy preserving Fishers
exact test on genomic data,” in Proceedings of 2018 IEEE Inter-
national Conference on Big Data, pp. 2546–2553, Seattle, USA,
2018.

[31] J. L. Raisaro, G. Choi, S. Pradervand et al., “Protecting privacy
and security of genomic data in i2b2 with homomorphic
encryption and differential privacy,” IEEE/ACM Transactions
on Computational Biology & Bioinformatics, vol. 15, no. 5,
pp. 1413–1426, 2018.

[32] X. Liu, R. H. Deng, K.-K. R. Choo, and J. Weng, “An efficient
privacy-preserving outsourced calculation toolkit with multi-
ple keys,” IEEE Transactions on Information Forensics and
Security, vol. 11, no. 11, pp. 2401–2414, 2016.

[33] J. Fan and F. Vercauteren, “Somewhat practical fully homo-
morphic encryption,” 2012, https://eprint.iacr.org/2012/144
.pdf.

[34] L. Jiang, L. Chen, T. Giannetsos, B. Luo, K. Liang, and J. Han,
“Toward practical privacy-preserving processing over
encrypted data in IoT: an assistive healthcare use case,” IEEE
Internet of Things Journal, vol. 6, no. 6, pp. 10177–10190, 2019.

[35] X. Sun, P. Zhang, J. K. Liu, J. Yu, andW. Xie, “Private machine
learning classification based on fully homomorphic encryp-
tion,” IEEE Transactions on Emerging Topics in Computing,
vol. 8, no. 2, pp. 352–364, 2020.

[36] C. Lomont, “Fast inverse square root,” 2003, http://lomont
.org/papers/2003/InvSqrt.pdf.

[37] X. Chen, C. Wu, Z. Liu, N. Zhang, and Y. Ji, “Computation off-
loading in beyond 5g networks: a distributed learning frame-
work and applications,” IEEE Wireless Communications,
vol. 28, no. 2, pp. 56–62, 2021.

[38] H.-K. Lim, J.-B. Kim, C.-M. Kim, G.-Y. Hwang, H.-b. Choi,
and Y.-H. Han, “Federated reinforcement learning for control-
ling multiple rotary inverted pendulums in edge computing
environments,” in Proceedings of 2020 International Confer-
ence on Artificial Intelligence in Information and Communica-
tion, pp. 463-464, Durban, South Africa, 2020.

16 Wireless Communications and Mobile Computing

https://www.zdnet.com/article/amca-data-breach-has-nowgone-over-the-20-million-mark/
https://www.zdnet.com/article/amca-data-breach-has-nowgone-over-the-20-million-mark/
https://eprint.iacr.org/2012/144.pdf
https://eprint.iacr.org/2012/144.pdf
http://lomont.org/papers/2003/InvSqrt.pdf
http://lomont.org/papers/2003/InvSqrt.pdf

	A Privacy-Preserving Reinforcement Learning Approach for Dynamic Treatment Regimes on Health Data
	1. Introduction
	2. Related Work
	3. Preliminaries
	3.1. Basic Notations
	3.2. Learning with Errors over Rings
	3.3. Cheon et�al.’s Homomorphic Encryption Scheme
	3.4. Asynchronous Advantage Actor-Critic Reinforcement Learning Algorithm

	4. Secure Dynamic Treatment Regimes on Health Data
	4.1. System Model
	4.2. Attack Model
	4.3. System Setup and Overview

	5. Building Blocks
	5.1. Encoding Rational Number
	5.2. Homomorphic Comparison Protocol
	5.3. Homomorphic Maximum Protocol
	5.4. Homomorphic Exponential Protocol
	5.5. Homomorphic Division Protocol
	5.6. Homomorphic Reciprocal of Square Root Protocol

	6. Privacy-Preserving Computation Algorithms
	6.1. Privacy-Preserving A3C Reinforcement Learning Algorithm
	6.2. Secure Treatment Decision-Making Algorithm

	7. Performance Results
	8. Conclusion
	Data Availability
	Conflicts of Interest
	Acknowledgments

