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In wireless sensor networks (WSNs), inefficient coverage does affect the quality of service (QoS), which theminimum exposure path
(MEP) is traditionally used to handle. But intelligent mobile devices are generally of limited computation capability, local storage,
and energy. Present methods cannot meet the demand of multiple target intrusion, lacking the consideration of energy
consumption. Based on the Voronoi diagram in computational geometry, this paper proposed an invasion strategy of minimum
risk path (MRP) to such a question. MRP is the path considered both the exposure of the moving target and energy
consumption. Federated learning is introduced to figure out how to find the MRP, expressed as Cðti, t jÞ = f ðE, eÞ. The value of C
ðti, t jÞ can measure the success of an invasion. At the time when a single smart mobile device invades, horizontal federated
learning is taken to partition the path feature, and a single target feature federated (SPF) algorithm is for calculating the MRP.
Moreover, for multi smart mobile device invasion, it has imported the time variable. Vertical federated learning can partition
the feature of multipath data, and the multi-target feature federated (MFF) algorithm is for solving the multipath MRP
dynamically. The experimental results show that the SPF and MFF have the dominant advantage over traditional computational
performance and time. It primarily applies the complex conditions of a massive amount of sensor nodes.

1. Introduction

Wireless sensor networks (WSNs) composed of many
sensors are widely used in many fields, such as building
monitoring, intelligent transportation system (ITS), and
enemy status report [1, 2]. What mainly affects network qual-
ity is coverage, especially the WSN barrier coverage problem
[3]. According to the coverage classification, barrier coverage
is one of the three coverage strategies to detect unauthorized
intruding behaviour in monitored areas. Moreover, its qual-
ity measurement factors are mainly breaching, supporting,
or exposure of the penetration path [4]. To reduce the risks
of being found, invaders can make effective path planning
and minimize the exposure [5] through intelligent algorithm.

Minimum exposure path (MEP) [6] is a significant way
that assesses the coverage effect ofWSN to optimize the man-
agement of WSN. By finding out the MEP, the defender can
estimate where the sensor network coverage is weak because
the invader crossed the sensing field along this path is the
most difficult to detect [7]. Therefore, this paper will study

how to find an optimal invasion path from the perspective
of intruders.

Meguerdichian et al. [8] put forward the Voronoi dia-
gram numerical solution combined with WSN and solved
the MEP problem by the shortest path algorithm. Chechik
et al. [9] defined the exposure by the number of nodes
adjacent to the moving target, considering single-path con-
nectivity to solve the MEP problem.

In this paper, considering the perspective from invaders,
the monitoring area is modelled by the Voronoi diagram
that divided the field into undirected graphs that are a set
of segmented linear components to limit the optimal
searching space.

Previous studies have shown that for intruders, the threat
can be viewed as the probability of being detected by the
sensor nodes when passing through the WSN, namely, the
exposure. Exposure is the expected average ability of intru-
sion targets moved in the monitored area. Mathematically,
the invader’s exposure time and sensor field intensity should
be taken into account when calculating the exposure degree.
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Exposure can be formulated as a path integral when the sen-
sor field intensity is accumulated along a path from the
source point to the destination point during a time interval.

According to the Cannikin Law [10], the reliability of the
penetration path depends not only on its total exposure
degree but also on the exposure of the discrete edges that
make up the path. And when the invader passes through
the monitoring area in some circumstances, it will be limited
by time, distance, exposure, and energy consumption. There-
fore, it is not accurate to find the path with the minimum
total exposure degree. It is necessary to find an approach that
is more in line with actual needs. The minimum risk path
(MRP) is called to sum up the above paths in this paper.

However, most of the researchers consider only one
single intruder when solving the intrusion path. In actual
situations, such as the Underwater Listening Network, a
system collects underwater sounds and tracks and monitors
the Navy’s passing ships and submarines. Underwater lis-
teners are installed on the seafloor and act as sensor nodes.
The moving target is an autonomous underwater vehicle
(AUV) that needs to pass through the monitoring area. Mul-
tiple AUV intruders cross the sensing field simultaneously
and cooperate with each other, as shown in Figure 1. Invader
1 and invader 2 need to walk along two different paths to
collect more information as far as possible, which will add
to the complexity of path planning.

By contrast with the traditional method, federated learn-
ing allows multiple data owners to establish a shared model
[11] with the protection of local data. It is conducive for
updating the global data model dynamically to path plan-
ning. Yang et al. [12] introduced a federated learning frame-
work of comprehension and security in 2019. Zhu and Jin
[13] optimized the structure of neural network models by
multiobjective evolutionary algorithms while minimizing
communication costs and global model testing errors.
Sodhro et al. [14] proposed a dynamic method of forward-
center by adjusting the running time of the sensing and
transmission process in the Internet of Things devices, which
allocates resources with effectiveness and fairness.

The horizontal federated learning applies to that the data
features of participants overlap more, and the sample IDs are
less. For a single intrusive target, the edges of the Voronoi
diagram generated ofWSN can be seen as a data set. The eval-
uation indicators of exposure and energy consumption can be
regarded as a feature space. The intersection of the feature
space is massive between the data sets. Hence, a data set can
be divided into horizontal sections. It aggregates different data
in the same feature space to train a model for the ideal path of
the moving target. The above single intrusion target pathfind-
ing algorithm combined with federated learning is called SPF.

The vertical federated learning is suitable to the case of
the ID of the training samples of participants overlap more
and the data features less. Moving intrusion targets can be
considered as data sets of this time. The feature space is the
exposure and the energy consumption, which is the current
position of the moving target location at the moment. Conse-
quently, the different features of the common samples of
multiple participants (intrusion targets) can be trained by
vertical federated learning, which increased the feature

dimensions of samples to build a multiobjective path plan-
ning model. The dynamic pathfinding algorithm for multiple
intrusion targets based on federated learning is called MFF.

In summary, the main contributions of this paper are as
follows.

(1) Considering the influence of various factors on the
path, propose the concept of a minimum risk path

(2) Innovatively combine federated learning with path
planning to build an intrusion algorithm and find
out the MRP

(3) The optimal path is worked out through a dynami-
cally segmented solution of the generated model.
Experimental results show that the SPF algorithm
can reduce computational complexity and improve
performance

(4) Based on the vertical federated learning, it established
a dynamic path planning model and MFF algorithm
for multiple intrusion targets that make full use of
multiobjective programming characteristics. Aug-
menting additional requirements can work out
diverse path combinations

The rest part of this paper is as follows. The second part is
the model building process. The detail of the proposed algo-
rithm is described in the third section. In the fourth section,
the experimental results are discussed. We formulate the eval-
uation indexes of the intrusion path planning algorithm in the
fifth section. The final part is the summary of the whole paper.

2. Model Aggregation Based on Feature-
Partitioned

2.1. Preliminaries. The sensing model determines the scope,
and monitoring capability can be a usage of abstracting the
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Figure 1: Multitargets: AUVs.
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sensing range of the same class nodes. In a bounded region F,
presumed n active sensor nodes s1, s2,⋯, sn would be
deployed in predetermined locations. They can detect the
target T appearing in any point within the sensing field.
The detected sensing signal attenuates with the increasing
Euclidean distance between the sensor node siði = 1,⋯, nÞ
and the target T . The specific sensing model for detecting
the target T signal can determine the exposure of the target
which moves along the path.

With the increasing transmission distance, the practically
environmental noise interference and signal strength will
attenuate. The detection probability of the node tapers as
the distance grows between the moving target and the sensor
node [15]. The detection capability of sensor nodes shows the
uncertainty that attenuated disk perception model reflected.

On this basis, Rai and Daruwala [16] studied the coverage
problem under the attenuated disk perception model. The
detection probability pðu, siÞ of si against the point u in
region F can be expressed as in equation (1). In this paper,
we selected the order type attenuated disk perception model.

p u, sið Þ = λ ⋅ d u, sið Þ−K : ð1Þ

Euclidean distance between u and si is dðsi, uÞ. λ and K
are the positive parameters relevant to the sensing capability.
λ depicts the energy factor transmitted or reflected by the
target, and K represents the path attenuation exponent. In
standard conditions, the value of K is in a range of constant
between 2 and 5.

In region F, u is at any point, and sm is the sensor node
with the shortest Euclidean distance to point u. The
maximum-sensor intensity function ICðF, uÞ indicates the
effective sensing measurement of sm to u. Function IC value
of point P can be expressed as in (2) while the freely moving
target P runs to the situation of u.

smin = sm ∈ S dj sm, uð Þ ≤ d s, uð Þ∀s ∈ S,
IC F, uð Þ = p u, sminð Þ:

ð2Þ

t is the time variable. When the target P is moving at a
constant speed v, (2) can be converted into

E ti, t j
� �

= v ⋅
ðt f
ti

I F, uð Þdt: ð3Þ

Exposure is a quantitative expression of network cover-
age performance, and the definition varies with the chang-
ing of application environments. Binh et al. [17] reckoned
that exposure is the ability of WSN to detect objects passing
through the sensing region. Aravinth et al. [18] defined
exposure as the probability of detecting a target in the
sensing region.

This paper endues two factors to explicate exposure: tar-
get moving time and induction intensity. It is noticeable that
time accumulation affects induction intensity as the target
passing through the sensor area. In the sensor region F, tar-
gets moving along the path over a while, its exposure degree
can be described as (4).

E ti, t j
� �

=
ðt j
ti

I F, uð Þ du
dt

����
����dt: ð4Þ

The threat model in this paper is a quantitative descrip-
tion of the optimal invasion path for intruders. The model
can analyze the situation of the WSN, quantify the capability
of the sensor nodes, and plan the invasion path of the adver-
sary to the whole WSN reasonably. Specifically speaking, we
firstly simulate the distribution of sensor network nodes to
generate the network topology, and then, the intrusion path
is planned according to the quantized threat data. A defini-
tion for the threat model is determined.

Definition 1. Given the overwhelming probability that an
intruder can successfully penetrate the entire network if the
value of Eðti, t jÞ is as small as possible.

The concept of the Voronoi diagram is derived from
computational geometry. It divides a plane into multiple
regions by a collection of points called generators [19]. Con-
sidering a convex Euclidean domain F and a set Q of points
q0, q1,⋯, qn in F, Voronoi regions related to set Q are
defined as (5) where dðp, qÞ is the Euclidean distance between
p and q.

Equation (5) means that a point p ∈ F belongs to the Vor-
onoi region VðqiÞ, if the distance between p and qi is the
shortest distance between p and any other point qj ∈Q. The
point qj ∈Q is generating points or generators of the Voronoi
partition.

V qið Þ = ∩
j≠i

p ∈ F dj p, qið Þ < d p, qj
� �

,∀qj ∈Q
n o

,∀qi ∈Q: ð5Þ

In this paper, specific partitions (Voronoi diagram) can
be produced according to the position of generating points
(sensor nodes) in mission space (WSN) which separates sen-
sor region F into multiple convex polygons. Each one con-
tains a sensor node that its edge is called the Voronoi edge,
and the intersection of Voronoi edge is the Voronoi vertex.

The characteristics of the Voronoi diagram played a key
role. As a result, the minimum exposure path is right on the
Voronoi edge precisely, under the maximum-sensor intensity.
The Voronoi diagram or Voronoi partition that was generated
via WSN consists of all the Voronoi cells of sensors.

Two types of methods can generate the Voronoi diagram.
One is direct method that Voronoi diagram is generated
from a set of points, such as half plane method, incremental
construction method, divide and conquer method, plane
scanning line method. Another is indirect which it takes the
relationship between Voronoi diagram and the dual diagram
of Delaunay triangle network. The point set is firstly subdi-
vided to generate Delaunay triangle network and then to con-
struct the Voronoi diagram.

If the corresponding Voronoi cells of sensor qi and qj
have a same boundary, they become Delaunay neighbours
and all the ones gathered to be an edge set of the Delaunay
graph. Delaunay graph is dual to the Voronoi diagram, and
consequently, one graph can be drawn from its dual counter-
part. According to Table 1, triangulation generation method
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is at the lowest time efficiency, point-by-point insertion
method the middle, and divide-and-conquer algorithm the
highest. The point-by-point insertion algorithm that owned
high time efficiency can implement simply, occupying less
space in operation.

The first part of the table from top to bottom is divide-
and-conquer algorithm, the second part is point-by-point
insertion algorithm, and the third part is triangulation gener-
ation method. This paper considering time and space effi-
ciency, with the improved point-by-point insertion method
(IPI), constructs Delaunay triangulation. The Voronoi dia-
gram is structured upon the Delaunay triangle. By contrast
to the point-by-point insertion algorithm, it can diminish
the number of relevant point judgment and the computa-
tional complexity by arranging points first x and then y.

The specific construction process is shown in
Algorithm 1.

V(WSN) is specific Voronoi diagram generated upon
sensor network node distribution. Vertex corresponding of
V(WSN) has a one-to-one relationship to each Voronoi
vertex of the general Voronoi diagram V(A). Vertexes in
V(WSN) include the vertexes of V(A) and other points inter-
sected the edges of V(A) and boundary of region F, as
shown in Figure 2. The process of constructing V(WSN) is
shown in Algorithm 2.

2.2. Parameter Calculation. The network flow is a specific
flow solution that is closely related to linear programming
[20]. This paper presents a new idea that edges have been
defined as Voronoi edges and the flow as the moving target
passed by this edge. The capacity can be considered as the
maximum number of moving targets that each Voronoi edge
can hold. Each node (not a source point or a sink point) is
like an analogy to a Voronoi vertex, while the capacity is
not limited.

Definition 2. The capacity network D = ðV , AÞ (V is the
vertex of an undirected graph and A is the arc), and each
arc ðVi, V jÞ endues the transmission cost per unit moving
bij ≥ 0, denoted as

D = V , A, Bð Þ, bij ∈ B: ð6Þ

The maximum flow from source to sink can be found in
the cost network D, and the total transfer cost of the stream is
at a minimum.

Definition 3. If the moving target velocity was a constant v,
the time increment dt would have a significant linear correla-
tion between the unit length ds defined as

ds = v ⋅ dt: ð7Þ

The energy consumption is defined below.

Definition 4. Supposing q is the energy consumption of unit
length while target moving, the time variable is t and the time
interval from Vi to V j is ½ti, t j�. In the sensor region F, the
energy consumption of the target which moves along the
path rðtÞ at a constant speed v, is defined as

e ti, t j
� �

=
ðt j
ti

vqdt: ð8Þ

The analytic discrete method can work out this problem,
using a variational method to obtain the analytical solution to
the risk optimization problem. Such a method simplifies
original question to a set of differential equations about the
optimal trajectory coordinates. How the trajectory is defined
will make the complexity of the system.

Table 1: Comparison of Delaunay generation algorithms.

Algorithm General condition Worst condition

Lewis and Robinson O n log nð Þ O n2
� �

Lee and Schachter O n log nð Þ O n log nð Þ
Dwyer O nloglognð Þ O n log nð Þ
Chew O n log nð Þ O n log nð Þ
Lawson O n4/3

� �
O n2
� �

Lee and Schachter O n3/2
� �

O n2
� �

Bowyer O n3/2
� �

O n2
� �

Watson O n3/2
� �

O n2
� �

Sloan O n5/4
� �

O n2
� �

Green and Sibson O n3/2
� �

O n2
� �

Brassel and Reif O n3/2
� �

O n2
� �

McCullagh and Ross O n3/2
� �

O n2
� �

Improved point-by-point insertion method (IPI) O n log nð Þ O n log nð Þ
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Presuming the coordinate of Voronoi vertex Vk is ðxVk
,

yVk
Þ, and tðpÞ is the path crossing time. The length of the

edge hVi, V ji is expressed as lViV j
.

The travel time along the edge hVi, V ji of the moving
target is indicated by tViV j

. IViV j
is the induction intensity

of the nearest sensor nodes s1ðs2Þ when the target moves
along the edge. jdsi ,Vk

j is the distance from the sensor node s1
ðs2Þ to the point Vk, and θsi ,ViV j

is the angle of ∠Vis1V j. The

coordinates of s1 is ðx1, y1Þ; hence, tViV j
can be expressed as

tViV j
=
lViV j

v
=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xV j

− xVi

� �2
+ yV j

− yVi

� �2r
v

: ð9Þ

Analyzing the cost solution, suppose a sensor of Voronoi
cells located in the coordinate system origin point, using the
polar coordinate system. The relationship between Cartesian
coordinate x, y, polar radius ρ, and polar angle Ψ is as in (10).

x sð Þ = ρ sð Þ cos Ψ sð Þ,
y sð Þ = ρ sð Þ sin Ψ sð Þ:

ð10Þ

For points Vi and V j, polar radius ρ and angle θ can be
expressed as in (11) and (12)

ρi =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xi2 + yi2

p
,

ρj =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xj2 + yj2

q
,

ð11Þ

θ = arccos
xixj + yiyj

ρiρj

 !
: ð12Þ

To derive the formula for the exposure index, it calculates
the cumulative exposure of a moving target affected by s1 from
Vi toV j. λ is the induction parameter determined by the sensor
node hardware, and K is the distance impact factor with its
value in common between 2 and 5. It has presumed λ = 1, K
= 2 and induction intensity expressed as in (13)

v ⋅
ðtVb

tVa

d−2
dp
dt

����
����dt =

ðVb

Va

d−2dp =
ðxVb

xVa

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 + y′x
� �r

x − aið Þ2 + y − bið Þ2 dx

=
arctan yVb

− bi/xVb
− ai

� �
− arctan yVa

− bi/xVa
− ai

� �� �
⋅ lVaVb

xVa
− ai

� �
yVb

− bi
� �

− xVb
− ai

� �
yVa

− bi
� � :

ð13Þ

Vector ðxVk
− x1, yVk

− y1Þ can be indicated by ds,Vk
, and

the angle between vector ds,Vi
and ds,V j

can be indicated by

θs,ViV j
that meets the condition 0 ≤ θs,ViV j

≤ π. So, it can be

simplified to (14)

Input: Vertex list (Vertices)
Output: A list of determined triangles (Triangles)
1: Initialise the Vertices
2: Create an index list indices
3: Sort the indices bases on the x-coordinates of Vertices
4: Get the super triangle (A super triangle means that the triangle contains all the points in the point set)
5: Save the duper triangle to the temp triangles list
6: Push the super triangles into Triangles list
7: for Each sample point in the Vertices list sorted by indices do
8: Initialize the edge buffer
9: for Each triangle in temp triangles do
10: Calculate the center and radius of the triangle
11: if The point is on the right side of the circumcircle then
12: This triangle is a Delaunay triangle, save it in Triangles
13: Remove the triangle from temp triangles list
14: Skip
15: else if The point is outside the circumcircle then
16: This triangle is uncertain
17: Skip
18: else The point lies on the inside of the circumcircle
19: This triangle is not a Delaunay triangle, add the three triangle edges to edge buffer
20: Remove the triangle from temp triangles list
21: end if
22: end for
23: Delete all repetitive edges in edge buffer
24: Combine the edges in the edge buffer with the current point, and save these triangles into temp triangles
25: end for
26: Combine the temp triangles and Triangles
27: Remove triangles associated with super triangles vertices from Triangles list

Algorithm 1: IPI algorithm.
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v ⋅
ðtV j

tVi

d−2
ds
dt

����
����dt = θs,ViV j

sin θs,ViV j

⋅
lViV j

di,Vi

�� �� ⋅ di,V j

��� ��� : ð14Þ

The induction intensity is transformed into (15). The expo-

sure can be calculated by (16), and the target moving total
exposure EðpÞ is (17).

Is,ViV j
=

θs,ViV j

sin θs,ViV j

⋅ ds,Vi

�� ��−1 ds,V j

��� ���−1, ð15Þ

Voronoi edge

Sensor node
Voronoi vertex

(a) V(A)

(b) V(WSN)

Figure 2: Voronoi diagram of WSN.
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Es,ViV j
= Is,ViV j

· lViV j
, ð16Þ

E pð Þ = 〠
j=f

i=c
EViV j

: ð17Þ

3. Find the MRP Using Dynamic Programming
and Federated Leaning

For the intrusion path selected, the primary goal is to avoid
being detected by WSN. It is essential of thinking about how
to select a path according to topology of WSN that meets the
demands of the actual path seeking process. Therefore, the net-
work topology data preprocessing is a very critical step. We can
learn from federated learning, divide, and conquer.

The main idea of federated learning is to build machine-
learning models based on data sets distributed over multiple
devices [21]. Hao et al. [22] proposed an efficient scheme to
solve sensitive data-driven industrial scenarios, and Lu et al.
[23] formulate the data-sharing problem into a machine-
learning problem via incorporating privacy-preserved feder-
ated learning. WSN can generate a significant amount of data
[24]. According to the federated learning framework, we can
perform data preprocessing on the WSN network topology.
It should be noted that the research object of this paper is
the static network, only using federated learning methodol-
ogy, and there is no actual learning process.

Compared to the traditional method, federated learning
is beneficial for dynamically updating the global data model
on path planning. Thus, federated learning can deal with
the MRP problem.

3.1. Single Mobile Device

3.1.1. The Calculation Model Established by Feature-
Partitioned. Let matrix Di denote data onto each Voronoi
edge. Each row of the matrix represents a sample, and every
column marks a feature. The feature space X includes expo-
sure (E) and energy consumption (e), defining I the sample

ID space (Voronoi edge number). The feature FE and sample
Ids SI constitute the entire training data set ðSI, FEÞ.

Horizontal federated learning, also sample-based feder-
ated learning, was introduced in that data sets shared the
same space in feature but distinct space in samples [25].
Horizontal federated learning is summarized as

FEi = FEj, SIi ≠ SI j,∀Di,Dj, i ≠ j: ð18Þ

The intersection of feature space is enormous between the
data set of Voronoi edges. Then, the data set can be horizon-
tally segmented, and varied data onto the same feature space
can be aggregated. Consequently, it trains the model to solve
a selection of the optimal path while the target is moving.

Step 1. Participants compute exposure locally with encryp-
tion and send results to the server.

Step 2. The server performs secure aggregation without learn-
ing information about any participant and calculates the
average value of exposure.

Step 3. The server sends back the aggregated results to
participants.

Step 4. Participants update their respective model with the
decrypted results.

The primary goal of intrusion path is avoiding detection
by WSN and then considering over the influence of energy
consumption. In Step 2, the method of calculating the aver-
age exposure value of the entire network is as shown in
(19), and lall is the length of path.

E′ = E1 + E2+⋯+En

lall
: ð19Þ

Therefore, the predicted exposure value EpreðVi, V jÞ
from point Vi to point V j can be expressed as (20)

Input: Vertex list (Vertices), Region F
Output: V(WSN)
1: Initialize the Vertices
2: Create an edge list Voronoi edge
3: Use IPI algorithm to construct Delaunay triangular network based on Vertices
4: Number the discrete points and formed them into triangles. Then record three discrete points composed of each triangle
5: Calculate the center of each circumcircle of triangle and record it
6: for The triangle list do Find adjacent triangles TriA, TriB, and TriC that share side with the current triangle tempTri
7: if Three adjacent triangles are found then
8: Connect the outer center of TriA, TriB, and TriC to the outer center of tempTri. Put the connected edge into Voronoi edge list
9: elseThree adjacent triangles are not found
10: Find the outermost midperpendicular ray and put it into Voronoi edge list
11: end if
12: end for
13: Calculate the point of intersection between Voronoi edge and region F
14: Connect intersection point according to F (acquire line of intersection)
15: V(WSN) is constructed by Voronoi edge and line of intersection

Algorithm 2: Construction of V(WSN).
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Epre ViV j

� �
= dViV j

⋅ E′: ð20Þ

Because the length is the fundamental dimension of
quantity, we can describe them by length L. According to
(15) and (16), E is dimensionless parameter because the
dimension of I is 1/L and the dimension of lVi ,V j

is L. So,

the dimension of Epre is L. The dimension of e can be com-
puted according to (8) in the same way. L is the dimension
of e, too.

The time complexity of Voronoi graph generation was O
ðn log nÞ [26]. With Voronoi diagram ð3n − 6Þ edges, accord-
ingly it takes nomore thanOðnÞ to calculate the exposure of all
Voronoi edges. Based on dimensional analysis, the judgment
function Cðti, t jÞ can be defined as shown in (21). The value
of Cðti, t jÞ can measure the successfulness of an invasion.

C ti, t j
� �

=
ðt j
ti

E′ dp
dt

����
����dt

 !
+

ðt j
ti

q
dp
dt

����
����dt

 !
: ð21Þ

3.1.2. The Flow of Algorithm and the Procedure of Realization.
In actual path planning, combinations of edges that are possi-
bly feasible flows can be various. Hence, it has to dynamically
update the priority to the selected edges keeping the searching
direction under control in planning an optimal path. Further-
more, the cost is optimal for each extended path. The valuation
function of moving target from the starting node s via current
node Xðx, yÞ to the end node f can be defined.

Definition 5. GðXÞ is the total exposure value from the start
node to the current node, which can be obtained by adding
up the weights of any neighboring edge of the path that trav-
eled. HðXÞ is the heuristic estimated cost function (included
exposure and energy consume) which is only as a judgment,
not as a part of cost calculation. The total cost value FðXÞ can
be expressed as

F Xð Þ =G Xð Þ +H Xð Þ: ð22Þ

Considering an ideal condition that the target in motion
is supposed to be increasingly closer towards the destination,
according to the feature-partitioned of federated learning,
HðXÞ could be accordingly expressed as

H Xð Þ = E′ ⋅ dY ,f + e tX , tYð Þ: ð23Þ

Y is the antecedent node of X. dY ,f is the Euclidean dis-

tance from Y to the end node s, and E′ ∗ dY ,f expressed the
exposure estimation from Y to f .

Define an empty table named NotVis and another Been
Vis: nodes that have not been visited (need to be examined)
are stored in the NotVis table, and nodes that have been
visited are stored in the BeenVis table. The single intrusion
target pathfinding algorithm combined with federated learn-
ing (SPF algorithm) is as Algorithm 3.

The SPF algorithm can output an optimal path by input-
ting theV(WSN) generated by the Voronoi diagram that con-

tains the connected edges and the position coordinates of
each node and the point identifier from the source point s
to final point f .

3.2. Multiple Mobile Devices

3.2.1. The Calculation Model Established by Feature-
Partitioned. It is sometimes a practical demand to transfer
multiple moving targets over a time interval. The vertical
federated learning is suitable for the ID of the training samples
of participants overlap more and the data features less. The
moving target is deemed to be a sample set SI. The feature
space FE is formed into the moving target position, the
moment of the current position, and exposure degree. Verti-
cally federated learning is a process aggregating different fea-
tures above, in which a model can be built with data from
moving targets in cooperation. Under such assumption, (24)
can be got.

FEi ≠ FEj, SIi = SI j,∀Di,Dj, i ≠ j: ð24Þ

Training the model can solve the multioptimal path of the
moving target. Specific steps are as follows.

Step 1. Participants locally compute exposure and time and
send masked results to the server.

Step 2. The server performs secure aggregation without learn-
ing information about any participant.

Step 3. The server sends back the aggregated results to
participants.

Step 4. Participants update their respective model with the
decrypted results.

Whereas varied positions of moving target A as time
running would decide the direction of moving target B, time
variable was imported over multiobjective path judgment.
The probability of being detected by the sensor would be
increasing (like a traffic problem [27]) as two moving targets
on the same Voronoi edge. The presumption is that when tar-
get A is atVoronoi edgeViV j, if target B passing by edgeViV j,

the heuristic estimated cost HðBÞ of target B would be H ′ðBÞ.

H′B = k ⋅HB k > 1ð Þ: ð25Þ

The Underwater Sensor Network is a system that collects
underwater sounds and tracks and monitors the Navy’s pass-
ing ships and submarines. The underwater acoustic detectors
(UADs) are installed on the seafloor and act as sensor nodes.
The moving target is an autonomous underwater vehicle
(AUV) that needs to pass through the monitoring area. For
more information gathering and security reasons, it is a
method to keep the AUV from going the same path as much
as possible by adjusting the k value in (25).

3.2.2. The Algorithm Flow and the Procedure of Realization.
When multiple intrusion targets need to be transmitted, a
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time-variable is introduced in this paper to conduct dynamic
pathfinding of multiple intrusion targets based on federated
learning feature (MFF). Assuming that multiple moving
targets M1,M2,⋯,Mn start from s every time interval T ,
the HðXÞ value is updated according to the formula (25)
and the location of the moving target at different times.
Based on the SPF algorithm, we need to create some new
data structures to store variables in the MFF algorithm, as
shown in Table 2.

The specific algorithm flow is as Algorithm 4. By contrast
to the SPF algorithm for a single intrusion target, the MFF
algorithm sets a time variable to record the positions of
distinct targets moving every period, which position relation-
ship can update data onto the model.

4. Experiment

In this section, the performance of the SPF and MFF
algorithm is validated through simulation experiments. It
analyzed the condition that finding MRP was influenced by
distinct node quantities and various distributed modes in
the sensing area and whether the algorithms are effective
against different network topologies.

It is assumed that the network topology application
scenario is an Underwater Sensor Network in this paper.

The experimental environment is in an ideal state, as shown
in Figure 3. The UADs are deployed on the seabed to form a
monitoring area, and the AUVs move at a uniform speed in
the same horizontal plane. From the starting point, the AUVs
pass through the monitoring area to the endpoint to perform
the underwater penetration mission of the submarine.

We plan to use underwater acoustic communication
technology to solve information transmission and sharing
among unmanned underwater clusters. In a multiagent case,
clock synchronization between two agents is generally calcu-
lated by multiround communication to calculate the devia-
tion and offset rate between clocks. According to the
research of Liu et al. [28], several particular nodes named
anchors are selected among all moving targets in this paper
to aid the localization process.

The anchors are clock synchronized that the moving tar-
get achieves clock synchronization by communicating with
anchors and estimating the message propagation time. The
targeted target broadcasts the location demand, and the
anchor reveals the location message containing the sending
time and location information after receiving the location
request. When the targeted target receives the location mes-
sage, the transmission delay of the message can be calculated
based on the local clock and the sending time in the news.
Then, the distance to the anchor can be estimated [29].

Input: Graph V(WSN); s; f
Output: optimal path
1: NotVis = ½s�; BeenVis=[];
2: while The NotVis table is not empty do
3: Select Vi with the lowest total proxy value F from NotVis. Then delete Vi from NotVis and insert Vi into BeenVis.
4: if Vi is the end node f then
5: Return path
6: else
7: Extend node Vi
8: for Each adjacent node Vj of Vi do
9: Calculate the exposure EViV j

.

10: if Vj is not in neither the NotVis or BeenVis table then
11: Calculate F(Vj)
12: Insert Vj into the NotVis table. And add it a pointer variable pointing to node Vi.
13: else if Vj is in the NotVis table then
14: if F(Vj) is less that the estimated value F ′ðV jÞ in NotVis table then

15: Update F ′ðV jÞðF ′ðV jÞ = FðV jÞÞ.
16: Change the node pointer in the NotVis table to point to the current node Vi
17: else
18: if F(Vj) is less than the estimates value F ′ðV jÞ in BeenVis table then

19: Update F ′ðV jÞðF ′ðV jÞ = FðV jÞ Þ.
20: Delete Vj from BeenVis table and insert Vj into NotVis table
21: end if
22: end if
23: end if
24: Insert Vi into BeenVis table
25: end for
26: end if
27: end while
28: From f backtrack to s. Return path.

Algorithm 3: SPF algorithm.
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4.1. Single Mobile Device. To verify the accuracy of the model
and algorithm, we can figure out the minimum exposure
path via the topology in [6]. The data manifested in Table 3
are the parameters in the experiment. And the results can

be found in Figure 4. The number of sensor nodes is
expressed by variable n.

Thirty-two sensors are deployed on a 300 ∗ 300monitor-
ing field. We used the HGA-NFE method [6] and SPF
algorithm in this paper for path planning, respectively, as
shown in Figure 4. Figure 4(a) reveals the MEP found based
on the HGA-NFE method in [6]. The Voronoi nodes of the

Table 2: Comparison of Delaunay generation algorithms.

DetCost_Lines The exposure value of each Voronoi edge

DetTime_Lines The time required for the moving target to move along each Voronoi edge (ViV j)

Path_Cost The respective cost and total cost of all departing moving targets at a given time

Path_FCost The respective projected cost values of all departing moving targets at a given time

Path_Record _CurrentPoint The name of the current point

Path_Record _PreviouPoint The previous node name

Input: Graph V(WSN)
Output: optimal path
1: NotVis=[s]; BeenVis=[]
2: while The NotVis table is not empty do
3: Select the path with the lowest total proxy value F from NotVis. And record the corresponding moving target serial number i.
4: if All moving targets are the end node f then
5: Return path
6: end if
7: Update DetCost_line according to (25) and path
8: Sort Path_Time_CurrentPoint in ascending order, and record the moving targer serial number respectively. (Determine the mov-
ing target Mj that reaches the next Voronoi vertex first)
9: for All moving targets do
10: if Mi reaches the end point then
11: Calculate path of Mj
12: elseBreak;
13: end if
14: end for
15: Make path prediction for Mi which has minimum value of Path_Time_CurrentPoint by SPF algorithm
16: Update Path_Record_CurrentPoint
17: Update Path_Time_CurrentPoint
18: Goto line 7
19: end while

Algorithm 4: MFF algorithm.

AUV1

AUV2

UAD

AUV3

Figure 3: Underwater Sensor Network.

Table 3: Experimental parameters (1).

Parameter Value

Monitoring area 300 ∗ 300
λ 1

K 2

q 0

k 2

n 32

Starting point (0,120)

Ending point (300,195)
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path passed are [50,4,6,14,13,23,22,28,32,35,45,44,60], and
the exposure value of this path is 104.1807. Figure 4(b)
displays the MRP found based on the SPF algorithm. The
Voronoi nodes of the path passed are
[50,4,6,14,13,23,22,28,32,37,39,44,60], and the exposure
value of this path is 104.1459. The lengths of MRP and
MEP are both 379.07, but MRP has a smaller exposure value
than the MEP, which is computed by the HGA-NFE method.
It indicates that the SPF algorithm is more accurate than the
HGA-NFE method [6].

Network topologies can be divided into three different
network types according to the deployment of sensors.
They are the uniform distribution method, Gaussian distri-
bution method, and exponential distribution method [17].
We limited the distance relationship between nodes in the
experiment to achieve all kinds of distribution. For studying
the efficiency of the SPF, topologies were randomly gener-
ated according to the three network types mentioned. The
calculation time of SPF under different topologies is shown
in Figure 5.

The total computation time of MRP falls into two parts.
One is the time to construct the Voronoi diagram, and the
other is the time to find the path. We can find that the total
computation time of MRP increases as the number of nodes
increases because the time complexity of constructing the
Voronoi diagram is related to the number of nodes. The total
computation time comparison of the SPF algorithm under
the three topologies is shown in Figure 5(d). It is no doubt
that the SPF algorithm is more efficient under the topology
of uniform distribution.

Binh et al. [17] proposed the GA-MEP algorithm for
intrusion path planning. It is difficult to compare the time
complexity of the SPF algorithm with the genetic algorithm
GA-MEP [17] because the complexity of GA-MEP is not
related to the number of sensor nodes. Hence, to test the effi-
ciency of SPF, the calculation time of SPF and GA-MEP was
compared. Figure 6 displays the results.

The computing time of the SPF algorithm grows slowly
with the increase of sensor nodes in this area, which is better
than the GA-MEP algorithm. It indicates that the SPF algo-
rithm is more suitable for the condition of a large number
of sensors. The calculation time of SPF is shorter than that
of GA-MEP, and the SPF algorithm is more stable for differ-
ent network topologies. In the case of the same intrusion path
exposure, the efficiency of the algorithm proposed in this
paper is far better than the GA-MEP algorithm [17].

To explore path-finding law limited by various
constraints, experiments have been done on the uniform
distribution network topology where n = 20 and n = 40,
respectively. The selected parameters are put in Table 4.
The results are shown in Figure 7. To explore path-finding
law limited by various constraints, experiments have been
done on the uniform distribution network topology where
n = 20 and n = 40, respectively.

Figure 7 illustrates three simulation scenarios. The first
one is only considering the impact of exposure on the path
(as explicated in Figures 7(a) and 7(d)), which is transformed
into find the minimum exposure path. The second solely
thinks about the impact of the moving target energy con-
sumption on the path (as shown in Figures 7(b) and 7(e)).
Thus, it is equivalent to solving the minimal path problem.
Thirdly, we consider both the exposure and energy con-
sumption of the moving target (as revealed in Figures 7(c)
and 7(f)).

We calculated the path exposure value and path length
under three simulation conditions. The experimental results
in Table 5 show that when only considering the effect of
exposure on the path, the total exposure value of the path is
the lowest. However, the length of path is the longest, which
means that the invader has the highest energy consumption.
When only considering the effect of energy consumption on
the path, the length is the lowest, which means energy con-
sumption is the lowest. However, the exposure degree
increases accordingly. When considering both exposure and
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energy consumption, the relevant parameters of the path in
the data model generated by federated learning are between
the above two results. It conforms to the hypothesis, proving
that the SPF algorithm proposed can calculate the path
according to different requirements.

The quality of MRP relates to the path’s exposure, and it
was affected by the amount of sum and various parts com-
posed. Thus, we compared the maximum exposure value of
parts Emax of the path, and the results can be found in Table 6.

It can be seen in the column that the maximum exposure
value of part of MRP obtained by the SPF algorithm is the
same as that of MEP. But it takes less time and energy when

an invader moves along MRP. To test the universality of this
circumstance, we also calculated MRP with different node
numbers. Relevant experimental data is in Table 7.

According to Tables 6 and 7, we can get a conclusion.
When calculating MRP by SPF algorithm, there is a 42.86%
probability of getting a path with the same maximum expo-
sure value of MEP but shorter travel time and less energy
consumption. The simulation test was carried out under the
parameter settings displayed in Table 4.

Figure 8 describes the relationship between MRP expo-
sure (travel time) and the number of sensor nodes with
different q values. With the augmentation of sensor nodes,
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the exposure degree keeps an upward trend and the intrusion
time has a specific change.

In the identical topologies, we can adjust the model
created by federated learning to get the path (MRP) with less
exposure and shorter intrusion time. It is conductive to save
the energy consumption and reduce the probability of being
detected by the sensor nodes.

4.2. Multi Mobile Devices. In terms of multi-objective, a sim-
ulation was made for the verification of MFF performance.
The value k represents the change of the edge when twomov-
ing targets are on the same edge. In the tangible situation, k
can be adjusted according to different requirements for
obtaining different path combinations.

Table 4: Experimental parameters (2).

Parameter Value

Monitoring area 300 ∗ 300
λ 1

K 2

q 0,50

k 2

Number of sensor nodes 20,40

Starting point (0,300)

Ending point (300,0)
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Assume that there are four intruders with the same
starting point (0,300) and the same ending point (300,0).
Each moving target sets off every 0.6 seconds and k = 2.
The results are shown in Figure 9, which show the four
paths found when 40 nodes distributed evenly in F. The

four intruders took a total of 12.32 seconds to travel from
starting point to the ending point, with a total exposure
degree of 678.58. And the exposure of each path is
162.13, 176.27, 162.13, and 178.05. It can be found that
the trajectory of the third target moving coincides with
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Figure 7: Different paths when n = 20 and n = 40.
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the first as time going by. The result is identical when n
equals 60.

What can be explained is that the first moving target
starts first and moves farther during the same period
without affecting the path planning of subsequent moving
targets. Therefore, when k = 2, the first moving target
trajectory is likely to be the same as the trajectory of the third
moving target.

The experiment is carried out in this section when n = 40
so as to study the influence of departure time interval of
moving targets on multiobjective path planning. Each
intruder sets off at a time interval of 0.4, 0.6, 0.8, and 1.0,
and the relevant experimental data are shown in Table 8.
The maximum and minimum intrusion time of a single tar-
get is Time(max) and Time(min), the maximum exposure of
a single target is Exp(max), and the minimum exposure of a
target is Exp(min).

It can be seen from Table 8 that with the increase of the
time interval of sending moving target, the total travel time
increases continuously. But the total exposure decreases con-
tinuously until a minimum value and then increases accord-
ingly. This is because the longer a target stays in the WSN
region, the greater the risk probability detected by the sen-
sor. When the time interval reaches a certain peak, cross-
path interference factors are excluded, and the greater the
total exposure. The minimum exposure and time consump-
tion of a single target do not change with a time interval
because the MRP of a single target is the path obtained by
the SPF algorithm.

5. Performance Evaluation

Well-defined evaluation criteria and adversary models put
the pathfinding schemes on common WSN topology,
making it possible to assess the scenarios fairly and compre-
hensively [30–32]. The adversary model in this paper refers
to different types of WSN topologies. Sensor nodes can detect
moving targets but will not attack them. Invaders require
finding one or more paths through the sensor area. Security,
availability, efficiency, and deployability are important evalu-
ation indexes for intrusion detection systems [33–36]. Simi-
larly, we select some evaluation properties [34, 35] as the
evaluation indexes of the intrusion path planning algorithm.

(A) Security

(i) S1Exposure. For an intruder, its security is reflected
in the exposure of the invasion path mostly.
Lower exposure means a safer moving target.

(ii) S2 Energy Consumption. An ideal invasion path
for an intruder requires low exposure and mini-
mal energy consumption as the intruder moves
along the trail. Otherwise, the moving target is
likely to run out of energy on the way so that it
cannot fulfill the task.

(B) Availability

(i) A1. It can be used in WSN with a Boolean disk
perception model.

(ii) A2. It can be used in WSN, whose perception
model is the probabilistic perception model.

(iii) A3. It can be used in WSN with an attenuated
disk perception model.

(C) Deployability

(i) D1. Whether it is suitable for large-scale net-
works. In actual application scenarios, the scale
of WSN is often large, so if we want to expand
the application algorithm, it is imperative to
apply it to large-scale networks.

(ii) D2. Whether it considered multiple moving tar-
gets. The “moving target” is not only a single
target. When the intrusion of a single target
expands to multiple target intrusion, whether
the algorithm is still effective also needs to be
included in the evaluation.

(iii) D3. Whether multiple sensor network topolo-
gies are considered.

(iv) D4. Algorithmic efficiency, which is mainly
compared from the time complexity and run-
ning time. It is divided into two levels, “excel-
lent” and “good.”

(v) According to the above criteria, we evaluate the
algorithmproposed in this paper and the existing
methods. The results are summarized in Table 9.

Table 5: Experimental results.

Exposure Length of path

n = 20 (MEP) 91.42 557.31

n = 20 (minimal path) 156.70 536.49

n = 20 (MRP) 94.72 551.91

n = 40(MEP) 183.93 616.32

n = 40 (minimal path) 244.53 498.75

n = 40 (MRP) 200.96 535.20

Table 6: Experimental results.

Emax(exposure) Length of path

n = 20 19.90 21.62

n = 40 36.93 36.93

Table 7: Exposure and length of path.

Emax(exposure) Emax(both) l(exposure) l(both)

n = 60 37.56 37.56 505.6 500.55

n = 80 31.07 43.10 524.55 510.60

n = 100 45.08 45.08 534.84 523.86

n = 120 43.27 47.76 563.91 539.76
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6. Conclusions

This paper built a data model of the dynamic-planning algo-
rithm to keep the risk of multi-intrusion targets minimized,
which utilizes computational geometry methods amalgam-
ated with federated learning features. The experiment results
show that the algorithm that introduced time variables can
actualize the global optimization. By contrast with traditional
planning ways, its computational performance prevails in
complexity and time. HðxÞ weights by Cðti, t jÞ can be
adjusted to meet various demands of path selection.

The MRP exposure of all the discrete paths distinctly
declined in comparison with MEP. MRP can markedly lower
the energy consumption without being detected by the sensor
nodes as much as possible. Consequently, the algorithm
accurately satisfies the real-life conditions, such as the battle-
field crossing scenarios. The model has an inspired signifi-
cance to the sensor network deployment.

The common application of multiple types of sensors in
WSN becomes increasingly popular, which increases the
path analysis complexity. Hence, it is necessary to analyze
more actual models of WSN deployment to explore further.
Besides, fulfilling federal learning in three-dimensional space
to make path planning is a new direction.
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