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The mutual coupling among various components of the collocated crossdipole (CCD) vector-sensor is severe, and its
application is greatly limited. The spatial spread dipole (SSD) vector-sensor can avoid this problem, but the multiple signal
classification (MUSIC) algorithm for the SSD array is rarely developed. In view of this situation, this paper proposed a
MUSIC-like algorithm for the SSD array. The biquaternion model was first established, and the biquaternion MUSIC (BQ-
MUSIC) algorithm was developed on the basis of this model, for the two-dimensional direction-of-arrival (2D-DOA)
estimation. Our proposed algorithm requires low computational complexity by adopting the dimensionality reduction
method. Numerical simulations verify the effectiveness of the proposed algorithm.

1. Introduction

The electromagnetic vector-sensor (EMVS) array is also
known as polarization sensitive array due to their ability to
sense the polarization information of electromagnetic waves.
Compared with traditional scalar array, EMVS array can
obtain more information in the time domain and frequency
domain such as phase and frequency waveforms, with stron-
ger anti-interference ability, higher spatial resolution, and
better detection robustness ability [1]. EMVS array also has
the following advantages: (1) they can sense electromagnetic
waves in a vector mode and provide polarization information
of electromagnetic sources; (2) collocated EMVS that
appeared in the early stage is suitable for the direction of
arrival estimation for near-field or far-field, broad-band, or
narrow-band signals; (3) different polarization information
can be exploited in polarization domain when polarization
electromagnetic wave cannot be distinguished in the spatial
domain. Meanwhile, the appropriate application of polariza-
tion diversity technology could bring great convenience to
the subsequent target recognition and classification; (4) when
the spatial aperture of the array is small, the EMVS array still
have a better resolution. Therefore, it is suitable for limited

physical space such as mobile platform [2]. EMVS array has
become a research hotspot in the field of array signal process-
ing and is widely used in sonar radar communications.

Direction-of-arrival (DOA) estimation represents a vital
research direction of array signal processing. Based on previ-
ous researches on DOA estimation method for scalar array,
scholars have transplanted and applied MUSIC [3], esti-
mated signal parameters via rotational invariance techniques
(ESPRIT) [4], and maximum likelihood (ML) [5] to vector-
sensor array signal processing, and achieved favorable esti-
mation results. Particularly, some studies have used the
Poynting vector crossproduct relationship that only the
vector-sensor can perceive. However, the time-domain
ESPRIT algorithm developed based on this relationship has
high requirements on the source, thus limiting the applica-
tion scenarios [6, 7]. Polarization smoothing is used to realize
the DOA estimation of coherent sources by using the method
of dephasing intervention processing [8]. On the other hand,
this method is suitable for all array structures and does not
lose the effective aperture of the array compared with spatial
smoothness [9].

In the long vector (LV) model, multiple components of
each antenna are directly “stacked” into a column vector,
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and this representation has the advantages of simplicity and
manipulation. However, the orthogonal relationship among
the components of each array element is lost at the same
time. The hypercomplex number as typified by quaternion
is very suitable for the component representation of EMVS
because of its strict orthogonality [10]. With the break-
through of some mathematical problems such as the eigen-
value decomposition (EVD) of the quaternion value matrix
[11], the hypercomplex number tool has been introduced
into the research of EMVS array signal processing success-
fully [10–16]. The frequency-domain quaternion MUSIC
algorithm [12] and frequency-domain biquaternion MUSIC
algorithm [13] are explored, respectively. Even though the
two algorithms can simultaneously estimate direction
parameters and polarization parameters, they require a
four-dimensional (4-D) spectral peak search at the very least,
which brings enormous computing burdens. Li et al. have
proposed a Q-MUSIC algorithm that can realize dimension-
ality reduction search on the premise of excluding only a few
special parameters in the time domain [14]. Correspond-
ingly, quaternion ESPRIT [15, 16] and augment ESPRIT
[17] algorithms have also been developed.

Most of the studies mentioned above [3–6, 8–16] mainly
focus on collocated vector-sensor array. In actual production,
this collocated EMVS with the same geometric center
requires high degree of electromagnetic isolation. As the fre-
quency increases, the cost of implementation will go up.
Therefore, some scholars have studied the noncollocated
EMVS. According to the modified vector crossproduct
method based on the ingenious array arrangement, Wong
et al. [18] have obtained a 2-D DOA estimation of the spa-
tially spread vector-sensors. Spatial ESPIRT [19] was devel-
oped by Zheng based on Ref. [7]. Then, by combining the
coarse and fine estimations, the high-accuracy 2-D DOA esti-
mation can be obtained. Gong et al. have put forward a spa-
tially spread quint of dipoles or loops that are symmetrical in
space. With this feature, an efficient DOA and polarization
estimator is realized using the vector crossproduct method
[20].

However, the introduction of the spatial phase shift factor
inside the sensor makes LV-MUSIC dimensionality reduc-
tion difficult to be realized, and the 4-D search poses unac-
ceptable calculation burdens. Therefore, most DOA
estimation algorithms for SSD array are based on ESPRIT-
like. In this paper, we first introduce the biquaternion opera-
tion and EVD of its Hermitian matrix and then create a high-
dimensional algebraic model of the SSD-EMVS array that
has a very compact form. The characteristics of the approxi-
mation of the covariance matrix of CCD array and SSD array
are illustrated. The resulting BQ-MUSIC algorithm is devel-
oped to easily achieve dimensionality reduction, with prom-
ising results. Finally, we use simulation experiments to verify
the effectiveness of the proposed algorithm.

2. Biquaternion Operation and EVD of
Hermitian Matrix

Notation: ℝ, ℂ, ℂ, andℍℂ represent real numbers, complex
numbers, quaternion numbers, and biquaternion numbers,

respectively. ℂ1 marks the complex numbers with the imag-
inary part of I and I2 = ‐1. “†” stands for quaternion or biqua-
ternion conjugate transpose; “Η” refers to complex conjugate
transpose; “∗” is the complex conjugate.

Quaternion, as a kind of high-dimensional complex
number, has one real component and three imaginary com-
ponents. By extending the real number coefficients of each
component in quaternions to the complex number, the
biquaternions (also known as complexified quaternions) are
obtained. And a biquaternion q ∈ℍℂ is defined as

q = q0 + q1i + q2 j + q3k, ð1Þ

where q0, q1, q2, q3 ∈ℂ1. The multiplications among the
three imaginary units i, j, kof a biquaternion characterizing
the orthogonality relation are not commutative, but the mul-
tiplication between the complex imaginary unit I and the
quaternion imaginary i, j, k units satisfied the commutative
law [10]. The following standard relations among all imagi-
nary units (quaternion and complex) hold

iI = Ii, jI = I j, kI = Ik,
i2 = j2 = k2 = ijk = −1,
ij = −ji = k, jk = −kj = i,

ki = −ik = j:

ð2Þ

Biquaternion, as an extension of quaternion, also can be
written in the form of the sum of real and imaginary parts,
but the coefficients of each part are all complex values, shown
as follows:

q = S qð Þ +V qð Þ, ð3Þ

where

S qð Þ = q0,
V qð Þ = q1i + q2 j + q3k:

(
ð4Þ

The conjugate of a q ∈ℍℂ, noted q†, is given by

q† = q∗0 − q∗1 i − q∗2 j − q∗3k: ð5Þ

And the norm of q, noted jqj, is given by

qj j =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q0j j2 + q1j j2 + q2j j2 + q3j j2

q
: ð6Þ

It should be noted that ∀q ∈ℍℂ, jqj ≥ 0, and jqj = 0⇒ q
= 0.

A biquaternion value matrix B ∈ℍm×n
ℂ can be rewritten

as B = B1 + IB2, where B1, B2 ∈ℍm×n. Usually, EVD opera-
tion on the high-dimensional algebraic matrix is realized by
its isomorphic adjoint matrix. The adjoint matrix of B is

2 Wireless Communications and Mobile Computing



recorded as ϒB ∈ℍ2m×2n, and

ϒB =
B1 B2

−B2 B1

 !
: ð7Þ

Particularly, if B is a Hermitian matrix, then ϒB is a Her-
mitian matrix. Then, ϒB has the following quaternion value
matrix EVD:ϒB =UDU†, whereU ∈ℍ2n×2n andD ∈ℝ2n×2n.
According to the “isomorphism” property, the eigenvalues of
B and ϒB are the same (both results are in D), and Ub ∈
ℍn×2n

ℂ contains the eigenvectors of B on its columns, as
shown in

Ub =
1ffiffiffi
2

p ΨnU, ð8Þ

where Ψn ∈ℂn×2n
I , Ψn = ðIn,−IInÞ, and In are the n × n unit

matrix. Finally, we obtain the EVD of a biquaternion valued
matrix:

B =UbDU†
b: ð9Þ

3. Array Signal Model

A collocated crossed dipole electromagnetic vector-sensor
(CCD EMVS) is shown in Figure 1 and consists of three elec-
tric dipoles, namely, Ex, Ey, Ez . The output of each compo-
nent is ex, ey,ez , respectively, and the value are [1]

ex = cos θ cos φ sin γeIη − sin φ cos γ,
ey = cos θ sin φ sin γeIη + cos φ cos γ,

ez = − sin θ sin γeIη,

8>><>>: ð10Þ

where ðθ, φÞ and ðγ, ηÞ are the elevation-azimuth 2D-DOA
(labeled in Figure 1) and polarization of an electromagnetic
wave, respectively, and θ ∈ ½0, π�, φ ∈ ½0, 2πÞ, γ ∈ ½0, π/2�,
and η ∈ ½−π, π�. The output of the EMVS, as a whole, is
expressed as biquaternion scalar ξ1ðθ, φ, γ, ηÞ ∈ℍℂ,

ξ1 θ, φ, γ, ηð Þ = i ⋅ ex + j ⋅ ey + k ⋅ ez: ð11Þ

Since its real part coefficient is zero, it is also called a pure
quaternion. Compared with LV-models, this pure biquater-
nion representation method is not only more compact in
structure but also preserves orthogonality among its
components.

The spatial spread dipole electromagnetic vector-sensor
(SSD-EMVS) is physically isolated by translating them to a
certain distance dðdx, dy, dzÞ along its respective coordinate
axes. In particular, SDD-EMVS is uniform when dx = dy =
dz . The spatial phase shift factor should be introduced subse-
quently with d. In the SSD-EMVS, as shown in Figure 2, the
spatial phase shift factors on the three components along the
x, y, z-axis are e−Ið2π/λÞdx cos θ sin φ, e−Ið2π/λÞdy sin θ sin φ, and
e−Ið2π/λÞdz cos θ in order [18]. Thus, the polarization response

of this vector-sensor is expressed by applying phase shift fac-
tor and a biquaternion scalar as

ξ θ, φ, γ, ηð Þ = i ⋅ e−I
2π
λ
dx cos θ sin φex + j ⋅ e−I

2π
λ
dy sin θ sin φey

+ k ⋅ e−I
2π
λ
dz cos θez ,

ð12Þ

where ξðθ, φ, γ, ηÞ ∈ℍℂ, and λ is the wavelength of elec-
tromagnetic waves.

Consider a planar array consisting of SSD-EMVS with
the first sensor position located at the origin of the coordi-
nates, as displayed in Figure 3. M array elements are placed
along the x-axis, and the spacing between two adjacent array
elements is Dx . N elements are placed along the y-axis, and
the spacing between two adjacent array elements is Dy .The
single-column steering vector along the x-axis in this planar
array is qx ∈ℂM×1

I , and

qx = 1, e−I2πλDx sin θ cos φ,⋯,e−I2πλ M−1ð ÞDx sin θ cos φ
h iT

: ð13Þ

The single-row steering vector along the y-axis in this
planar array is qy ∈ℂN×1

I , and

qy = 1, e−I2πλDy sin θ sin φ,⋯,e−I2πλ M−1ð ÞDy sin θ sin φ
h iT

: ð14Þ

Hence, the spatial polarization steering vector of this
polarization sensitive array is

a θ, φ, γ, ηð Þ = q θ, φð Þ ⋅ ξ θ, φ, γ, ηð Þ, ð15Þ

where qðθ, φÞ ∈ℂM×N
I , qðθ, φÞ = qx ⊗ qy , and aðθ, φ, γ, ηÞ ∈

ℍMN×1
ℂ , and “ ⊗ ” is the Kronecker product.
Assuming that there are L incoherent far-field fully polar-

ized narrow-band plane waves impinge on this array, then
the output of such an array is XðtÞ ∈ℍℂ:

X tð Þ = 〠
L

l=1
q θl , φlð Þξ θl , φl, γl , ηlð Þsl tð Þ +N tð Þ =QΦS +N tð Þ =AS +N tð Þ,

ð16Þ

y

z
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Ey

Ez

x

𝜃

𝜑

Figure 1: The structure of CCD vector-sensor.
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where Φ ∈ℍL×L
ℂ is a diagonal matrix composed of ξðθl, φl,

γl, ηlÞ and l = 1, 2,⋯, L. Q ∈ℂM×N
I is the spatial steering vec-

tors matrix of this array, and Q = ½qðθl, φlÞ, qðθ2, φ2Þ,⋯,qð
θl, φlÞ�. sðtÞ ∈ℂL×1

I is a signal vector composed of L signals,

and sðtÞ = ½s1ðtÞ, s2ðtÞ,⋯,sLðtÞ�T . The manifold of this polar-
ization sensitive array is A ∈ℍMN×1

ℂ , and A =QΦ = ½aðθ1,
φ1, γ1, η1Þ,⋯,aðθL, φL, γL, ηLÞ�.

The noise data received by the nth vector-sensor of the
mth row is expressed by a pure biquaternion nðn,mÞ ∈ℍℂ, as
follows:

n n,mð Þ = i ⋅ n n,mð Þx + j ⋅ n n,mð Þy + k ⋅ n n,mð Þz , ð17Þ

where nðn,mÞx , nðn,mÞy, and nðn,mÞz are the noise data received
by the Ex, Ey , Ez . Correspondingly,NðtÞ ∈ℍMN×1

ℂ is the noise
vector formed by the noise data received byM ×N array ele-
ments in the biquaternion model.

4. Biquaternion-MUSIC for SSD Array

Under the above signal model, the data covariance matrix
RX ∈ℍMN×MN

ℂ is calculated by

RX = E X tð ÞX† tð Þ� �
=QZQΗ + RN, ð18Þ

Z = E ΦSSΗΦ†� �
=ΦRSΦ†: ð19Þ

Since the signal sources are assumed to be incoherent, the
signal covariance matrix RS is a diagonal matrix. And the
multiplications between two diagonal matrices can be
exchanged with each other. Z can be rewritten as

Z = RSΦΦ†, ð20Þ

ΦΦ† = diag fjξðθ1, φ1, γ1, η1Þj2,⋯, jξðθl, φl, γl, ηlÞ2jg:
Considering a quaternion model for the collocated dou-

ble electric dipoles array, its polarization response scalar
isζ1 ∈ℍ, and

ζ1j j2 = ζ1ζ
†
1, ð21Þ

where jζ1j2 ∈ℝ. For spatial spread vector-sensor of the same
type, the product of its polarization response scalar is ζ ∈ℍ,
and

ζj j2 = ζζ†: ð22Þ

Its norm of all internal spatial phase shift factors is 1; so,
jζ1j2 = jζj2. Finally, we have a conclusion that in the quater-
nion model established for the double electric dipole array,
the covariance matrix is the same regardless of whether it is
collocated or spatial spread (the process analogy from Eq.
(18) to Eq. (20)).

Unfortunately, equation jξj2 = ξξ† does not hold the
biquaternion operation anymore. In fact, it can be inferred
from Eq. (6) that

ξξ† = S ξξ†
� �

+V ξξ†
� �

= ξξ†
			 			2 +V ξξ†

� �
: ð23Þ

For the CCD vector-sensor, there is

ξ1ξ
†
1 = S ξ1ξ

†
1

� �
+V ξ1ξ

†
1

� �
= ξ1ξ

†
1

			 			2 +V ξ1ξ
†
1

� �
: ð24Þ

Since jξξ†j2 = jξ1ξ†1j
2
and V ðξξ†Þ ≠V ðξ1ξ†1Þ, it is clearly

that ξξ† ≠ ξ1ξ
†
1, which directly leads to the RX of SDD-

EMVS that is different from its collocated counterpart one,
unlike the quaternion model.

However, thanks to the exponential form of the phase
shift factor and the feature that the real part of the pure
biquaternion is 0, the difference between the ξξ† and ξ1ξ

†
1

can be quantified by err,

err =
ξξ†‐ξ1ξ†1
			 			

ξ1ξ
†
1

			 			 =
V ξξ†
� �

−V ξ1ξ
†
1

� �			 			
ξ1ξ

†
1

			 			 : ð25Þ

We perform 1000 independent experiments under differ-
ent jξj and draw the different curves of jξ1ξ†1j and jξξ†j in
Figure 4. As can be seen in Figure 4, err is always around
0.05 when jξj goes from 10−4 to 1, and then err decreases as
jξj increases. The small difference between ξξ† and ξ1ξ

†
1 even-

tually leads to that the RX of SSD-EMVS array, and RX1 of

dy

dx

dz

y

x

z

Ez

Ex

Ey

Figure 2: The structure of SSD vector-sensor.
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Figure 3: SDD-EMVS planar array geometry.
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collocated vector-sensor array is exactly the same in real part
and only slightly different in the imaginary parts.

The EVD of RX by Eqs. (7)–(9) has

RX =USDSU†
S +UNDNU†

N , ð26Þ

where US ∈ℍMN×2L
ℂ is the biquaternion-value signal sub-

space matrix corresponding to large eigenvalues matrix DS,

and UN ∈ℍMN×2ðMN−LÞ
ℂ is the biquaternion-value noise sub-

space corresponding to small eigenvalues matrix DN .
According to the subspace theory, the signal subspace US
and the noise subspace UN are orthogonal to each other as
in complex-value matrix and quaternion-valued matrix.
The array manifold matrix A is orthogonal to UN as A and
US span the same subspace. On the other hand, there is a

more efficient noise subspace projector
Q

N ∈
ℍ2ðMN−LÞ×2ðMN−LÞ

ℂ in the biquaternion model, and projector

is
Q

N =∑2ðMN−LÞ
p=2L+1 upup† that is built with the 2ðMN − LÞ

eigenvectors of UN . Therefore, the subspace orthogonality
over biquaternion can be express as

a†
Y
N

= 0: ð27Þ

In practice, this equation does not strictly hold due to the
finite number of snapshots and the presence of noise. We can
construct the spectrum function of BQ-MUSIC as

F θ, φ, γ, ηð Þ = 1
det a†QN

Q†
Na

� �
= 1
det ξ† θ, φ, γ, ηð Þq θ, φð ÞQN

Q†
Nq θ, φð Þξ θ, φ, γ, ηð Þ

h i :
ð28Þ

As 0 ≤ γ ≤ π/2, ξðθ, φ, γ, ηÞ ≠ 0 always holds. qðθ, φÞQNQ†
Nqðθ, φÞ is full rank under the assumption of L <MN .

Based on rank reduction principle, the spectrum function

can be simplified from Fðθ, φ, γ, ηÞ to Fðθ, φÞ, namely,

F θ, φð Þ = 1
det q θ, φð ÞQN

Q†
Nq θ, φð Þ� � : ð29Þ

And the final estimated value is

bθ , bφ� �
= arg max

θ,φ

1
det q θ, φð ÞQN

Q†
Nq θ, φð Þ� � : ð30Þ

The direction parameters ðbθ , bφÞ are obtained from Fðθ
, φÞ through 2-D peak searching avoiding 4-D peak searching
successfully. Our proposed BQ-MUSIC is summarized in
Table 1.

−4
10−6

10−4

10−2

−3 −2 −1 0 1 2 3

er
r

|𝜉|( /10x)

X 0
Y 0.517435

Figure 4: The difference between ξξ† and ξ1ξ
†
1.

Table 1: Summary of the proposed method.

Step 1: encode the received data to i, j, k and construct vector X tð Þ
Step 2: calculate the covariance matrix RX and perform
biquaternion-valued EVD

Step 3: construct projector
Q

N based on UN

Step 4: estimate the DOAs bθ , bφ� �
through 2-D peak searching in

Eqs. (29) and (30)

Table 2: Calculation effort comparison.

Memory size (real
value)

Real
multiplications

Real
additions

LV-
MUSIC

18 MNð Þ2 4CMLV 3CMLV

BQ-
MUSIC

8 MNð Þ2 4CMBQ 3CMBQ

2
0
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3 4 5 6 7
The number of antenna (M = N)

C
om

pu
ta

tio
na

l c
om

pl
ex

ity

8 9 10 11 12

× 1014

LV-MUSIC
BQ-MUSIC

Figure 5: Computational complexity versus the number of
antennas.
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5. Computational Analysis

Compared with the LV-model, the biquaternion model
reduces the memory requirements of the covariance spec-
trum matrix by 4/9. And it is more valuable that the algo-
rithm proposed in this paper simplifies the unapplicable 4-

D peak search for ðθ, φ, γ, ηÞ to a 2-D search for ðθ, φÞ, which
greatly reduces the calculation burden.

The multiplication of two biquaternions implies 16 com-
plex multiplications, and the addition of two biquaternions
implies 4 complex additions. For the LV-MUSIC in Ref.
[13], the received data matrix is 3MN × K , where K is the
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number of snapshots. The number of complex multiplica-
tions required to calculate the covariance matrix is ð3MNÞ2
K . The dimension of the covariance matrix is 3MN × 3MN ,
and calculating the EVD requires ð3MNÞ3 complex multipli-
cations. The number of complex multiplications required to
calculate the value of a spectrum function is 3MN½2ð3MN −
LÞ + 1�. It is assumed that the search angle interval is Δ, and
the LV-model requires 2π4/Δ4 searches. Finally, the total
amount of complexmultiplications required for LV-MUSIC is

CMLV = 3MNð Þ2K + 3MNð Þ3 + 2 π/Δð Þ4 × 3MN 2 3MN − Lð Þ + 1½ �:
ð31Þ

For the BQ-MUSIC, the number of complex multiplica-
tions that requires to calculate the MN × K dimensional data
matrix is ð9MNÞ2K since the multiplication of two pure
biquaternions implies 9 complex multiplications. The EVD
of biquaternion value matrix with the dimension of MN ×M
N is replaced by quaternion adjointmatrix with the dimension
of 2MN × 2MN. Then the quaternion adjoint matrix is
replaced by complex-value matrix with the dimension of 4M
N × 4MN , and thus the complex multiplication of EVD is
ð4MNÞ3. The complex multiplications required to create the
projector matrix

Q
N is 16ðMNÞ2ðMN − 2LÞ. Calculation of

the value of a spatial spectrum function requires ð16MNÞ2 +
ð16MNÞ2 + 16ðMNÞ2 complex multiplications. The 2-D
DOA search requires about 2π2/Δ2 searches. The total amount
of complex multiplications required for BQ-MUSIC is

CMBQ = 9MNð Þ2K + 4MNð Þ3 + 4MNð Þ2 MN − 2Lð Þ + 2π2/Δ2� �
MNð Þ2:
ð32Þ

Since one complex multiplication operation contains four
real multiplications and three real additions, the final compu-
tation and memory requirement space are compared in
Table 2. A comparison of the computational complexity of
the proposed algorithm and the LV-MUSIC algorithm is
exhibited in Figure 5, where we set Δ = 1°. Let us evaluate
the total number of arithmetic operations using complex mul-
tiplication as an indicator. The huge gap between the two is
mainly reflected in 2-D search and 4-D search, because BQ-
MUSIC can easily achieve dimensionality reduction. More-
over, as the search interval decreases, the difference in compu-
tational complexity between the two will further increase.

6. Simulation Results

In this section, we use numerical simulation experiments to
verify the effectiveness of the proposed algorithm. In the fol-
lowing simulation, the size of the array is 4 × 4, with a total of
16 SSD-EMVS antennas, the distance Dx = Dy = λ/2 between
adjacent antennas, and dx = dy = dz = d/10. It is supposed
that there are 2 independent targets ðL = 2Þ, and their param-
eters are θ = ð20°, 70°Þ, φ = ð60°, 40°Þ, γ = ð45°, 75°Þ, and η =
ð50°, 35°Þ, respectively. Snapshots K = 512 and signal-to-
noise ratio (SNR) are set as 10dB with the Gaussian white
noise environment.

Simulation experiment: as shown in Figures 6 and 7,
respectively, the spatial spectrum for CCD-EMVS array and
SSD-EMVS array is obtained by BQ-MUSIC. It is obvious
that both of them can accurately obtain the direction param-
eters. Furthermore, the spatial spectrum of SSD-EMVS has
shaper peaks.

In Section 4, we conclude that the covariance matrix of
the SSD-EMVS array is identical to the real part of the covari-
ance matrix of the collocated type, with only a small
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Figure 9: RMSE versus snapshots.
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difference in the imaginary part. This difference is actually
caused by the introduction of the spatial phase shift factor,
because the spatial phase shift factor contains directional
information. It ultimately leads to a better estimation of the
SSD-EMVS array than the CCD-EMVS array by comparing
Figures 6 and 7.

Performance analysis: we keep the above conditions
unchanged, only change the SNR to perform 100 Monte-
Carlo experiments, and define root mean squared error
(RMSE) to measure the estimated performance, as

RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
L
〠
L

l=1
E α∧l − αlð Þ2� �vuut , ð33Þ

where bα = fbθ , bφg is 2-D parameter estimation, and α = fθ,
φgðl = 1, 2Þ is the true value of parameter. As shown in
Figure 8, the performance of the CCD-EMVS array is not
as good as the SSD-EMVS array, which is in line with the
above experimental results. Based on coarse-fine estimation,
LV-ESPRIT [19] for SSD-EMVS array has poor performance
with minimal computational complexity. The MUSIC algo-
rithm is highly dependent on the matrix dimension, and
the biquaternion model compresses the size of the vector to
one-third of the long vector, which is the reason why the
BQ-MUSIC algorithm is not as superior as the LV-MUSIC.

We assume that SNR = 10dB, the number of snapshots K
is various, and other simulation conditions are constant. By
plotting the RMSE variation curve with the number of snap-
shots, a similar conclusion to the previous simulation can be
obtained from Figure 9.

7. Conclusion

A new MUSIC algorithm for SSD-EMVS array is proposed
based on a biquaternion model. By illustrating the approxi-
mation of the CCD-EMVS array and the SSD-EMVS array
covariance matrix, it is clear that the use of the subspace
orthogonality property enables the SSD-EMVS array to
obtain good DOA estimation performance. The dimension-
ality reduction algorithm of BQ-MUSIC makes it more prac-
tical than LV-MUSIC.
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