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Spectrum sensing (SS) has attracted much attention in the field of Internet of things (IoT) due to its capacity of discovering the
available spectrum holes and improving the spectrum efficiency. However, the limited sensing time leads to insufficient
sampling data due to the tradeoff between sensing time and communication time. In this paper, deep learning (DL) is applied to
SS to achieve a better balance between sensing performance and sensing complexity. More specifically, the two-dimensional
dataset of the received signal is established under the various signal-to-noise ratio (SNR) conditions firstly. Then, an improved
deep convolutional generative adversarial network (DCGAN) is proposed to expand the training set so as to address the issue of
data shortage. Moreover, the LeNet, AlexNet, VGG-16, and the proposed CNN-1 network are trained on the expanded dataset.
Finally, the false alarm probability and detection probability are obtained under the various SNR scenarios to validate the
effectiveness of the proposed schemes. Simulation results state that the sensing accuracy of the proposed scheme is greatly
improved.

1. Introduction

In recent years, the spectrum resource has beenmore andmore
scarce due to the great demand for wireless communication,
Internet of Things (IoT), Artificial Intelligence (AI) [1–3], etc.
One of the most important issues of wireless communication
technology is to improve its spectrum efficiency in the near
future. As a possible scheme to improve spectrum efficiency,
cognitive radio (CR) [4] has attracted much attention.

The core idea behind CR is to realize dynamic spectrum
allocation (DSA) and spectrum sharing by spectrum sensing
and the intelligent learning ability of the system [5]. The most
important technology behind CR is to periodically monitor
the absence or the presence of the registered users within the
observed bands, named spectrum sensing (SS) [6]. In SS, the
registered users are the primary users (PU) of the observed
bands and have the priority to the spectrum. The purpose of
CR is to opportunistically access the registered spectrumwhen
PU is absent. As a result, the cognitive users are the secondary

users (SU). Once the PU is back, the SU will release the spec-
trum at once and wait for the other opportunity.

Classical SS contains matched filtering, energy detector
(ED) [7], cyclic spectrum detection [8], covariance matrix
detection [9], etc. The sensing performance of the matched
filtering is optimal if the prior knowledge of the primary sig-
nal is known in advance. ED is the optimal blind detector
considering both sensing performance and sensing complex-
ity. However, it suffers from noise uncertainty under the low
signal-to-noise ratio (SNR) regimes. The sensing perfor-
mance of cyclic spectrum detection and covariance matrix
detection is improved in the low-SNR case compared with
ED at the expense of a higher complexity. However, these tra-
ditional SS schemes either have poor performance or have
high complexity.

Recently, with the wide application of the deep learning
(DL) in the field of computer vision [10], the wireless commu-
nication based on DL has been a hot topic [11–13]. The
essence of DL is to provide a method of automatically learning
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pattern features and combine the features, thus, reducing the
incompleteness caused by artificial design features. In [14], a
stacked autoencoder based spectrum sensing approach
(SAE-SS) was proposed to relieve the influence from carrier
frequency offset (CFO), timing delay, and noise uncertainty.
A deep learning based signal detector was considered to
exploit the underlying structural information of the modu-
lated signals in [15]. The transfer learning strategies were used
in [16] to improve the performance for real-world signals. In
[17], the convolutional neural network- (CNN-) long short
term memory network (LSTM) detector was proposed to
extract the spatial and temporal features of the input.

Motivated by the mentioned above, DL is applied to SS in
this paper, where the covariance matrix of the received signal
is converted into the true color picture. Then, an improved
deep convolutional generative adversarial network
(DCGAN) is proposed to expand the training set for the issue
of data shortage.

After that, the LeNet [18], AlexNet [19], VGG-16 [20],
and a novel network are trained based on the extended data.
Finally, the simulations are made to validate the effectiveness
of the proposed schemes. The main contributions of this
paper are concluded as follows.

(1) The two-dimensional dataset of the received signal is
established under the various SNR conditions. Each
SNR contains 4000 samples from -10 dB to 2 dB

(2) An improved DCGAN network is proposed to
expand the obtained two-dimensional dataset. In

the expanded dataset, each SNR contains 8000
samples

(3) The LeNet, AlexNet, and VGG-16 networks are
trained on the expanded dataset. The corresponding
false alarm probability and detection probability are
given under the various SNR scenarios

(4) Based on the sensing performance of the LeNet, Alex-
Net, and VGG-16 networks, an improved network is
provided in this paper to balance the sensing perfor-
mance and the sensing complexity

The reminder of the paper is organized as follows. Section
2 introduces the related work and gives the system model. In
Section 3, the improved DCGAN scheme is discussed to solve
the issue of data shortage. The SS with the LeNet, AlexNet,
VGG-16, and an improved network is conducted. Finally,
conclusions are drawn in Section 5.

2. Related Work

In this section, three classical convolutional neural networks
(CNN) and the deep convolutional generative adversarial
network (DCGAN) [21] are reviewed. In addition, the system
model of this paper is provided.

2.1. CNN. CNN is a feed-forward neural network. This net-
work model uses a gradient descent method to minimize
the loss function and reversely adjusts the weight parameters
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Figure 1: The network architecture of LeNet and AlexNet.
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in the network layer by layer. Three classical CNN networks
are considered in this paper, LeNet, AlexNet, and VGG-16.

As it is shown in Figure 1, the LeNet network contains
three convolutional layers with the size 5 × 5, two pooling
layers with the size 2 × 2, and three fully connected layers
[18]. The AlexNet network contains five convolutional
layers, three pooling layers with the size 3 × 3, and three fully
connected layers [19].

As it is shown in Figure 2, the VGG-16 network contains
13 convolutional layers with the size 3 × 3 and three fully
connected layers [20]. The maximum polling is considered
in VGG-16 network with the size 2 × 2. The first two pooling
layers are followed by two convolutional layers while the rest
pooling layers are followed by three convolutional layers.

2.2. DCGAN. The generative adversarial networks (GAN)
[21] have attracted wide attention in the field of machine
learning because of its great potential to imitate high-
dimensional and complex real data. For scenarios where
there is a lack of data, it can be used to generate more sample
data. In order to solve the problem of high acquisition cost of
training set samples, this paper utilizes GAN to generate

more training set samples. Generative adversarial networks
include generating network (Generator) and discriminating
network (Discriminator). The generating network learns
the real data distribution to generate new data under the
guidance of the discriminating network. Deep convolutional
generative adversarial networks are one of the more effective
and stable networks based on GAN. The basic framework of
DCGAN [22] is shown in Figure 3.

Assume the input of the Generator is the random Gauss-
ian noise z and its output is the fake sample GðzÞ: The true
sample x and fake sample GðzÞ are input to the Discrimina-
tor, respectively, and the corresponding outputs are DðxÞ
and DðGðzÞÞ:DðxÞ denotes the probability that the input x
of the Discriminator is a real sample. The Discriminator is
to make DðxÞ tend to 1 and DðGðzÞÞ tend to 0. At the same
time, the Generator is to make DðGðzÞÞ close to 1. The loss
function of DCGAN is shown as

L D, Gð Þ = Ex~Pr log D xð Þ½ � + Ex~Pg
log 1 −D xð Þð Þ½ �, ð1Þ

where Pr represents the real sample distribution and Pg rep-
resents the fake sample distribution.
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Figure 2: The network architecture of VGG-16.
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The objective functions of the Discriminator and the
Generator are, respectively, written as

max
D

L D,Gð Þ, ð2Þ

max
G

max
D

L D,Gð Þ: ð3Þ

(3) can be further rewritten as

max
G

max Ex~Pg
D

log 1 −D xð Þð Þ½ �: ð4Þ

2.3. System Model. In this paper, the signal is received by a
multiantenna system, and then the covariance matrix of the
signal is calculated. After that, the covariance matrix is trans-
formed into a true color graph as a data set. The system
model of this paper is shown in Figure 4.

An M-element antenna system is considered to receive
the signals based on N observation vectors. Let siðnÞ, n = 0,
1,⋯,N − 1 denote the n − th discrete-time sample at the i
− th antenna. Generally, the spectrum sensing can be
regarded as a binary classification [21],

si nð Þ =
wi nð Þ, H0,
xi nð Þ +wi nð Þ, H1,

(
ð5Þ

wherewiðnÞ denotes the background noise and xiðnÞ denotes
primary signal vector with the Rayleigh fading [7]. H0 and
H1, respectively, signify the absence and the presence of PU.

Let si = ½sið0Þ, sið1Þ,⋯siðN − 1Þ� denote the sampling
sequence at the i − th antenna and its average can be
expressed as

si−a =
1
N

〠
N−1

n=0
si nð Þ: ð6Þ

The time series matrix of the received signal S can be for-
mulated as

S =

s1 0ð Þ − s1−a s1 1ð Þ − s1−a ⋯ s1 Nð Þ − s1−a

s2 0ð Þ − s2−a s2 1ð Þ − s1−a ⋯ s2 Nð Þ − s1−a

⋮ ⋮ ⋯ ⋮

sM 0ð Þ − sM−a sM 1ð Þ − sM−a ⋯ sM Nð Þ − sM−a

2
666664

3
777775:

ð7Þ

The corresponding covariance matrix is

R Nð Þ = 1
N
S × SH : ð8Þ

For the real part and the imaginary part of S, the covari-
ance matrix is considered as the two channels of the true
color image, together with a zero matrix as the third channel
of the true color image.

The samples are divided into training set and test set.
Then, the training set is expanded by DCGAN. After that,
CNN is trained by the expanded training set. Finally, the
sensing performance is validated by the test set.
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Figure 4: System model.
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The false alarm probability and the detection probability
can be formulated as

Pd = P φ R Nð Þ½ � > λ H1jf g, ð9Þ

Pf = P φ R Nð Þ½ � > λ H0jf g, ð10Þ

where φ½RðNÞ� denotes the feature extraction operation of
the proposed network and λ denotes the sensing threshold.

3. Data Enhancement with DCGAN

In this section, the data enhancement scheme with DCGAN
is discussed and an improved DCGAN scheme is proposed,
where the python3.7 and pytorch1.5 machine learning librar-
ies are used to implement generative adversarial network and
convolutional neural network. The hardware CPU is Inter(R)
Core(TM) i5-6300HQ and the GPU is NVIDIA GeForce
GTX 960M.

3.1. Data Generation. In this subsection, the original training
set and test set are generated, where the OFDM signal [23] is
considered as the primary signal, and the Rayleigh fading
[24] is regarded as the propagation channel. The size of the
sampling covariance matrix is 10 × 10 × 2. The number of
antennas in the multiantenna system used in this paper is
M = 10. The channel number of a true color image is 3, where
the channel number of the sampling covariance matrix is 2
(the real part and the imaginary part), and the third channel
is set to a zero matrix. The matrix size depends on the
antenna number of the multiantenna system.

In the process of data generation, 8 datasets are gener-
ated, whose SNR varies from -10 dB to 2 dB with the step
2 dB. Each dataset is divided into two parts, H0 and H1. For
the H0 part, the real and imaginary parts are, respectively,
sampled to obtain 3000 sets of data, where each set of data
sampling points N = 1000 and contains two matrices. Then,
this set of data is a 10 × 1000 × 2 sampling time series matrix.
Calculate the sampling covariance matrix of each matrix
according to (7). Then, 3000 sets of dual-channel sampling
covariance matrices can be obtained. After that, these 3000
sets of data are randomly sorted and converted into true
color images, where the first channel of the true color image
is the first channel of the sampling covariance matrix, the sec-
ond channel is the zero matrix, and the third channel is the
second channel of the sampling covariance matrix. Finally,
take the first 1000 groups as the data of the H0 category in
the test set, and take the last 2000 groups as the data of the
H0 category in the original training set.

For theH1 part, the same operations are conducted as the
H0. As a result, the 1000 sets of test set data and 2000 sets of
original training set data for the H1 part.

Figure 5 exhibits the obtained true color image in the H0
and H1 case under 2 dB, where the left image corresponds
with the H0 case and the right image corresponds with the
H1 case. From Figure 5, the color of the H0 case is very dark
except for the diagonal, which indicates that the value of the
corresponding two-channel sampling covariance matrix is
very small. While in the H1 case, the color of the image is

uneven and somewhat chaotic, which indicates that the cor-
responding two-channel sampling covariance matrix values
are also chaotic.

3.2. Data Enhancement. The sampled data is enhanced in this
subsection based on the classical DCGAN scheme, where the
sampled data is doubled, from 4000 images to 8000 images
for each SNR.

In Figure 6, the loss of the training with the iterations is
exhibited, where G denotes the Generator, D denotes the Dis-
criminator, and the number of training cycles is 16. According
to Figure 6, when it runs to the 10th cycle, a large loss occurs
due to the gradient explosion. As a result, how to effectively
reduce the loss determines the quality of data enhancement.

In Figure 7, the initial weights of the convolution kernel
are adjusted, from the Gaussian distribution with the mean 0
and the variance 0.02 to the Gaussian distribution with the
mean 0.05 and the variance 0.02. As a result, the loss function
is enlarged, and the trend of the loss function can be better
observed. From Figure 7, to increase the mean of the initial
weight will not only increase the loss function value but also
slow down the training speed and reduce the training gradient.

Figures 8 and 9, respectively, exhibit the training result
with the mean of initial weight 0.05 and 0.02, where the left
image denotes the original image and the right image denotes
the generated image with DCGAN. From Figures 8 and 9, the
smaller the mean of initial weight is, the better the generated
image quality is. It can be seen that the initial weight average
still has a great influence on the convergence speed of the
model. The larger the initial weight of the convolution kernel,

Figure 5: True color image in the H0 and H1 cases under 2 dB.
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the slower the convergence speed may be, and the slower the
gradient will be. But at the same time, more useful informa-
tion can be obtained.

3.3. Improved DCGAN. According to the discussion men-
tioned above, to increase the mean of the initial weight
reduces the training gradient. However, it sacrifices the gen-
erated image quality. The improved DCGAN scheme is made
to solve the above issue in this subsection.

The change of DðGðzÞÞ before and after the gradient
explosion is shown in Figure 10 with the mean of initial
weight 0. From Figure 10, when the gradient explosion
occurs, the loss functions of the generating network and the
discriminating network become extremely large while DðxÞ

and DðGðzÞÞ are both 0. At this point, both networks will
be collapsed. Motivated by this, an adjustment scheme is pro-
posed as it is shown in Table 1.

Figures 11 and 12 show the improved DCGAN result
with the mean of initial weight 0 and the improved DCGAN
loss with the mean of initial weight 0 when the algorithm
runs to the 40th training loop. It can be seen that the gener-
ated map has been able to reach the point of being fake.
Moreover, from the point of view of the loss function, since
the 100th training, the generating network and the discrimi-
nating network have also shown an obvious upward and
downward jitter trend, that is, adversarial evolution. At the
same time, it can be concluded that the mean value of the ini-
tialization parameter weight changes from 0.2 to 0, which
speeds up the convergence of the model.

4. SS with CNN Network

For SS, two factors determine the sensing performance, detec-
tion probability (PD), and false alarm probability (PFA). As a
result, the PD and PFA are provided with LeNet, AlexNet,
VGG-16, and the proposed CNN-1 network in this section.

4.1. LeNet. Figures 13 and 14, respectively, show the PD [25]
and PFA [26] under various SNR conditions. From
Figures 13 and 14, the detection performance of the LeNet
network is obviously different under different SNRs. When
the SNR is small, PD is small and PFA is high due to the
obtained nonsignificant features. However, when SNR ≥ −4
dB, PD can be maintained at or above 0.9, and PFA is basi-
cally lower than 0.1. In addition, after data enhancement with
the proposed scheme, the mean value of PD becomes higher,
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Figure 8: 82 times training result with the mean of initial weight
0.05.

Figure 9: 82 times training result with the mean of initial weight
0.02.
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and the maximum and minimum values of PD become sig-
nificantly higher. Although the average value of PFA does
not significantly decrease, but its maximum and minimum
values are closer to the mean, which indicates its fluctuation
range becomes smaller with the improved DCGAN.

4.2. AlexNet. Figures 15 and 16, respectively, give the PD and
PFA comparisons with the AlexNet network under various
SNRs, where the improved DCGAN is considered.

From Figure 15, the average value of PD is 0.95 or more,
and the minimum value is 0.8 or more when −2dB ≤ SNR ≤

4dB: The average value of PD is close to the maximum, which
means that most PD values are close to 1, and only a few are
close to the minimum values. In addition, after the data
enhancement, the average value of PD is also improved slightly.

The PFA is provided with the AlexNet network in
Figure 16. From Figure 16, the mean value of PFA is less than
0.05 and its curve almost coincides with the minimum curve.
At the same time, after the data enhancement, the maximum
value of PFA decreases obviously, which indicates that the
vibration amplitude of PFA decreases obviously.

As a summary, when −2dB ≤ SNR ≤ 4dB, PD is close to 1
and PFA is close to 0, which indicates that the detection per-
formance of the AlexNet is better than that of the LeNet.
After the data enhancement, PD is improved slightly, and
PFA has become more stable.

4.3. VGG-16. In Figures 17 and 18, the PD and PFA are,
respectively, exhibited with the VGG-16 network. According

Table 1: The adjustment scheme of DCGAN.

D G zð Þð Þ Emergency action

Emergency action of judgement network

0:50 <D G zð Þð Þ ≤ 0:65 2 extra training times

0:65 <D G zð Þð Þ ≤ 0:75 3 extra training times

0:75 <D G zð Þð Þ ≤ 0:85 4 extra training times

0:85 <D G zð Þð Þ ≤ 0:95 5 extra training times

0:95 <D G zð Þð Þ 6 extra training times

Emergency action of judgement network

0:14 <D G zð Þð Þ ≤ 0:19 1 extra training time

0:10 <D G zð Þð Þ ≤ 0:14 2 extra training times

0:07 <D G zð Þð Þ ≤ 0:10 3 extra training times

D G zð Þð Þ ≤ 0:07 4 extra training times

Figure 11: Improved DCGAN result with the mean of initial weight
0.
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to Figure 17, when SNR = −10 dB or SNR = −4 dB, the aver-
age value of PD is improved by nearly 0.1. When SNR ≥ −4
dB, the average value of PD is above 0.9. After the data
enhancement, the minimum value of PD is also significantly
improved.

From Figure 18, the average value of PFA is less than 0.2
and decreases with the increase of SNR. After the data
enhancement, the mean and maximum values of PFA
decrease significantly.

To sum up, the detection performance of VGG-16 is bet-
ter than that of LeNet-5 and AlexNet. In addition, the
improvement of data enhancement on the performance of
the model is also obvious, where the vibration amplitude of
PD and PFA decreases obviously. However, the performance
of VGG-16 is at the expense of computational complexity
due to a large number of network parameters.

4.4. CNN-1. According to the sensing performance of the
LeNet, AlexNet, and VGG-16 network, the network depth
of VGG-16 is too large and the depth of Lenet-5 is too
small to achieve the optimal result. Therefore, this paper
designs a novel convolution neural network with the
appropriate depth, named CNN-1. The network parame-
ters of the proposed CNN-1 network are shown in
Table 2.

As described in the system model, Rx is a real matrix with
the dimension M ×M × 3: Let Rxði, j, τÞ denote the element
at position ði, jÞ of the τ-th dimension for Rx:
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(1) Convolutional Layer C1. C1 contains 32 feature
maps, and each feature map is gained by convo-
lution operation with the kernel size of 3 × 3.
Thus

C1 i, j, τð Þ = φReLU 〠
2

k=0
〠
2

i0=0
〠
2

j0

Rx i + i0, j + j0, kð Þ
 !

kC1
τ

� 3 − i0, 3 − j0, 2 − kð Þ,
ð11Þ

where C1ði, j, τÞ denotes the element at position
ði, jÞ of the τ − th feature map in C1 layer, and
kC1
τ denotes the kernel of the τ − th feature map
in C1 layer. φReLU = max ð0, xÞ denotes ReLU
function, where max ð⋅Þ denotes the maximum
value, x is the independent variable of the
function.

(2) Pooling Layer S1. S1 contains 32 feature maps, and
maximum pooling is conducted for each feature
map

S1 i, j, τð Þ =max C1 2i − 1, 2j − 1, τð Þ, C1 2i − 1, 2j, τð Þ,f
C1 2i, 2j − 1, τð Þ, C1 2i, 2j, τð Þg:

ð12Þ

(3) Convolutional Layer C2. C2 contains 64 feature
maps, and each feature map is gained by convolu-
tion operation. Thus

C2 i, j, τð Þ = φReLU 〠
31

k=0
〠
2

i0=0
〠
2

j0

Rx i + i0, j + j0, kð Þ
 !

kC2
τ

� 3 − i0, 3 − j0, 31 − kð Þ:
ð13Þ

(4) Pooling Layer S2. S2 contains 64 feature maps, and
maximum pooling is conducted for each feature
map

S2 i, j, τð Þ =max C2 2i − 1, 2j − 1, τð Þ, C2 2i − 1, 2j, τð Þ,f
C2 2i, 2j − 1, τð Þ, C2 2i, 2j, τð Þg:

ð14Þ

(5) Convolutional Layer C3. C3 contains 128 feature
maps, and each feature map is gained by convolu-
tion operation

C3 i, j, τð Þ = φReLU 〠
127

k=0
〠
2

i0=0
〠
2

j0

Rx i + i0, j + j0, kð Þ
 !

kC3
τ 3 − i0, 3 − j0, 127 − kð Þ:

ð15Þ

(6) Pooling Layer S3. S3 contains 128 feature maps, and
maximum pooling is conducted for each feature
map

S3 i, j, τð Þ =max C3 2i − 1, 2j − 1, τð Þ, C3 2i − 1, 2j, τð Þ,f
C3 2i, 2j − 1, τð Þ, C3 2i, 2j, τð Þg:

ð16Þ

(7) Convolutional Layer C4. C4 contains 128 feature
maps, and each feature map is gained by convolu-
tion operation

C4 i, j, τð Þ = φReLU 〠
127

k=0
〠
2

i0=0
〠
2

j0

Rx i + i0, j + j0, kð Þ
 !

kC4
τ 3 − i0, 3 − j0, 127 − kð Þ,

ð17Þ

(8) Pooling Layer S4. S4 contains 128 feature maps, and
each feature map is gained by convolution operation

S4 i, j, τð Þ =max C4 2i − 1, 2j − 1, τð Þ, C4 2i − 1, 2j, τð Þ,f
C4 2i, 2j − 1, τð Þ, C4 2i, 2j, τð Þg:

ð18Þ

(9) Fully Connected Layer F1. F1 is fully connected with
S4, the number of neurons in F1 is 512

(10) Fully Connected Layer F2. F2 is fully connected
with F1 with the neuron number 512. F2 is a
probability value because SS is a binary classifica-
tion issue. This probability value can be expressed
as PL1

ðRxÞ. When PL1
ðRxÞ > 0:5, Rx ∈H1 ; other-

wise, Rx ∈H0:

Table 2: The parameters of CNN-1.

Input: true color image (dimension: 110 × 110 × 3)
Layers Kernel size

C1 + ReLU 32 × 3 × 3 × 3ð Þ
S1: maximum pooling 2 × 2
C2 + ReLU 64 × 32 × 3 × 3ð Þ
S2: maximum pooling 2 × 2
C3 + ReLU 128 × 64 × 3 × 3ð Þ
S3: maximum pooling 2 × 2
C4 + ReLU 128 × 128 × 3 × 3ð Þ
S4: maximum pooling 2 × 2
F1 + ReLU 512 × 3200
F2 + sigmoid 1 × 512
Output: score vector (dimension: 1 × 1)
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Figures 19 and 20, respectively, exhibit the PD and PFA
with the proposed CNN-1 scheme under various SNRs. From
Figures 19 and 20, the detection probability of the CNN-1
with the proposed data enhancement scheme is higher than
that without the data enhancement while the false alarm
probability of the CNN-1 with the proposed data enhance-
ment scheme is lower than that without the data enhance-
ment. In addition, when SNR ≥ −8dB, the mean value of
PD is more than 0.8 and the mean value of PFA is less than
0.2, which is much better than that of the LeNet and the same
as that of the VGG-16.

Figure 21 gives the performance comparisons of various
SS schemes including the LeNet based scheme, the AlexNet
based scheme, the VGG-16 based scheme, and the proposed
CNN-1 based scheme. As it is shown for the black line, it,
respectively, denotes -2 dB, 0 dB, 2 dB, and 4dB from bottom
to top, and the other lines are the same as the black one. From
Figure 21, the sensing performance of the CNN-1 based SS
scheme is highest compared to the other SS schemes under
the same SNR, which corresponds with the performance in
Figures 13–20.

In Figure 22, the computation time comparison of differ-
ent CNN networks is discussed, where we use the time it

takes for a model to process a true color image to represent
computational complexity and evaluate the computational
complexity of different CNN algorithms. From Figure 22,
the computation time of the LeNet, AlexNet, CNN-1, and
VGG-16 is about 6ms, 12.5ms, 16ms, and 33ms, which
indicates that the LeNet is the simplest and the VGG-16 is
the most complex.

As a summary, the detection performance of CNN-1 is
similar to that of VGG-16, but the computation time of
CNN-1 is nearly half that of VGG-16. This indicates that
CNN-1 is a better convolution neural network model for SS.

As a supplement, performance comparisons are made
between the proposed CNN-1 and the schemes in [16, 17].
As it is shown for the black line, it, respectively, denotes
-2 dB, 0 dB, 2 dB, and 4dB from bottom to top, and the other
lines are the same as the black one. From Figure 23, the sens-
ing performance of the proposed CNN-1 scheme is slightly
higher than that of the scheme in [16]. Meanwhile, the
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Figure 20: False alarm probability with CNN-1.
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sensing performance of the proposed CNN-1 scheme is sig-
nificantly higher than that of the scheme in [17]. This states
that the proposed CNN-1 scheme with data enhancement
is more suitable for the detection of spectrum state.

5. Conclusions

In this paper, the deep learning based spectrum sensing is
discussed for sustainable cities and society, where the LeNet,
AlexNet, VGG-16, and the proposed CNN-1 network are
considered. First, the two-dimensional dataset of the received
signal is established and expanded by the proposed DCGAN
scheme. Then, the four networks are trained on the expanded
dataset. Finally, the test is made under the various SNR con-
ditions. The experiment results show that the sensing perfor-
mance is greatly improved by the proposed data
enhancement scheme and the novel CNN network.

Data Availability

The data supporting the results of my study can be found at
https://figshare.com/articles/dataset/__part1_rar/14245763.
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