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Ideal array responses are often desirable to a multiple-input multiple-output (MIMO) system. Unfortunately, it may not be
guaranteed in practice as the mutual coupling (MC) effects always exist. Current works concerning MC in the MIMO system
only account for the uniform array geometry scenario. In this paper, we generalize the issue of angle estimation and MC self-
calibration in a bistatic MIMO system in the case of arbitrary sensor geometry. The MC effects corresponding to the transmit
array and the receive array are modeled by two MC matrices with several distinct entities. Angle estimation is then recast to a
linear constrained quadratic problem. Inspired by the MC transformation property, a multiple signal classification- (MUSIC-)
like strategy is proposed, which can estimate the direction-of-departure (DOD) and direction-of-arrival (DOA) via two
individual spectrum searches. Thereafter, the MC coefficients are obtained by exploiting the orthogonality between the signal
subspace and the noise subspace. The proposed method is suitable for arbitrary sensor geometry. Detailed analyses with respect
to computational complexity, identifiability, and Cramer-Rao bounds (CRBs) are provided. Simulation results validate the
effectiveness of the proposed method.

1. Introduction

Multiple-input multiple-output (MIMO) is the technique
with the most potential for the next-generation array radar
system [1–3]. A MIMO system is characterized by multiple
transmitting antennas and multiple receiving antennas.
Unlike the traditional phased array radar, the MIMO system
emits mutual orthogonal waveforms. The spatial diversity
and waveform diversity enables the MIMO system to achieve
a virtual aperture, which is much larger than the physical
aperture of the radar system. Benefiting from the virtual
aperture, the MIMO system outperforms the phased array
radar with respect to clutter suppression, direction finding,
and target tracking. Usually, the MIMO system can be
divided into two categories in terms of its antenna configura-
tion, namely, a distributed MIMO system and a colocated
MIMO system [4, 5]. A distributed MIMO system is
equipped with widely displaced transmitting and receiving
ðTx/RxÞ antennas, and it can illuminate the area of interest

from various perspectives. Therefore, it is capable of extin-
guishing the radar cross-section (RCS) fluctuation issue. A
colocated MIMO system consists of closely spaced Tx/Rx
antennas, and it is able to provide super-resolution direction
estimation. Herein, we focus on the bistatic MIMO system,
which is a typical representative of the colocated MIMO
system.

As a canonical issue in bistatic MIMO systems, joint
direction-of-departure (DOD) and direction-of-arrival
(DOA) estimation has been studied extensively in the past
decades. Various methodologies have been proposed, e.g.,
estimation method of signal parameters via rotational invari-
ance technique (ESPRIT) [6], multiple signal classification
(MUSIC) [7], maximum likelihood [8], tensor approaches
[9, 10], and sparsity-aware methods [11, 12]. A common
assumption in [6–11] is that the sensors are well-calibrated.
Nevertheless, owing to the radiation effects [13], sensors
may be susceptible to unknown mutual coupling (MC),
which would bring perturbation to the signal model and thus
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lead to degraded estimation performance. In general, the MC
effect between sensors can be described by a MC matrix, in
which the entities reveal the strength between two sensors.
Although the MC matrix can be directly obtained offline
via the measurement techniques such as the electromotive
force [14], it may be invalid in the scenario where MC varies
with time. To pursue online MC calibration, the usage of
instrumental sensors or auxiliary sources have been reported
[15, 16], which require additional resource. As is known to
us, the MC intensity of two sensors is inversely proportional
to their distance. Therefore, the MC effects between sensors
that are far apart can be neglected, i.e., the associated MC
coefficients can be approximated by zeros. As a result, sparse
arrays, e.g., coprime arrays [17, 18], may be free from MC,
but it is impossible for applications with limited space.

As mentioned earlier, the MC intensity between two sen-
sors is inversely proportional to their interelement distance.
Accordingly, the MC matrix associated with a uniform linear
array (ULA) exhibits a special structure, which can be cap-
tured by a banded symmetric Toeplitz matrix. For a ULA-
based MIMO system, several strategies have been proposed
for MC self-calibration. In [19], a MUSIC-like estimator
was presented, in which the MC coefficients are extracted
into a single vector, and the DODs and DOAs are obtained
via two one-dimensional (1D) peak searches. By interpreting
the sensors at both ends of the arrays as instrumental sensors,
the ESPRIT-like algorithms were introduced in [20, 21],
where theMC effect is suppressed by using a selection matrix,
and then the ESPRIT technique is followed to obtain close-
form solutions for DOD and DOA estimation. In order to
exploit the tensor structure of the array data, the tensor
approaches were subsequently discussed in [22–24], which
offer more accurate angle estimation performance than the
matrix-based ones. Besides, some frameworks have investi-
gated into the two-dimensional (2D) angle estimation issue
using a polarization-sensitive array [25–28].

It should be emphasized that the above algorithms are
only effective for MIMO systems with ULA configurations.
In practice, the ULA-based MIMO system may occasionally
encounter sensor failure [29, 30]. Besides, a more complex
array manifold would be adopted in the MIMO system [31].
Therefore, the MIMO system with arbitrary Tx/Rx geometries
may suffer from unknownMC, and current estimators in [19–
24] will fail to work. To the best of our knowledge, only a few
efforts have been devoted to robust DOA estimation for arbi-
trary geometry sensor array with unknownMC. In such a case,
the MC matrix exhibits no special structure except Hermitian.
In [32], an optimization-based framework was investigated. It
formulates the DOA estimation as a block sparse inverse prob-
lem, which is solved via a joint-sparse recovery algorithm. Like
the traditional counterpart, it has high complexity due to the
high-dimension nonconvex problem, making it unacceptable
for the MIMO system. In [33], an iterative approach was con-
sidered, in which DOA andMC coefficients are updated alter-
nately. More recently, the MUSIC-like method was applied to
robust DOA estimation in [34]. Although the approaches in
[33, 34] can be directly extended to angle estimation for a
bistatic MIMO system, they are inefficient due to an exhaus-
tive grid search.

In this paper, we generalize the MC issue in a bistatic
MIMO system. We consider a general scenario where the
Tx/Rx arrays are in arbitrary geometries and MC effects
occur in both the Tx/Rx arrays. In such a scenario, the MC
matrices exhibit no special structure except symmetry. To
tackle the DOD and DOA estimation problem, the eigende-
composition is firstly performed to obtain the noise subspace.
Then, by exploiting the orthogonality between the noise sub-
space and the virtual steering vector, angle estimation is
recast to a general quadratic problem. Therefore, the MC
transformation property is adopted to transform the optimi-
zation problem into two different forms, in which only DOD
and DOA are included. Consequently, DOD and DOA can
be estimated via two individual spectrum searches. Finally,
the MC coefficients can be easily obtained with the estimated
DOD and DOA. The proposed method is analyzed in terms
of computational complexity, identifiability, and Cramer-
Rao bounds (CRBs). Numerical simulations are designed to
show the effectiveness of the proposed method.

Notation, bold capital letters, e.g., X, and bold lowercase
letters, e.g., x, denote matrices and vectors, respectively.
The superscripts ð·ÞT, ð·ÞH, and ð·Þ† account for transpose,
Hermitian transpose, and inverse, respectively. The identity
matrix is denoted by I, the M ×N full one matrix is denoted
by 1M×N , the full zero matrix is denoted by 0. ⊗ , ⊙ , and ⊕
represent, respectively, the Kronecker product, the Khatri-
Rao product, and the Hadamard product; diag f·g denotes
the diagonalization operation; rank ð·Þ denotes rank opera-
tor; and Re ð·Þ and Im ð·Þ return the real part and the image
part of a vector, respectively.

2. Problem Formulation

We consider a bistatic MIMO system with M transmit sen-
sors and N receive sensors, and there are K far-field targets
appearing in the same range bins of the radar system. The
2D-DOA pair and the 2D-DOA of the kth ðk = 1, 2,⋯,KÞ tar-
get are denoted by Θt,k = ½θt,k, ϕt,k�T and Θr,k = ½θt,k, ϕt,k�T,
where θt,k and θr,k are elevation angles and ϕt,k and ϕr,k are
azimuth angles. Without loss of generality, we assume that
both the transmit sensors and the receive sensors are distrib-
uted in arbitrary geometries. The coordinate of the mth ðm
= 1, 2,⋯,MÞ transmit sensor is pt,m = ½xt,m, yt,m, zt,m�T, and
the coordinate of the nth ðn = 1, 2,⋯,MÞ receive sensor is
pr,n = ½xr,n, yr,n, zr,n�T. The response vectors corresponding
to the transmit array and the receive array are given by

a Θt,kð Þ = exp −
j2πτ1,k

λ

� �
, exp −

j2πτ2,k
λ

� �
,⋯, exp −

j2πτM,K
λ

� �� �T
,

ð1aÞ

a Θr,kð Þ = exp −
j2πΔ1,K

λ

� �
, exp −

j2πΔ2,K
λ

� �
,⋯, exp −

j2πΔN,K
λ

� �� �T
,

ð1bÞ
where λ is the carrier wavelength, τm,k andΔn,k are the associ-

ated path differences with τm,k = pTt,mft,k, Δn,k = pTr,nfr,k, ft,k =
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½cos ðϕt,kÞ sin ðθt,kÞ, sin ðϕt,kÞ sin ðθt,kÞ, cos ðθt,kÞ�T, and f r,k
= ½cos ðϕr,kÞ sin ðθr,kÞ, sin ðϕr,kÞ sin ðθr,kÞ, cos ðθr,kÞ�T,
respectively. DefineAt = ½aðΘt,1Þ, aðΘt,2Þ,⋯,aðΘt,kÞ� ∈ CM×K

and Ar = ½aðΘr,1Þ, aðΘr,2Þ,⋯,aðΘr,kÞ� ∈ CN×K are the direc-
tion matrices corresponding to the transmit array and receive
array, respectively. In the absence of the MC effect, the out-
put from the matched filters can be written as

x tð Þ = 〠
k

k=1
a Θr,kð Þ ⊗ a Θt,kð Þ½ � sk tð Þ +N tð Þ = Ar ⊙At½ �s tð Þ + n tð Þ,

ð2Þ

where t is the slow time index; skðtÞ is the RCS coefficient of
the kth targets; nðtÞ is the array noise, which is assumed to be
Gaussian white with variance σ2; and sðtÞ =
½s1ðtÞ, s2ðtÞ,⋯,skðtÞ�T. Now, we consider a scenario where
both the transit sensors and the receive sensors suffer from
unknown MC and the MC matrices are denoted by Ct ∈
CM×M and Cr ∈ CN×N , respectively, which are Hermitian. In
the presence of an unknown MC, the matched output in (2)
becomes

y tð Þ = 〠
K

K=1
Cra Θr,kð Þð Þ ⊗ Cra Θt,kð Þð Þ½ �sk tð Þ + n tð Þ

= CrArð Þ ⊙ CtAtð Þ½ �|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
A

s tð Þ + n tð Þ:
ð3Þ

Suppose the RCS coefficients are uncorrelated, and sðtÞ is
irrelevant with nðtÞ, and then, the covariance matrix of yðtÞ is

R =ARsAH + σ2I, ð4Þ

where Rs = diag fγ1, γ2,⋯,γkg is the covariance matrix of sðtÞ
, γk is the power of skðtÞ. With L available snapshots, i.e., t
= 1, 2,⋯, L, R can be estimated via

R̂ =
1
L
〠
L

t=1
y tð ÞyH tð Þ: ð5Þ

3. The Proposed Algorithm

3.1. DOD and DOA Estimation. Performing eigendecomposi-
tion on R, one can obtain the signal subspace and the noise
subspace as

R = Us,Un½ �
Λs  

  Λn

" #
UH

s

UH
n

" #
, ð6Þ

where Λs ∈ CK×Kand Λn ∈ CðMN−KÞ×ðMN−KÞ are two diagonal
matrices that contain the K dominate eigenvalues and the
remind eigenvalues, respectively. Us ∈ CMN×K and Un ∈
CMN×ðMN−KÞ consist of the corresponding eigenvectors,
which are called the signal subspace and the noise subspace,
respectively. It is known that Us is orthogonal to Un, i.e.,

UH
n Us = 0: ð7Þ

Since Us span the same subspace with the columns of A,
we get

Cra Θr,kð Þð Þ ⊗ Cta Θt,kð Þð Þ½ �HUnUH
n Cra Θr,kð Þð Þ ⊗ Cta Θt,kð Þð Þ½ � = 0:

ð8Þ

The above property is similar to that in the 2D-MUSIC
algorithm. However, the traditional MUSIC estimator is
invalid as both Ct and Cr are unknown. To further process,
the following conclusion in [33] is introduced.

Theorem 1. For a matrix C ∈ CM×M and a vector a ∈ CM×1, if
there are only Q (Q <M) distinct entities c = ½c1, c2,⋯,cQ�T in
C, then

Ca = Tc, ð9Þ

where T ∈ CM×Q with the qth ðq = 1, 2,⋯,QÞ column given by

T : ,qð Þ = Jqa, ð10Þ

and Jq is defined as

Jq m, nð Þ =
1, if C m, nð Þ = cq,

0, otherwise:

(
ð11Þ

In this paper, we build on top of Theorem 1 to address the
MC self-calibration challenge in the arbitrary geometry-
based MIMO system. Suppose that there are P distinct enti-
ties ct = ½ct,1, ct,2,⋯,ct,p�T in Ct , and Q distinct entities cr =
½cr,1, cr,2,⋯,cr,Q�T in Cr . From Theorem 1, we have

Cta Θt,kð Þ = T Θt,kð Þct , ð12aÞ

Cra Θr,kð Þ = T Θr,kð Þcr , ð12bÞ

where TðΘtÞ ∈ CM×P and TðΘrÞ ∈ CN×Q are constructed
according to Theorem 1. In combination with the property
ðA ⊗ BÞðC ⊗DÞ = ðACÞ ⊗ ðBDÞ, we can obtain

Cra Θr,kð Þð Þ ⊗ Cta Θt,kð Þð Þ = Tr Θr,kð Þð|fflfflfflfflffl{zfflfflfflfflffl}
A

crÞ|{z}
B

⊗ IM|{z}
C

Cta Θt,kð Þ|fflfflfflfflfflffl{zfflfflfflfflfflffl}
D

= T Θr,kð Þ ⊗ IMð Þ cr ⊗ Cta Θt,kð Þ½ �ð Þ,
ð13aÞ

Cra Θr,kð Þð Þ ⊗ Cta Θt,kð Þð Þ = Tr Θr,kð Þð|fflfflfflfflffl{zfflfflfflfflffl}
A

crÞ|{z}
B

⊗ IM|{z}
C

Cta Θt,kð Þ|fflfflfflfflfflffl{zfflfflfflfflfflffl}
D

= IN ⊗ T Θt,kð Þð Þ Cra Θr,kð Þ½ � ⊗ ctð Þ:
ð13bÞ
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Inserting (13a) and (13b) into (9) establishes

eH Θt,kð Þ T Θr,kð Þ ⊗ IMð Þ½ �HUnU
H
n T Θr,kð Þ ⊗ IMð Þ½ �|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

P Θr,kð Þ

e Θt,kð Þ = 0,

ð14aÞ

f H Θr,kð Þ IN ⊗ T Θt,kð Þð Þ½ �HUnU
H
n IN ⊗ T Θt,kð Þð Þ½ �|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Q Θt,kð Þ

f Θr,kð Þ = 0,

ð14bÞ
where eðΘt,kÞ = ct ⊗ ½CtaðΘt,kÞ� and fðΘr,kÞ = ½CraðΘr,kÞ� ⊗ cr .
To obtain the DOA, one needs to optimize

min  eHP Θð Þe s:t:, dHe = ρ: ð15Þ

Notably, (15) is a quadratic optimization issue. To avoid
the trivial solution e = 0MP×1, the above optimization prob-
lem is constrained with dHe = ρ, i.e.,

min  eHP Θð Þe s:t:, dHe = ρ, ð16Þ

where ρ is a constant and d is a vector with the first entity
being one and zeros elsewhere. To solve the above issue, we
can construct the following Lagrange function:

L Θð Þ = eHp Θð Þe −T
dHe
ρ

− 1
 !

, ð17Þ

where T is a Lagrange multiplier. Enforcing ∂LðΘÞ/c to
zeros yields

e =
ρ2P−1 Θð Þd
dHP−1 Θð Þd

: ð18Þ

Plug (18) into (15) and remove the constant item gives

max dHP−1 Θð Þd: ð19Þ

By setting a grid to contain all possible DODs, the indexes
corresponding to the maximum values in (19) reveal the
DODs. Similarly, we can obtain the DOA estimation via
computing

max  gHQ−1 Θð Þg, ð20Þ

where g is a NQ × 1 vector with the first entity one and zeros
elsewhere.

3.2. MC Self-Calibration. Although DOD Θt,k and DOA Θr,k
can be separately estimated from (19) and (20), they require
further pairing, since there are KðK − 1Þ/2 possible DOD-
DOA pairs. Recall the properties in (12) and we can rewrite
(8) as

cHtr T Θr,kð Þ ⊗ T Θt,kð Þ½ �HUnU
H
n T Θr,kð Þ ⊗ T Θt,kð Þ½ �|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

T Θt,k ,Θr,kð Þ

ctr = 0,

ð21Þ

where ctr = cr ⊗ ct . Similar to (15), to find the correct DOD-
DOA pairs, we need to calculate

min  cHtrT Θt ,Θrð Þctr , ð22Þ

which can be accomplished via

max  hHT−1 Θt ,Θrð Þh, ð23Þ

where h is a PQ × 1 vector with the first entity one and zeros
elsewhere. List all the possible DOD-DOA pairs, and the real
DOD-DOA pairs can be picked out by finding the K maxi-
mum values in (23).

It should be pointed out that the optimal solution of (22)
is achieved if

ctr =
α2T−1 Θt ,Θrð Þh
hHT−1 Θt ,Θrð Þh

, ð24Þ

where α is a constant. After the DODs and DOAs have been
paired, ctr can be estimated via

ĉt,r =
1
K
〠
K

k=1

α2T−1 bΘ t,k, bΘ r,k

� �
h

hHT−1 bΘ t,k, bΘ r,k

� �
h
, ð25Þ

where bΘ t,k and bΘr,k denote the estimated Θt,k and Θr,k,
respectively. Usually, we have ct,1 = 1 and cr,1 = 1. After nor-
malizing ĉt,r , the MC vectors can be estimated via

ĉt = JM ĉt,r , ð26aÞ

ĉr = JN ĉt,r , ð26bÞ

where JM = ½1, 0� ⊗ I ∈ℝM×MN , JN = I ⊗ ½1, 0TðM−1Þ×1� ∈ℝN×MN .

4. Algorithm Analysis

4.1. Computational Complexity. The computational burden
(the number of complex multiplication) of the proposed is
summarized as follows:

Step 1. Estimate the covariance matrix R̂⋯⋯⋯M2N2L.

Step 2. Perform eigendecomposition on R̂ to obtain the noise
subspace Un ⋯⋯⋯OfM3N3g.

Step 3. Calculate the spectrum function in (19) to get the
DOD estimation ⋯⋯⋯OfM3N2Qg.
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Step 4. Search the maximums of (20) to achieve the DOA
estimation ⋯⋯⋯OfM2N3Pg.
4.2. Identifiability. The proposed algorithm is effective if
P−1ðΘÞ, Q−1ðΘÞ, and T−1ðΘt,ΘrÞ are valid. As rank fUn

UH
n g =MN − K , once MQ >MN − K , PðΘÞ is rank deficit.

Similarity, if NQ >MN − K , QðΘÞ is nonfull rank, and if P
Q >MN − K , rank deficiency would occur in TðΘt,ΘrÞ. As
a result, a sufficient condition of the proposed estimator is
that K ≤min fMðN − PÞ,NðM −QÞ,MN − PQg. Since
M > P and N >Q, the above condition can be simplified by
K ≤min fMðN − PÞ,NðM −QÞg. In other words, the pro-
posed estimator can identify min fMðN − PÞ,NðM −QÞg
targets at most.

4.3. Cramer-Rao Bound (CRB). For the sake of simplicity, (3)
is rewritten as

yt = Ast + nt , t = 1, 2,⋯, L, ð27Þ

where yt ≜ yðtÞ, st = sðtÞ, and nt = nðtÞ: Then, all the mea-

surements are arranged into a “column” vector as y =
½yTt , yT2⋯,yTL �T ∈ CMNL×1. Suppose that the st is deterministic
but unknown. Thereafter, the mean μ ∈ CMNL×1 of y is given
by

μ =

As1
As2
⋮

AsL

2666664

3777775 =HF, ð28Þ

where H ≜ I ⊗ A ∈ℂMNL×LK and F≜ ½sT1 , sT2 ⋯ sTL �T ∈ℂLK×1.
Define the unknown parameter vectors θt ≜

½θt,1, θt,2,⋯,θt,k�T, ϕt ≜ ½ϕt,1, ϕt,1⋯,ϕt,1�T, θr, ½θr,1, θr,1,⋯,θr,k�T
, ϕr ≜ ½ϕr,1, ϕr,2⋯,ϕr,k�T, α ≜ ½θTt , θTr , ϕTt , ϕTr �

T ∈ R4K×1, β ≜
½Re fcTr g, Re fcTt g, Im fcTr g, Im fcTt g�T ∈ R2ðP+QÞ×1, and γ ≜
½Re fFTg, Im fFTg�T ∈ R2LK×1. The whole estimation parame-

ter vector is formulated as ζ ≜ ½αT, βT, γT�T ∈ R2ðLK+2K+P+QÞ×1.
It is well known that the CRB matrix for ζ is given by

CRB =
σ2

2
Re ΨHΨ
	 
� �−1, ð29Þ

where Ψ ≜ ½∂μ/∂αT , ∂μ/∂βT , ∂μ/∂γT �. Next, we will concen-
trate on each part of Ψ. Before the detailed derivations, the
following variables are defined:

~At,1 ≜
∂a Θt,1ð Þ
∂θt,1

,
∂a Θt,2ð Þ
∂θt,2

,⋯,
∂a Θt,Kð Þ
∂θt,K

� �
, ð30aÞ

~At,2 ≜
∂a Θt,1ð Þ
∂ϕt,1

,
∂a Θt,2ð Þ
∂ϕt,2

,⋯,
∂a Θt,Kð Þ
∂ϕt,K

� �
, ð30bÞ

~Ar,1 ≜
∂a Θr,1ð Þ
∂θr,1

,
∂a Θr,2ð Þ
∂θr,2

,⋯,
∂a Θr,Kð Þ
∂θr,K

� �
, ð30cÞ

~Ar,2 ≜
∂a Θr,1ð Þ
∂ϕr,1

,
∂a Θr,2ð Þ
∂ϕr,2

,⋯,
∂a Θr,Kð Þ
∂ϕr,K

� �
, ð30dÞ

~Ct,p ≜
∂Ct

∂ Re ct,1
	 
 , ∂Ct

∂ Re ct,2
	 
 ,⋯,

∂Ct

∂ Re ct,P
	 
" #

, ð30eÞ

~Cr,q ≜
∂Cr

∂ Re cr,1
	 
 , ∂Cr

∂ Re cr,2
	 
 ,⋯,

∂Cr

∂ Re cr,Q
	 
" #

, ð30fÞ

~A1 ≜ CrArð Þ ⊙ Ct
~At,1

� �
, ð30gÞ

~A2 ≜ CrArð Þ ⊙ Ct
~At,2

� �
, ð30hÞ

~A3 ≜ Cr
~Ar,1

� �
⊙ CtAtð Þ ð30iÞ

~A4 ≜ Cr
~Ar,2

� �
⊙ CtAtð Þ, ð30jÞ

~At,p ≜ CrAð Þ ⊙ ~Ct,pAt

� �
, ð30kÞ

~Ar,q ≜ ~Cr,qAr

� �
⊙ CtAtð Þ, ð30lÞ

S ≜ s1, s2,⋯,sL½ �T , ð30mÞ
~A = ~A1, ~A2, ~A3, ~A4

h i
, ð30nÞ

~B = ~At,1,⋯,~At,P , ~Ar,1,⋯,~Ar,Q

h i
⊗ 1, j½ �: ð30oÞ

It is easy to find that∂μ/∂θTT = S ⊙ ~A1. Stepping further, we
can get

Δ ≜
∂μ
∂αT

∈ℂMNL×4K = 11×4 ⊗ S½ � ⊙ ~A: ð31Þ

As ∂μ/∂ Re fct,pg = S ⊙ ~At,p, and ∂μ/∂ Im fct,pg = jðS ⊙
~At,pÞ, thus, we have

∇ ≜
∂μ
∂βT

∈ℂMNL×2 P+Qð Þ = 11×2 P+Qð Þ ⊗ S
h i

⊙ ~B: ð32Þ

Besides, it is straightforward to get

∂μ
∂γT

= H, jH½ � ∈ℂMNL×2LK : ð33Þ

Consequently, it is established that

J ≜ Re ΨHΨ
	 


= Re

ΔH

∇H

HH

−jHH

2666664

3777775 Δ,∇,H, jH½ �

8>>>>><>>>>>:

9>>>>>=>>>>>;
: ð34Þ
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Since we are interested in CRBs on angle and MC estima-
tion only, we will remove the uninterested parts from J. Define

PΔ ≜ HHH
 �−1HHΔ ∈ℂLK×4K , ð35aÞ

P∇ ≜ HHH
 �−1HH∇ ∈ℂLK×2 P+Qð Þ: ð35bÞ

Both P−1
∇ and P−1

∇ are valid asHHH is nonsingular. Further-
more, the following transform matrix is defined:

V ≜

I 0 0 0

0 I 0 0

−Re PΔf g −Re P∇f g I 0

−Im PΔf g −Im P∇f g 0 I

2666664

3777775: ð36Þ

Thereafter, we can obtain ½Δ,∇,H, jH�V = ½ðΔ −HPΔÞ,ð∇
−HP∇Þ,H, jH�. Let Π⊥

H denote the orthogonal projection of
HH onto null space, i.e.,

Π⊥
H ≜ I −H HHH

 �−1HH : ð37Þ

Notably,HHQð1/HÞ = 0. Then, the following result can be
obtained:

VHJV = Rc

ΔHΠ⊥
H

∇HΠ⊥
H

HH

−jHH

26666664

37777775 Π⊥
HΔ,Π

⊥
H∇,H, jH

� �
8>>>>>><>>>>>>:

9>>>>>>=>>>>>>;

= Re

ΔHΠ⊥
HΔ ΔHΠ⊥

H∇ 0 0

∇HΠ⊥
HΔ ∇HΠ⊥

H∇ 0 0

0 0 HHH jHHH

0 0 −jHHH HHH

26666664

37777775

8>>>>>><>>>>>>:

9>>>>>>=>>>>>>;
:

ð38Þ

Applying the property of a partitioned diagonal matrix, we
get

J−1 =V VH JV
 �−1VH =

Re ΔHΠ⊥
HΔ

	 

Re ΔHΠ⊥

H∇
	 


⊘

Re ∇HΠ⊥
HΔ

	 

Re ∇HΠ⊥

H∇
	 


⊘

⊘ ⊘ ⊘

2664
3775
−1

,

ð39Þ

where ⊘ denotes the uninteresting term. As a result, the CRB
matrix concerning angle and MC estimation is given by

CRBa,c =
σ2

2
Re ΔHΠ⊥

HΔ
	 


Re ΔHΠ⊥
H∇

	 

Re ∇HΠ⊥

HΔ
	 


Re ∇HΠ⊥
H∇

	 

" #−1

: ð40Þ

According to the inverse property of a partitioned matrix,
the CRBwith respect to angle estimationCRBa andMC estima-
tion CRBc are separately given by

CRBa = Re ΔHΠ⊥
HΔ

	 

− Re ΔHΠ⊥

H∇
	 


Re−1
�
� ∇HΠ⊥

H∇
	 


Re ∇HΠ⊥
HΔ

	 
�−1, ð41aÞ

CRBc = Re ∇HΠ⊥
H∇

	 

− Re ∇HΠ⊥

HΔ
	 


Re−1
�
� ΔHΠ⊥

HΔ
	 


Re ΔHΠ⊥
H∇

	 
�−1
:

ð41bÞ

However, it may be impractical to calculateCRBa andCRBc
via (41a) and (41b) due to the high-dimensional characteristics
of the matrices Δ, ∇, andH. Taking ΔHΠ⊥

H∇ as an example, we
will show a “faster” way to calculate CRBa and CRBc. Note that
H = I ⊗ A; hence,

Π⊥
H = I ⊗Π⊥

A: ð42Þ

On the other hand, bothΔ and∇ can be divided into several
blocks, as illustrated in (31) and (32), respectively. Let ~au and
~bv be the u-th ðu ∈ f1, 2,⋯,4KgÞ and v-th ðv ∈ f1, 2,⋯,2ðP
+QÞgÞ columns of ~A and ~B, respectively. Similarly, let su, Δu
and sv, ∇v denote the u-th column and the v-th column of
11×4 ⊗ S, 11×2ðP+QÞ ⊗ S and Δ and ∇, respectively. Recall the
property ðA ⊗ BÞðC ⊗DÞ = ðACÞ ⊗ ðBDÞ yielding

ΔH
u Π

⊥
H∇v = sHu ⊗ ~aHu

 �
I ⊗Π⊥

A
 �

sv ⊗ ~bv
� �

= sHu sv
 �

⊗ ~aHu Π
⊥
A
~bu

� �
= Ru,v ⋅ ~aHu Π

⊥
A
~bu

� �
,
ð43Þ

where Ru,v is the ðu, vÞ-th entity of the extended covariance
matrix 14×2ðP+QÞ ⊗ Rs. Based on (43), we have

M2 = ΔHΠ⊥
H∇ = ~AH

Π⊥
A
~B

� �
⊕ 14×2 P+Qð Þ ⊗ Rs

� �
: ð44Þ

X

Y

Z

O

c3

c2

c1

Figure 1: Illustration of 3D array.
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Likewise, we define

M1 = ΔHΠ⊥
HΔ = ~AH

Π⊥
A
~A

� �
⊕ 14×4 ⊗ Rsð Þ, ð45aÞ

M3 = ∇HΠ⊥
HΔ = ~BH

Π⊥
A
~A

� �
⊕ 12 P+Qð Þ×4 ⊗ Rs

� �
, ð45bÞ

M4 = ∇HΠ⊥
H∇ = ~AH

Π⊥
B
~B

� �
⊕ 12 P+Qð Þ×2 P+Qð Þ ⊗ Rs

� �
:

ð45cÞ

Inserting (44), (45a), (45b), and (45c) into (41a) and (41b)
yields

CRBa = M1 −M2M
−1
4 M3

 �−1, ð46aÞ

CRBc M4 −M3M
−1
1 M2

 �−1
: ð46bÞ

5. Simulation Results

In this section, numerical simulations are carried out to show
the effectiveness of the proposed estimator. Specifically, we
assume that the MIMO system is configured withM transmit
sensors and N receive sensors. Suppose that there are K tar-
gets, and each RCS fulfills the Swerling II model and L = 500
snapshots are collected. Search interval in the simulation is
set to Δ. The following two scenarios are considered.

Scenario I. A ULA-based MIMO system with sensor failure,
where M = 12 and N = 12, is where both the transmitters
and the receivers are ULAs with the adjacent sensor distance
λ/2. There are two damaged transmit sensors with locations
f7, 10g, and two damaged receive sensors with locations f6
, 11g. The MC coefficient between two adjacent sensors is
0:8 + 0:5j, the MC coefficient of sensors with distance λ is
0:2 + 0:1j, and there is noMC effect when the distance of sen-
sors is larger than λ, i.e., ct = cr = ½1, 0:8 + 0:5j, 0:2 + 0:1j�T
.Suppose that K = 3 targets with DOD-DOA pairs are ð25∘,
15∘Þ and ð60∘, 70∘Þ.
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Figure 2: Spatial spectrum of the proposed estimator in Scenario I: (a) spatial spectrums of DOD estimation; (b) spectrum results of DOA
estimation.
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Figure 3: Spatial spectrum of the proposed estimator in Scenario II: (a) spatial spectrum of 2D-DOD estimation; (b) spectrum result of 2D-
DOA estimation.
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Scenario II. A 3D-ULA-based MIMO system, where M =N
= 12, wherein the adjacent sensor distance is λ/2, as illus-
trated in Figure 1. The MC coefficient between two adjacent
sensors is 0:8 + 0:5j, the MC coefficient of sensors with dis-
tance λ is 0:2 + 0:1j, the MC coefficient between two cross-
adjacent sensors is 0:017 + 0:035j, and there is no MC effect
when the distance of sensors is larger than λ, e.g., ct = cr =
½1, 0:8 + 0:5j, 0:2 + 0:1j, 0:017 + 0:035j�T. There are K = 2
targets with transmit DOD-DOA pairs ð60∘, 70∘Þ and ð25∘,
15∘Þ and receive DOD-DOA pairs ð65∘, 20∘Þ and ð25∘, 20∘Þ.

Scenario III. Arbitrary Tx/Rx geometries. We assume M = 8,
N = 12, and the Tx/Rx sensors are randomly placed in a
three-dimensional space with ðxt,m, yt,m, zt,mÞ ∼ unifð½−λ, λ�Þ
and ðxr,n, yr,n, zr,nÞ ∼ unifð½−2λ, 2λ�Þ, L = 500, SNR = 20 dB,
and search interval is fixed at 0:5°. There are K = 2 far-field
targets, the DOD pairs are (20°, 40°) and (35°, 25°), and the
DOA pairs are (50°, 10°) and (30°, 25°). Moreover, ct = cr =
½1, 0:8 + 0:5j, 0:017 + 0:035j, 0:2 + 0:1j�T.

In the first example, we test the spatial spectrum of the
proposed estimator in Scenario I, where Δ = 0:01°, signal-
to-noise ratio (SNR) is set to 15 dB, and 10 independent trials
are recorded. The results are presented in Figure 2, from
which we observe that the proposed estimator can accurately
identify all the targets. For comparison purposes, the spec-
trum results of the traditional reduced-dimension MUSIC
(RD-MUSIC) algorithm in [7] are added, which display great
disparities for some angles. This is caused by the fact that the
traditional RD-MUSIC cannot eliminate the MC effect.

In the second example, we give the 2D spectrum results of
the proposed estimator in Scenario II, where Δ = 0:01° and
SNR = 15 dB are considered. Figure 3 illustrates the 2D spec-
trum results of the proposed estimator. Clearly, the proposed
estimator can correctly recover the 2D-DODs and the 2D-
DOAs, which is evident that the proposed estimator is also
suitable for the MIMO system with MC and 3D sensor
geometry.

In the third example, we plot the 2D spectrum results of
the proposed estimator in Scenario III. Figure 4 gives the
results. Similar to the previous simulation, the proposed esti-

mator can correctly estimate the 2D-DODs and the 2D-
DOAs in such a condition.

In the fourth example, we examine the average running
time of the proposed estimator against different search inter-
val Δ in Scenario I, where SNR is fixed at 20 dB. The result is
displayed in Figure 5. As expected, a refined search interval
would result in more computational burden. For comparison
purposes, the performances associated with the reduced-
dimension MUSIC in [32] (marked with “RD-MUSIC”)
and the iterative method in [33] (marked with “Iterative
method”) as well as the MUSIC-like method in [34] (marked
with “MUSIC-like”) are added. In contrast with RD-MUSIC,
the proposed estimator requires a slightly more running
time. However, it is shown that the running time of the pro-
posed estimator is two orders of magnitude lower than that of
the Iterative method and MUSIC-like. This is because both
RD-MUSIC and the proposed estimator require two 1D
spectrum searches, while the 2D spectrum search is essential
in both the Iterative method and MUSIC-like.

Finally, we plot the average root mean square error
(RMSE) curves of the proposed estimator versus SNR in
Scenario I, where Δ = 0:01° and 200 Monte Carlo trials are
carried out. As shown in Figure 6, the proposed estimator
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Figure 4: Spatial spectrum of the proposed estimator in Scenario II: (a) spatial spectrum of 2D-DOD estimation; (b) spectrum result of 2D-
DOA estimation.
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deteriorates in the low SNR regime (e.g., SNR < 4 dB). With
the increasing SNR, the proposed estimator would achieve
improved RMSE performance, and it may attain the CRB at
high SNR regions. An interesting observation is that the pro-
posed estimator offers better performance than MUSIC-like
when SNR is smaller than 6dB, and it provides very close
RMSE performance to the latter when SNR is larger than
6dB, especially in MC estimation. Nevertheless, both RD-
MUSIC and Iterative method provide the unacceptable
RMSE performance over the entire SNR regions.

6. Conclusion

In this paper, we presented a MUSIC-like estimator for
bistatic MIMO radar with arbitrary geometries and MC.
For the 1D sensor manifold scenario, the proposed estimator
only needs two one-dimensional spectrum peak searches to
obtain 1D-DODs and 1D-DOAs, while for 2D or 3D sensor
geometries, the proposed estimator allows two 2D spectrum
searches to achieve 2D-DODs and 2D-DOAs. The proposed
estimator is efficient from the viewpoint of complexity. It
should have a brighter prospect in numerous applications,
e.g., military explorations and internet-of-vehicles.
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