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Deep learning (DL) technology has shown to be the most effective method of completing class assignments in the last several
years. Specifically, these approaches were used for segmentation, classification, and prediction of retinal blood vessels, which
was previously unattainable. U-Net deep learning technology has been hailed as one of the most significant technological
advances in recent history. In the proposed work, improved segmentation of retinal images using U-Net, bidirectional
ConvLSTM U-Net (BiDCU-Net), and fully connected convolutional layers, such as absolute U-Net, BiConvLSTM preferences,
and also the fully connected convolutional layer method are proposed. Three well-known datasets were subjected to the
suggested technique’s evaluation: the DRIVE, STARE, and CHASE DB1 databases. This suggested technique was tested using
the required precise measures in percentage of accuracy, F1 score, sensitivity, and specificity in DRIVE, 97.32, 83.85, 82.56, and
98.68 in CHASE, 97.44, 81.94, 83.92, and 98.45 in STARE, 97.33, 82.3, 82.12, and 98.57 in STARE, respectively. Furthermore,
we assert that the strategy outperforms three other similar strategies in terms of effectiveness.

1. Introduction

Deep learning is now being used for picture segmentation,
classification, captioning, and prediction, among other
applications. Deep convolutional neural network (DCNN)
versions like Residual Net, AlexNet, VGG, DenseNet, and
CapsuleNet have made significant strides ahead in recent
years [1, 2]. For some applications, a DL-based (in particu-
lar, a CNN-based) solution provides cutting-edge execution
for split assignments and order, among other things. For
the time being, the enactment capacity will be enough to
overcome the DL models’ inadequacies. Second, the net-
works’ dropout becomes more consistent. Third, the crea-
tion of CNN models [3] necessitates specific augmentation
procedures, which are explained further down. It is common
practice to check and estimate models for massive datasets
such as the yields of the probability value categorization

are derived from ImageNet, and the jobs are single labels,
by using arrangement techniques. Additionally, modest
architectural version models [4] are employed for semantic
picture segmentation tasks.

For example, vessel segmentation may be utilized to
identify distinct disorders that involve blood vessels in dif-
ferent ways. A variety of disorders can result in changes in
the breadth and curvature of the retinal veins. In order to
detect many of these pathogens, including glaucoma, hyper-
tension, and diabetic retinopathy, at an early stage [5], it is
necessary to detect them at an early stage. Glaucoma, hyper-
tension, and diabetic retinopathy are just a few of the path-
ogens that cause vision to deteriorate in working people.
This section of the skin sore is responsible for detecting
and investigating cancerous skin progress in its initial stages.
Melanoma is the worst type of skin cancer, and it is caused
by melanocytes that grow too fast. Dermoscopy is a

Hindawi
Wireless Communications and Mobile Computing
Volume 2022, Article ID 2013558, 10 pages
https://doi.org/10.1155/2022/2013558

https://orcid.org/0000-0002-0438-9004
https://orcid.org/0000-0003-3826-6974
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/2013558


noninvasive imaging method that records the skin’s surface
and provides sensations of the skin’s surface using light
amplifiers and breathing fluids. Dermoscopic pictures of
melanoma might lead dermatologists to believe that the
tumor is incorrect or abstract. It is possible to achieve 92
percent relative durability over a five-year period if mela-
noma is discovered in its early stages [6, 7].

Deep learning networks produce outstanding results,
and they are being used in clinical imaging to tackle control
techniques that have been developed. Because of the large
number of network characteristics, that network requires a
considerable amount of information in order to train and
execute high-quality speculative operations. Large (and
well-clarified) datasets are difficult to get, which presents a
significant challenge in the segmentation of medical adages
[8, 9]. It is necessary to identify pixels in clinical images
instead of using the name of the imaging stage when doing
clinical image segmentation. The fully convolutional neural
network (FCN) [10] has been shown to be one of the utmost
powerful deep networks accessible for picture segmentation.

The ability to enhance this CNN to a U-Net allows for
achieving the best results without the requirement to train
on a large quantity of data. This framework is composed of
individuals that code and analyze methods. Numerous maps
with lesser dimensions are excluded from consideration by
the encoding approach [11]. By running up convolutions
of the same scale as input, this disengaging technique may
be utilized to construct segmentation maps of units from
input data. There have been a number of U-Net extensions
proposed so far [12, 13]. The most significant disadvantage
is each set of feature maps to be done independently the
encoding procedure.

From an architectural standpoint, the CNN model for
characterization tasks necessitates the use of an encoder
and provides the possibility of a class as a yield. Activation
functions and subsampling layers in network processes that
decrease the dimensionality of feature maps allowed us to
do convolution tasks. Due to the increasing number of input
samples transiting network layers, the size of a feature map
grows as the number of feature maps grows [14]. This is
depicted in Figure 1 in the initial half of the model (in blue),
which represents the model’s start. Individually, the number
of networks may increase as the overall number of feature
maps increases across the network hierarchy’s deeper tiers.
SoftMax behaviors are unavoidable while processing goal
group probability since they are essential for proper
processing.

Segmentation tasks necessitate the use of both convolu-
tional encoding and decoding units, rather than classifica-
tions, in the design of the job. The encoding unit converts
the photos provided as input into a relatively small number
of different maps. The decoding unit conducts an upconvo-
lution (deconvolution) operation on the original image to
construct segmentation feature maps with comparable
dimensions. As a result, the structure responsible for seg-
mentation often requires twofold many more network
parameters as the classification process design.

This paper presents their proposal for BiDCU-Net, a
better-quality U-Net version that uses BiConvLSTM to reuse

an FCL and bypass connection with the feature maps
[15–43]. The ensuing encoding layer’s features have a higher
degree of resolution, whereas the feature maps acquired
from prior upconvolutional layers have a lot of semantic
information, indicating that the approach is working prop-
erly. It is preferable over merely concatenating these 2 types
of feature maps using nonlinear functions since it will result
in more dependable segmentation performance. As a result,
we add BiConvLSTM to the skip connections in the U-Net
architecture described in this article. During each block,
the traits that have been obtained are carried over to the
future block. As a result of this strategy, the process may
learn a broad variety of attributes that are dependent on past
amounts of relevant data while simultaneously minimizing
the necessity for recurrent learning functions, which would
otherwise be necessary.

2. Background

With the aid of multiple medical image datasets and com-
puter vision, semantic segmentation is a very important field
of study in which deep convolutional neural networks
(DCNNs) are utilized to categorize an individual pixel in
an image. Prior to the deep learning revolution, the usual
machine learning approach depended mostly on the manual
characteristics that were employed to individually identify
pixels [18–19]. Several models have shown in recent years
that deeper networks are the most successful for tasks such
as detection and segmentation. The severe gradient problem
solved by the introduction of modern activation functions
like Exponential Linear Units (ELUs) and Rectified Linear
Units (ReLUs), which makes training very deep models
more difficult, makes it more difficult to train very deep
models. Another alternative is to use a deep residual model
to solve the problem, as discussed in [20–22], which uses
identity mapping to speed up the training process.

Furthermore, when it comes to the segmentation of
actual pictures, FCN-based CNN segmentation approaches
outperform their counterparts. Random architecture is con-
sidered to be one of these image patch-based implementa-
tions, and it is extremely computationally costly due to the
large number of network parameters it contains (about
134.5 million). The most important constraint would be that
there is a considerable degree of overlap between pixels and
that the same convolutions are done on a constant basis.
With the introduction of recurrent neural networks
(RNN), the efficiency of FCNs has increased and is being
tuned with increasingly large datasets [23]. SegNet is made
up of two primary components: the network and the server
[24–26]. One such network is the VGG16 encoding network,
which has 13 layers and uses pixel-wise classification layers
for the equivalent decoding network. The most important
component of this article is discussed about how the upsam-
ples done in decoder with the input feature maps that are of
lower resolution than the target resolution. In 2015, a new
SegNet variation, known as Bayesian SegNet [27], was pro-
posed as an upgrade to the original. Machine views are used
to study the many types of architectures available. There are
also numerous deep learning structures that have been
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expressly presented for the medical image segmentation
because they detect the inadequacy of data as well as con-
cerns with class imbalances in the medical picture.

“U-Net” was one of the earliest and most widely used
methods for segmenting semantic medical pictures when
they were initially introduced. The U-Net model’s essential
design is seen in Figure 1. According to its construction,
the network is composed of two essential components: the
convolutional encoder and the decoder [28]. The simple
convolutional tasks are carried out in both regions of a net-
work by activating ReLU in both directions. For the purpose
of downsampling, the encoding unit will perform the 2 × 2
max-pooling operations. During the decoding process, con-
version is carried out in order to sample the feature maps
from the input data. The original version of U-Net was used
to produce and replicate feature maps from the encoder to
the decoding system. U-Net design offers various advantages
when it comes to segmenting activities. For starters, such a
paradigm allows for the utilization of global location and
context at a similar time. Second, it is capable of operating
with just a small number of samples while increasing the
efficiency of segmentation jobs [29]. Third, the complete pic-
ture is processed end to end in the front route, and segmen-
tation maps are created directly from the image data.
Because of this, as compared to patch-based segmentation
[30, 31], U-Net effectively covers the whole backdrop of
the input photos.

In addition, U-Net is currently widely used in a wide
range of applications. Since then, many different U-Net
models have been developed, together with one specialized
for CNN-based medical imaging data segmentation [32,
33]. The original U-Net architecture has been modified in
two ways in this model. Multiple segmentation maps and
forward feature maps are blended and merged across the
whole network. It is normal practice to obtain and summa-
rize maps from many levels of encoding and decoding sys-
tems. The authors indicate positive gains in their
performance during preparation, but no effect was shown
when summed features were incorporated during the test
time [34], in contrast to U-Net. The definition, on the other
hand, has shown that summing attributes have an effect on
network performance. Residual networks and U-Net are
used for biomedical image segmentation tasks [35]; it is pos-

sible to objectively analyze the effects of skipped
connections.

It is proposed in this study that BiDCU-Net be used as
an upgrade to U-Net and that it produces significantly more
output than current segmentation jobs. Furthermore, the
rate of convergence of a network of this type is significantly
impacted by BN. In order to attain our objectives, we are
experimenting with several methods of retinal imaging.

The primary contribution is the proposal [44] of a novel
U-form deep learning architecture that makes use of light-
weight convolution blocks. This is done with the goal of
maintaining a better level of segmentation performance
while simultaneously minimizing the amount of computa-
tional complexity. Preprocessing and data augmentation
techniques are recommended with regard to the retinal pic-
ture and blood vessel properties as the second key
contribution.

The contribution of this work is to propose the BiDCU-
Net, which combines U-Net, BiConvLSTM, and entirely
linked layered convolution. The network does this by utiliz-
ing its capabilities, which include totally linked layer convo-
lutions of both BConvLSTM states. Encoding, decoding,
batch normalization (BN), and Bi-ConvLSTM are the net-
work’s main components.

3. Proposed Framework: An Efficient Retinal
Segmentation-Based Deep Learning
Framework for Disease
Prediction (EDLFDPRS)

As shown in Figure 2, The BiDCU-contracting Net’s encod-
ing procedure is separated into four phases. Two 3 × 3 con-
volutional filters, a 2 × 2 maximum pooling technique, and a
ReLU are used in each phase. The no. of feature maps dou-
bles with each level. The contracting method extracts pic-
tures at a faster rate, layer by layer, and increases the layer
size of those representations. To finish, the encoding path
passes via the last layer of a multidimensional picture defini-
tion, which contains important semantic data. At the com-
pletion of the encoding procedure, primary U-Net had
series of convolutional layers. The method works by feeding
a network a series of convolutional layers to identify distinct

3×3 ConvReLU

2×2 Max pool
2×2 upconv BN

Copy

Figure 1: Basic architecture of U-Net.

3Wireless Communications and Mobile Computing



features. The network may, however, acquire duplicate prop-
erties as convolutions continue. Fully linked convolutions
[36] are presented as a solution to this problem. This allows
the network to improve the system’s efficiency in recycling
feature maps by using the concept of “collective awareness”.
It often entails integrating all previous convolutional layers’
feature maps to the feature map acquired from current layer
and utilized as input data for the subsequent convolution.
The concept of entirely linked convolutions has a number
of advantages over ordinary convolutions. It permits the net-
work to use variety of feature maps instead of duplicates. By
allowing information to flow throughout the network and
reusing functionality, this notion improves the network’s
representational capacity even more. Prior to being used,
fully coupled convolutions should take advantage of all
available capabilities, since this will prevent the network
from exploding or eliminating gradients [37]. In addition,
the gradients will be returned to their original locations in
the network at a faster rate. In the proposed network, the
concept of entirely linked convolutions is used. As a result,
a single block has two successive convolutions. The encoding
route’s last convolutional layer displays a succession of N
blocks, as seen in Figure 3. The blocks become densely
connected.

Consider Zj
e is the output of every jthðj ∈ f0,⋯,NgÞ

convolutional block.
input j⟶ convolutional block.
For example,

Z1
e , Z2

e , Z3
e ,⋯, Zj−1

e

� �
∈ R j−1ð ÞFk∗Wk∗Hk : ð1Þ

Equation (1) is the feature maps of all previous convolu-
tional blocks connected to their input data, and the block’s
output is

Zj
e

� �
∈ RFk∗Wk∗Hk : ð2Þ

We use Ze rather than Zj
e.

In the decoding part, each stage of the decoding proce-
dure begins with an examination of the previous layer of
yield. In the decoding process, the components’ important
feature maps are clipped and replicated in the standard U-

Net. These feature maps may be connected to the result of
the upsampling algorithm. In BiDCU-Net, BiConvLSTM is
utilized to investigate these two types of feature maps in
greater depth. Let be the set of sequential convolutional layer
feature maps, where Fkli is the layer number and WmlHml is
the feature map for each layer l and be the collection of cop-
ied feature maps from the encoding component. We should
also pay attention to and. When an upsampling operation
followed by a 2 × 2 doubles the size of a feature map while
halves the number of feature channels, Zd is initially trans-
ferred from an updated convolutional layer, resulting in.
To put it another way, the extended route increases the
image size by layering the feature maps.

Instead of BiDCU-Net, BiConvLSTM was used in the
proposed method to deeply analyze the details of these 2
types of feature maps.

Let,

Ze ∈ R
Fkl∗Wkl∗Hkl : ð3Þ

The copied encoding component’s feature mappings are
gathered in equation (3). And

Zd ∈ R
Fkl+1∗Wkl+1∗Hkl+1: ð4Þ

Equation (4) is the just be set of feature maps of the sub-
sequent convolutional layer in which the Fkl feature map is
the no. of layer l and Wkl ×Hkl of each layer l feature map.

Let us consider

Fkl+1 = 2 × Fkl,

Wkl+1 =
1
2Wnl,

Hkl+1 =
1
2Hnl:

ð5Þ

According to Figure 3, Zd is initially shifted from an
enhanced convolutional layer when a 2 × 2 upsampling
operation twice the size of a feature map while halves the
number of feature channels, resulting in Zup

d ∈ RRFkl∗Wkl∗Hkl .
The extended route, in other words, elevates the feature

3×3 ConvReLU

2×2 Max pool
2×2 upconv BN

Copy

BiConvLSTM BiConvLSTM

BiConvLSTMBiConvLSTM

BiConvLSTM BiConvLSTM

Figure 2: Proposed framework for disease prediction.
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maps layer by layer to achieve the true image size from the
last layer.

The output of the upconvolutional layer, Zup
d , performs a

BN function and creates Ẑ
up
d after upsampling the image.

One difficulty encountered during preparation is that the
distribution of activations varies between the concealed
units. Because each layer must be modified to a different dis-
tribution in each training phase as a result of this difficulty,
the training operation takes longer. A neural network is used
in BN [38] to increase consistency by normalizing the input
into a network layer by eliminating the batch means and
splitting the batch standard deviations before feeding the
standardized input into network layer. BN has an impact
on the evolution of neural network training. Furthermore,
model’s efficiency is typically improved as a result of the
small regulatory effect [39], which is a good thing.

The output of the BN phase ðẐup
d ∈ RRFkl∗Wkl∗Hkl Þ is now

being transmitted to a BConvLS layer through the BConvLS
layer. Due to the fact that these models employ comprehen-
sive relations between state-to-state and state transitions, the
LSTM model has a significant shortcoming in that there is
no spatial correlation of these networks. ConvLSTM, which
turns operations into input-to-state and state-to-state trans-
formations, was suggested as a solution to this problem [40]
and should be implemented. An input gate iðtÞ, an output
gate oðtÞ, a forgotten gate f ðtÞ, and a memory cell C make
up the circuit. It is broken down into four components ðtÞ.
Gates that monitor access to, update, and clear memory cells
are known as input, output, and forget gates. The following
are some of ConvLSTM’s characteristics.

i tð Þ = α Wnxn X entð +WnhiXHt−1 +Wnci X C t − 1ð Þ + bi,
f tð Þ = α Wnxf X et

�
+Wnhf X Hnt−1 +Wncf X C t − 1ð Þ + bf ,

C tð Þ = f t
° C t − 1ð Þ + i tð Þ tanh WnxcX etð +Wnhc XHnt−1 + bc,

o tð Þ = α WnxoXetð +WnhoXHnt−1 +Wmco ° C tð Þ + bo,
Hmt = o tð Þ tan C tð Þð Þ:

ð6Þ

X and ° are the function of the convolution and
Hadamard.

et is the input tensor.
Ht is the hidden state tensor.
CðtÞ is the tensor memory cell.
WnxX and WnhX are input and hidden kernel of 2D

convolution.

bi, bf , bg, bo, and b are predominant function.

BConvLSTM used to encode ŷupd and distribute informa-
tion within this network. As a result, BConvLSTM analyzes
the input data in both directions like forward and backward
using two ConvLSTMs. Then, in either way, by addressing
the data dependence, it decides which data input is now
being used. Only dependency with a forward direction is
taken into account in a traditional ConvLSTM. As a result,
in order to effectively evaluate backward dependencies, all
issues must be thoroughly addressed in this order [41].
Increasing statistical performance has been demonstrated
through the investigation of both forward and backward
temporal perspectives. Each ConvLSTM can be thought of
as a standard in both the forward and backward direction.
We have two sets of parameters since we have two different
states: backward and forward. The BConvLSTM production
is expected to be as follows:

Z tð Þ = tanh WnH
!

y ×H
!
n +WnHy ×Hm + b

� �
, ð7Þ

where H
!
n and Hm denote hidden state tensors with for-

warding and backward states, respectively, b denotes term
for basic, and ZðtÞ is output with regard to spatiotemporal
bidirectional details. Aside from that, tanh is the hyperbolic
tangent that is utilized to mix the front and rear output in a
nonlinear fashion. To train the network, we employ the
power approach, which is unique to the U-Net.

4. Experimental Results

Three prominent datasets, DRIVE, STARE, and CHASH_
DB1, were used to investigate the segmentation of retinal
blood vessels. A total of 40 color retinal images are included
in this dataset, with 20 examples used for training and
another 20 samples utilized for testing. The following is
how the DRIVE dataset is organized. The image’s size,
according to the original, is 565 × 584 pixels. To create a
square data collection, the photographs are only clipped to
contain data from columns 9 to 574, resulting in a frame size
of 565 × 565 pixels (in this case). We randomly picked
171,000 patches for training from a total of 190,000 patches
discovered from 20 pictures in DRIVE dataset.

The patch size for each of the three datasets shown in
Figure 4 is 48 × 48 pixels on each side. STARE consists of
20 color pictures, each of which is 700 × 605 pixels in width
and height. The small sample size necessitates the employ-
ment of two methodologies for training and testing on this

Block 1 Block 2 Block 3 Block N

X1e X2e X3e XNe

Figure 3: Block representation of the proposed method.
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dataset, both of which are employed rather often. First and
foremost, some of the training examples were chosen at ran-
dom from each group of 20 photos. A sample is evaluated
and remaining 19 specimens are trained on the results using
a method known as the “leave-one-out” procedure. There is
never any overlap between the training and testing samples.
The “leave-one-out” method for STARE datasets is used in
this implementation, which is detailed below. CHASH_
DB1 is a dataset that consists of 28 images, each with a res-
olution of 999 × 960 pixels. The dataset would be divided
into two groups, with samples chosen at random in each cat-
egory. For training, a total of 20 samples are used, with the
remaining 8 samples being used for testing.

Tamim et al. [42] test data from the DRIVE, STARE, and
CHASE DB1 databases, among other places, was used to val-

idate the framework. Tables 1–3 as well as Figures 5–7 show
the F1 score, accuracy, sensitivity, specificity, and AUC. As
indicated in the table, the efficiency of BIDCU-Net is higher
than that of other updated models. According to the pro-
posed approach, the average BIDCU-Net F1 score for the
DRIVE, STARE, and CHASE DB1 is 83.85, 82.3, and
81.94, respectively.

The area under the curve (AUC) is the measure of the
capacity of a classifier to discriminate between classes and
is used as a summary of the ROC curve. The greater the
AUC, the better the performance of the model in distin-
guishing between the positive and negative groups.

AUC =
�
percentage of similarities in the total available pairs

+ 1
2&∗percentage of tied in the total available pairs

�
:

ð8Þ

Table 2 compares and contrasts each technique with a
variety of additional state-of-the-art methodologies, as indi-
cated in the headers, in comparison to the DRIVE, STARE,
and CHASE datasets. We discover that the backdrop and
blood vessels can be segmented more reliably than the
remainder of the image, based on the BiDCU-highest Net’s
F1 score and highest AUC. The F1 score indicates a high
level of recall and precision, as well as a successful imple-
mentation of our strategy. BiDCU-Net has the highest levels

STARE Image 1
DRIVE Image 1 CHASE Image 1

CHASE Image 2DRIVE Image 2STARE Image 2

a. Input Image b. Ground truth masks c. Predicted masks

Figure 4: Output of EDLFDPRS method.

Table 1: DRIVE dataset performance with various architecture.

Network
U-Net
[28]

RU-Net
[4]

Dense U-net
[18]

Proposed
EDLFDPRS

Accuracy 95.08 95.65 95.53 97.32

F1 score 81.87 81.55 81.71 83.85

Recall 82.65 84.62 84.81 82.56

Precision 85.14 84.72 83.94 85.19

Sensitivity 82.65 83.74 79.86 83.96

Specificity 97.97 97.83 97.36 98.68

AUC 96.81 97.84 97.82 98.79

Table 2: STARE dataset performance with various architecture.

Network
U-Net
[28]

RU-Net
[4]

Dense U-net
[18]

Proposed
EDLFDPRS

Accuracy 96.33 97.6 97.21 97.33

F1 score 81.22 82.63 81.47 82.3

Recall 84.27 82.61 83.17 82.12

Precision 80.07 82.16 81.92 82.52

Sensitivity 82.12 82.69 79.37 84.27

Specificity 97.97 97.28 97.47 98.57

AUC 97.82 97.15 97.45 98.84

Table 3: CHASE_DB1 dataset performance with various
architecture.

Network
U-Net
[28]

RU-Net
[4]

Dense U-net
[18]

Proposed
EDLFDPRS

Accuracy 96.12 96.12 96.43 97.44

F1 score 78.23 79.81 79.98 81.94

Recall 82.45 82.74 82.58 83.92

Precision 82.21 83.23 83.05 80.07

Sensitivity 82.45 85.55 78.86 83.92

Specificity 97.98 97.17 97.55 98.45

AUC 98.05 98.11 98.17 98.79
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AUC

Specificity

Sensitivity

U-Net (28)
RU-Net (4)

Dense U-Net (4)
Proposed EDLFDPRS

Precision

Recall

N
et

w
or

k

F1-Score

Accuracy

80 85 90 95 100

Figure 5: DRIVE dataset performance with various architecture.

Specificity

Sensitivity

U-Net (28)
RU-Net (4)

Dense U-Net (4)
Proposed EDLFDPRS

Precision

Recall

N
et

w
or

k

F1-Score

Accuracy

200 40 60 80 100

Figure 6: STARE dataset performance with various architecture.
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AUC

Specificity

Sensitivity

U-Net (28)
RU-Net (4)

Dense U-Net (18)
Proposed EDLFDPRS

Precision

Recall

N
et

w
or

k

F1-Score

Accuracy

200 45 60 80 100

Figure 7: CHASE_DB1 dataset performance with various architecture.

Table 4: Comparison results of existing with proposed method.

Existing methods Alom [4] Wang [18] Jiang [11] Guo [34] Proposed

Methods RU-Net R2U-Net
Dense U-

net
FCN BSCN EDLFDPRS

Dataset D S C D S C D S D S C D S C D S C

ACC 95.56 97.06 96.22 95.56 97.12 96.34 95.11 95.38 96.46 96.33 97.7 98.46 98.72 98.89 97.32 97.33 97.44

F1 score 91.55 93.96 78.1 91.71 84.75 92.8 — — 76.75 77.55 82 82.36 85.47 75.6 83.85 92.3 81.94

Sensitivity 77.51 81.08 74.59 77.92 82.98 77.56 79.86 79.14 66.63 83.32 83.23 81.79 87.51 79.72 82.56 82.12 83.92

Specificity 98.16 98.71 98.36 98.13 98.62 98.2 97.36 97.22 99.33 97.4 98.67 98.79 98.94 98.96 98.68 98.57 98.45

AUC 97.82 99.09 98.03 97.84 99.14 98.15 97.4 97.04 97.8 97.9 99.12 98.74 99.41 98.74 98.79 98.84 98.79

Note: D: DRIVE; S: STARE; C: CHASE; ACC: accuracy; sensitivity; specificity; AUC: area under the ROC curve.

0
D

RU-Net

MZ Alom (4) Wang (18) Jiang Y (11) Guo Y (34) Proposed

R2U-Net Dense-net FCN BSCN EDLFDPRS

S C C CD D DS S S CD S CD S

10

100
90
80
70
60
50
40
30
20

Accuracy
F1 score
TPR

TNR
AUC

Figure 8: Comparison results of existing with proposed method.
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of specificity and sensitivity, implying that more pixels in
vessels can be better labelled in the future. Vascular pixels
make up a modest percentage of all visual pixels most of
the time. Because the unbalanced type is utilized in the
description, defining the segmentation of the retinal blood
vessels is more challenging. As a result, our technique’s high
sensitivity is critical, and a computer-aided demagnetization
device may detect blood vessels without using false
instances. The BiDCU-Net displays maximal accuracy over
a similar period of time.

Table 4 and Figure 8 show the proposed method com-
parison results of various performance metrics with existing
methods, Except F1 score, all the remaining parameters of
the EDLFDPRS method are improved than those of the
existing methods for the DRIVE dataset. The proposed
method performance metric of F1 score is improved than
the existing methods for the CHASE dataset. Finally, the
proposed method proves that it has better accuracy when
compared with existing methods.

5. Conclusion

To construct an effective framework, a mix of bidirectional
LSTM network, U-Net, and fully connected layer is used in
this research work. The network also includes a tightly
linked convolutional layer block to make more biased data
available, leading to more reliable segmentation results. This
work was also able to boost the network’s speed by roughly 6
times by introducing BN after the upconvolutional layer.
The proposed method is given the accuracy as 97.32%,
97.33%, and 97.44% for the datasets DRIVE, STARE, and
CHASE, respectively. When compared with existing
method, the proposed method accuracy is improved 2.24%.
Also, the proposed work is compared with the different
architectures such as U-Net, RU-Net, and Dense U-net
models in segmentation activities for all three datasets utiliz-
ing the same number of network parameters.
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