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The concept of the yield locus as a means of representing the plastic anisotropy of a textured material
is remembered. It is shown how such yield loci can be used in a very general way, i.e. in full
six-dimensional stress space. As an example of how such yield loci can actually be obtained, the series
expansion method based on Taylor factors is explained. It is finally shown that these six-dimensional
yield loci can be approximated by analytical expressions and under such form brought into finite
element calculations of elasto-plastic forming processes.
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1. INTRODUCTION

1.1 The Concept of a Yield Locus

Yield loci are tools used in the analysis of plastic forming problems. They provide
a means of knowing whether a uniaxial or multiaxial stress state can cause plastic
deformation in a given material. Moreover, they can be used to find the plastic
strain rate tensor that corresponds to a plastic stress by applying Hill’s Maximum
Work criterion (Hill, 1950).
A stress is in general described by six independent components"

Sll S22 S33 S23 "-S32 S31 --S13 and $12 $21. A condition expressing that a given
stress state Sij causes plastic flow in a given material generally takes the form"

F(So) =0 (1)
For incompressible materials, the yield condition does not depend on the
hydrostatic component of the stress, but only on the deviatoric stress S’. It is then
often convenient to use expressions for the yield condition in which the S0 have
been replaced by S. Moreover, there are only five independent deviatoric stress
components in such a case, which certainly is important for the analysis (Van
Houtte, 1987, 1988; Lequeu et al., 1987). For reasons of clarity, we will not
emphasize this aspect in the present paper.
Note that for a given material, the actual form of expression (1) will depend on

the choice of the reference system used in physical space. Such condition can be
represented geometrically in a six dimensional space, of which each axis
corresponds to one of the independent stress components. Such representation is
called a yield surface or yield locus. It evidently is impossible to visualize such six
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dimensional yield locus in a single drawing. It is customary to represent plane
sections of the yield locus. Many different plane sections can be made; see for
example the cases discussed by Van Houtte (1987). Such plane section can
generally be described as being an x, y plot in which each combination of x and y
stands for the following stress state:

S xSx + ySr (2)
The "basis vectors" Sx and Sy are often very simple: Sx may for example represent
a uniaxial stress all and Sy a uniaxial stress $22 (Figure 1). More complex
examples have been given by Van Houtte (1987).
A first application of a yield locus (assuming that it is known) is to answer the

question: at what stress level will plastic yielding begin for a given stress mode U?
(Figure 1, see also next section).
A second application is to answer the question: what do we know about the

(plastic) strain rate tensor when we know the plastic stress? Or co.nversely, what
is the plastic stress that is associated to a given plastic strain rate E? The answer
to these questions is given by the Maximum Work Criterion (Hill, 1950). The
following equation can be derived from it for incompressible materials with
"smooth" yield loci (without vertices)"

ij Z OF(S’kt)
Sb

(3)

in which Sj are the components of the deviatoric stress tensor. Z must be
non-negative but is not fixed otherwise. Only models that asume strain rate
sensitivity can connect a plastic stress $ to a particular strain rate !.

1.2. The Concept of a Stress Mode

The concept of "stress mode" has been introduced by Aernoudt, Gil Sevillano
and Van Houtte (1987). It merely is a fixed direction in stress space, described by

o /S
Fignre 1 An example of a two-dimensional section of a yield locus. U defines a direction in such
diagram: a "Stress mode."
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E
Figure 2 Typical stress-strain curve. After an elastic-plastic transient, a linear part is often reached
(A). This can be back-extrapolated leading to the "back-extrapolated yield stress" S,.

a "vector" U which in reality has the nature of a tensor.f In Figure 1, the plastic
stress state in the direction defined by U is represented by the point A. The stress
"Vector" pointing to A is given by

Sy SyU (4)
in which the scalar Sy is the ratio OA/OB. It has been convened that Sy has the
dimensions of a stress (force/surface) while U is dimensionless.

1.3. Back-Extrapolated YieldStresses

There may be a problem in defining the value of Sy. It will indeed depend on the
value of the strain at which it is measured. Figure 2 shows a typical stress-strain
curve. Assume that S is the level of the stress in a uniaxial tension test, and that E
stands for the true strain in the tensile direction. One may conventionally define a
"yield stress" at an offset, i.e. the stress for which the non-proportional part of
the strain reaches a certain value, such as 0.01% or 0.2%. The present authors
however prefer to use a type of "yield stress" that is relevant for the stresses that
occur in industrial forming operations, for which the total strains nearly always
exceed 5%. This means that it is not necessary to consider the elastic-plastic
transition region. On the other hand, the stress level will be affected by strain
hardening at strain levels of 5% and more. The "back extrapolated yield stress" is
often used to overcome these problems. The true stress-strain curve sometimes
reaches a linear part after the elastic-plastic transition region (A in Figure 2).
This linear part is back-extrapolated to the S-axis which then gives the
"back-extrapolated yield stress" Sy (at B in Figure 2).- Rigorous methods for converting deviatoric stress tensors or strain rate tensors into vectors have
been proposed by Lequeu, Gilormini, Montheillet, Bacroix and Jonas (1987) and by Van Houtte
(1988).
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Aernoudt et al. (1987) proposed a method to define a back extrapolated stress
for multiaxial tests as well. S is no longer the uniaxial stress in tensile test, but is a
stress level such that the stress tensor is given by:

s=st (5)
in which U is the stress mode. U is supposed to be constant during the test. It
may represent a pure shear stress, a biaxial tensile stress etc. Let the tensor !
represent the strain rate at a given moment during the test. A scalar/ may be
defined as follows:

/=U’ (6)
/ has the dimension (time)-1 since U is dimensionless. A measure for the total
strain is then defined as follows"

E / dt (7)

Note that these definitions are such that P., the power dissipation by unit volume
can be calculated from the scalars S and E. It is indeed seen that

P=S’=SU’,=S, (8)
Scalars S and E have now been defined for multiaxial tests, which then enables to
make a plot such as Figure 2 for such tests as well. A back-extrapolated plastic
stress level Sv can hence be defined, as well as the back-extrapolated yield stress
tensor Sa, (Eq. (4)).
These yield stresses also depend on temperature and on strain rate. These

effects will not be considered further in the present work.

1.4. Purpose of the Present Paper

These introductory remarks show, that a six dimensional yield locus based on
back-extrapolated yield stresses can be conceived. It describes the basic stress
levels required for all possible uniaxial or multiaxial plastic deformation modes
beyond the elasto-plastic transition region. It does not describe effects related to
work hardening. Such yield locus, when known, would nevertheless be a quite
useful tool when analyzing complex forming operations, e.g. in FEM studies. It is
however quite difficult to obtain for a given material. Von Mises or Hill yield
surfaces are often used during the analysis of forming processes. These
approximations are often not very satisfactory for engineering materials, which
have a crystallographic texture and correspondingly an anisotropic yield locus. It
is the purpose of this paper to show how such yield loci can be estimated from
texture data, and how they can be used in applications such as FEM calculations
of plastic forming operations.

2. YIELD LOCI OF ANISOTROPIC MATERIALS

2.1. Isotropy vs. Anisotropy

The properties of isotropic materials do not change when an arbitrary rotation is
applied to the material, or conversely, when such rotation is applied to the
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ligure 3 n-plane section of the yield locus of:--the von Mises yield locus for isotropic materials;--
the Tresca yield locus for isotropic materials;--a f.c.c, single crystal with a (001) [110] orientation.
This yield locus has been obtained using the "geometrical method" described in Section 2.5.

reference system with respect to which the properties are expressed. Thus the
shape of the yield locus must be independent of the choice of the reference
system in physical space. Hence one may always choose the principal directions of
the acting stress as reference system. The three principal stresses then are the
only stress components that are not zero, hence a three-dimensional stress space
is sufficient for the representation of the yield locus. Figure 3 shows a c-plane
sectional of the von Mises and the Tresca yield loci for isotropic materials. It is
worthwhile to note that the von Mises yield condition can easily be expressed as a
function of the deviatoric stresses without using the reference system of the
principal stresses:

F(S’) (-32S’ S’)1/2 So 0 (9)
in which So is the yield stress in a uniaxial tensile test.
The reduction from six stress components to three principal stress components

is not possible for anisotropic materials, since the yield locus would not be
independent of the direction of the principal stresses. This has the obvious
disadvantage that one really needs six dimensions in stress space for a full
representation of the yield locus. It has the advantage that one does not need to
adapt the reference system in physical space to the principal directions of the
acting stress.
For many applications (e.g. for sheet forming, with x3 being the normal to the

sheet), one may assume that 523 "-S31 =0. This then reduces the number of

"I" A section by the plane Sll + SEE + S33 -0.
For plastically incompressible materials, one can reduce the number of independent stress

components to five, see e.g. Lequeu et al. (1987) or Van Houtte (1988). Only the deviatoric
component of the stress (represented by $’) is relevant in such case. This will be assumed throughout
this paper.
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dimensions to be considered to four, and may furthermore greatly simplify the
analysis (Van Houtte, 1987). This simplification cannot be made for three-
dimensional studies of processes such as forging.

2.2. Polycrystalline Materials

Engineering materials usually consist of many tiny crystallites. The plastic
deformation of these is achieved by slip on particular slip systems, i.e. on
particular crystallographic planes and in particular directions. As a result, the
yield locus of such crystallite is strongly anisotropic and may differ very much
from the well-known shape of the von Mises or the Tresca yield surface (Figure
3).
This anisotropy may be cancelled out completely if in a polycrystal all crystal

orientations are equally represented. In that case, the orientation distribution
function f(g) that describes the texture (Bunge, 1982) is equal to 1 for all crystal
orientations g. So the material will have an isotropic yield locus, but not
necessarily the "classical" von Mises-yield locus nor the Tresca-yield locus.
However, for most engineering materials f(g) is not constant but depends on g.

As a result, the macroscopic yield locus will be anisotropic as well, but usually not
to the same extent as the single crystal yield locus.

2.3. Calculation of Yield Loci

A method is needed that finds all possible macroscopic stresses $’ that may start
plastic deformation in a given material. Mechanical tests can give some
information, but are very time consuming and can in practice never lead to a
complete six-dimensional yield locus. So theoretical models are preferred. From
the outside, such models may operate in two ways:

(i) The plastic strain rate tensor ! is prescribed; the model calculates the
required stress $’. This calculation is repeated for a sufficient number of
different tensors ! to be able to estimate the full F(S’) surface.

(ii) The (deviatoric) stress mode U’ is chosen. The model calculates the yield
stress $’ that corresponds to it (Figure 1) as well as the strain mode given by
Eq. (3). The calculation is repeated a sufficient number of times for different
stress modes.

Mixed boundary conditions may in principle also be chosen.
Which strategy is to be chosen depends on the possibilities of the model that

one wants to use. Most authors prefer to use strategy (i). We will limit this
discussion to that case.
So a macroscopic plastic strain ! is chosen. This information then serves as

input for a model for the plastic deformation of a polycrystal, which must take the
microscopic deformation mechanisms of each crystal into account. Such model is
faced with several questions"

(i) how are the microscopic stresses and strain rates i distributed throughout
the polycrystal?
(ii) what is the value of the macroscopic stress $’?
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A simplification that is almost always made is, that the microscopic stresses and
strain rates that are computed or assumed are uniformly distributed within a
particular cyrstallite. Such is the case for the so-called self-consistent models that
set up a comprehensive set of equations for each grain (e.g. Berveiller and Zaoui,
1984; Molinari, Canova and Ahzi, 1987). The strain rates of each grain may be
different from each other, but their average must be equal to the macroscopic
strain rate. At a given moment, the microscopic strain rate of a given grain will
depend on the capability of the matrix surrounding the grain to exercise the stress
required to impose that strain rate on the grain. Each of these models has its own
assumptions for the calculation of this interaction grain-matrix. The matrix is
assumed to be a continuous solid that can absorb a inhomogeneous deformation.
Some of these models are elastic-plastic, others neglect the elastic part of the
deformation. Self-consistent models can be used to calculate yield loci (Berveiller
and Zaoui, 1984).
The Taylor-Bishop-Hill theory (see e.g. Van Houtte, 1988) makes even

stronger assumptions: it assumes the microscopic strain rate/ to be homogeneous
throughout the whole polycrystal and hence to be equal to the macroscopic strain
rate E. The microscopic plastic stresses are calculated for each crystallite and
their equilibrium at the grain boundaries is even less satisfied than by the
self-consistent models. On the other hand, there are no incompatibilities in the
distribution of the microscopic strains throughout the polycrystal. The Taylor-
Bishop-Hill theory will be adopted in the rest of this paper.

2.4. Elaboration Using the Series Expansion Method and the Taylor-Bishop-Hill
Theory

The Taylor-Bishop-Hill theory assumes the microscopic strain rate at a given time
to be equal to the macroscopic strain rate:

; (10)
The microscopic strain rate is then used to find the activated slip systems of a
grain with a known orientation g and from these the local micro.scopic plastic
stress a (see e.g. Van Houtte, 1988). So a is a function of g and of (E/E,,), which
stands for the strain mode. The scalar/m is a macroscopic measure of the strain
rate, such as the von Mises effective strain rate (see for example Aernoudt et al.,
1987). Strain rate sensitivity is neglected in the present analysis; so the stress o is
independent from the level of the strain rate. It only depends on the strain mode.

It can be demonstrated that for a single-phase material, under the assumptions
of the Taylor-Bishop-Hill theory, the average of all microscopic stresses must be
equal to the macroscopic stress:

f a(g, [m)f(g) dg (11)S(i//m)

in which f(g) is the orientation distribution function (O.D.F.) that describes the
texture of the material (Bunge, 1982).
Equation (11) is not very convenient in practical calculation. Most authors

prefer to base their analysis on the power dissipation per unit volume. The
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microscopic plastic power dissipation per unit volume is given by

P(g, ’/’m)= mvCM(g, ’/m) (12)
M(g, ,/.,,) is the Taylor factor for the considered orientation and strain mode.
It is a well-known result of a Taylor-Bishop-Hill calculation (Van Houtte, 1988).
vc is the critical resolved shear stress.

It is very convenient in this analysis to express the Taylor factors as series
expansions of harmonic functions (Bunge, 1970, 1982):

M(g, /,.)= , ., , M’(,/.)’’(g) (13)

The series expansion coefficients M’(,/) are obtained by integrating the
Taylor factors through Euler space:

(2/+ 1) f M(g, ,/,,)’’(g) dg (14)M’(,/m)

The Taylor factors themselves must be calculated by the Taylor-Bishop-Hill
model for a sufficient number of orientations g and for a sufficient number of
strain modes l.//,. This work can be organized in an efficient way as has been
explained by several authors (Bunge, 1970; Bunge, Schulze and Greszik, 1980;
Sowerby, Da Viana and Davies, 1980). The methods proposed by these authors
produce "principal strain yield loci," i.e. x-y plots that do not really represent
plane sections of a yield locus. Suppose that Sx in Eq. (2) represents a uniaxial
stress in a direction that makes an angle t to the rolling direction of a sheet, and
Sy in a direction (c + z/2). These directions are principal directions of stress for
all stress states of the section to be considered. The above authors however also
assume that these directions are principal directions of the strain rate. But the
directions te and (re + r/2) can only simultaneously be principal directions of
stress and strain if they also are twofold rotational symmetry axes of the "sample
symmetry" of the sample’s texture. Such condition is in general only satisfied for
c 0 and c z/2, not for other directions. Mols, Van Praet and Van Houtte
(1984) and Van Houtte (1987) proposed feasible strategies for the choice of the
set of strain modes to be considered that avoid to make the assumption that the
principal directions of stress and strain rate coincide. However, Van Houtte
(1987) still accepted this simplification for the axis x3 (the normal to the sheet),
which strongly reduces the complexity of the calculations.
Whatever the method used, the M’(,/m) can be calculated once and for all

(for a given metal) and stored for later use. The calculation of the yield loci of
samples with different textures then becomes a quite short calculation. It is based
on the calculation of the average plastic power dissipation throughout the
polycrystal:

P,,,(,/,m) P,,,,CMm(/P-,,,) (15)
in which Mm(_,/m) is the average Taylor factor of the sample. It is given by:

f M(g, ’/-’m)f(g)dg (16)

The integral can be elaborated using Eq. (13) and the properties of the series
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expansion:

Mm(/m) , , M’(lm)C’l(21 + 1) (17)

in which the C are the C-coefficients of the O.D.F. A modern computer can
evaluate M for thousands of strain modes per second using this expression.
Equation (15) is not the only expression for the average plastic power

dissipation per unit volume. It is also equal to

em(./m) S" Si]ij (18)
in which S is the macroscopic stress required to achieve the plastic strain mode
’/m. Combining eqs. (15) and (18) leads to

(Si]/ ’c)(-i]/-m) Mm(/m) (19)
In stress space, this represents a hyperplane that contains the plastic stress S.
There is such hyperplane for each strain mode. A large number of such
hyperplanes (one for each strain mode ,/,m) is easily obtained for any sample
with a known texture, using for example the strategies proposed by Mols et al.
(1984) or by Van Houtte (1987). These strategies consider all possible strain
modes within an angular resolution of 10, respectively in six dimensional
stress-strain space or in four dimensional stress-strain space (assuming the
existence of a diad axis of the texture at x3, and assuming applications for which
$23 $31 0). This set of hyperplanes contains in principle the description of the
yield locus, but not in a convenient form. It will be explained in the next sections
how this set of hyperplanes can be used for making a graphical representation of
the yield locus, or for using it in engineering applications.

2.5. Stress Levelfor a given Stress Mode Plane Sections of the Yield Locus

For many applications, including the graphical representations of plane sections
of the yield locus, it is required to find out what the stress level Sy is for a given
direction U in stress space, as shown by Figure 1 and by Eq. (4). From Eq. (5) it
follows that for any stress in the direction U

Sij SUij

From Eqs. (19-20), it follows that

CMm(7,/m)S(/m)-" Utij/

(20)

CMm(lm)
(21)

S(,/m) is a measure for the distance between the origin of stress-strain space
and the intersection of the direction U with the hyperplane associated to the
strain mode ’/m. The plastic stress Sy is found for that hyperplane for which S is
positive but otherwise minimal"

Sy Min [S(l/m) with U" (l//m) 0 (22)
This principle allows to identify the hyperplane of which the intersection with the
direction U is closest to the intersection of this hyperplane and the yield locus.
Mols et al. (1984) and Van Houtte (1987) used a purely geometrical method
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q

Figore 4 Two examples of $11-$22 sections of a yield locus of a cold rolled aluminium sheet, for
cr 0 (xl is the rolling direction) and for cr 45 (x at 45 of the rolling direction).

(without interpolation) in which the intersection with this "closest hyperplane"
was used as an estimation of the intersection with the yield locus itself. The
method was used to generate plane sections as those described by Eq. (2). This
can be achieved by generating a series of stress modes U as follows"

U(0) Ux cos 0 + Uy sin 0 (23)
Ux and Uy are two non-parallel stress modes.f 0 is varied in small steps, and for
each resulting stress mode, Sy is calculated using Eqs. (21-22). Figure 3 is an
example of a result of this procedure for a nearly-single crystal of a f.c.c, metal
with {111}(110) slip systems. Figure 4 shows an example for a cold rolled
aluminium sample. The advantage of the purely geometrical method is, that it can
reproduce the yield loci of single crystals including the sharp corners. The
drawback is, that such geometrical representation can hardly be used for
sophisticated engineering applications such as finite element calculations. For this
purpose, we are developing an analytical method for the representation of yield
loci, which basically is a six dimensional interpolation method based on the
discrete set of average Taylor factors of Eq. (17).
The geometrical method proposed by Van Houtte (1987) is implemented in

Van Houtte’s "MTM-QTA" O.D.F.-software package for cubic metals. It
assumes that x3 is a diad axis of the sample texture, which is nearly always the
case for sheet materials, and that the stress components $23 and $31 are zero.

f Ux may for example represent a uniaxial stress in a direction of a rolled sheet that makes an angle
a with the rolling direction, and Uy at a direction (or + r/2).

For IBM-compatible personal computers.
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2.6. Analytical Representation of a Yield Locus

A well-known example of Eq. (1) is Hill’s yield locus, which basically is a
quadratic expression:

AqklSqSk, B (24)
In the classical expression for Hill’s yield locus, Eq. (24) is simplified by assuming
that the coordinate axes are diad axes. It can be shown that many Aijkl coefficients
must be zero because of this. An additional condition arises from the fact, that it
is assumed that the yield condition is independent from the hydrostatic part of the
stress.
Equation (24) is insufficient for a proper description of the yield locus of most

anisotropic materials. Its approximation of the yield locus of the (001)[110] crystal
shown by Figure 3 would for example be an ellipse. One may of course generalize
Eq. (24) and add third or fourth order terms to it. We have however decided to
follow a different way because of the requirements of finite element methods. The
algorithms of these methods require at some stage to calculate the plastic stress
tensor from a given plastic strain rate tensor. So l must be the independent
variable, and S the result. In Eqs. such as (1), (24) and (3) it is of course the
other way around, and it is in general not easy to invert the expressions.

In order to overcome this difficulty, a plastic potential of "type II" is proposed
here. It is a sort of plastic potential expressed as a function of the strain mode,
and from which the plastic stress (relative to the critical resolved shear stress) can
be derived.

In this analysis, it will be assumed that the material is incompressible and that
only the deviatoric stress matters with regard to plastic deformation. For the sake
of simplicity, all deviatoric stress tensors S’ and strain rate tensors l are
converted into five-dimensional stress vectors s and strain rate vectors 6 using the
method proposed by Van Houtte (1988). it is reminded here that this vector
representation has the following properties:

v, x w, =v. w= v:w= vw/ (as)

in which v and w are two vectors (stress, or strain rate, or mixed) and V and W
the corresponding tensors, p and q are indices that run from 1 to 5. For the
macroscopic measure of the strain rate /m P,, the von Mises equivalent strain
rate is used:

Pm ---’m (_ppp)l/2 (26)

Pm can be seen as a function of p.
The following function of the five Pp can be seen as a plastic potential of type

II:
Q(Pp) Pm(Pp)G(O.p/P.,) (27)

By definition, the stresses are derived from Q as follows"

"rc- Opt, - G +
8(Pq /P,n) " -m -m (28)

which clearly is an expression depending only on the ratios (Pp/P,,), i.e. on the
strain mode. So the type II plastic potential leads to Sp/Z ratios that are strain
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rate independent; if necessary, strain rate sensitivity can be brought in by making
r a function of m.
The function Q(p) as derived above has a very interesting property:

Q
Q pp (29)

which can be demonstrated by substituting Q and its partial derivatives by their
expressions Eq. (27) and Eq. (28). It then follows from Eqs. (28) and (29) that

Q p(Sp / zc) (30)
This can be used to demonstrate that the plastic stresses and strain rates obtained
in this way indeed satisfy the normality rule (Eq. (3)). Basically Eqs. (27-28) are
a parametric representation of the plastic stress states s. The strain rates/ are the
parameters. A change d/ of the parameters causes a change ds of the stress. The
scalar product/, ds must be zero if the vector 6 (which represents the strain rate
tensor) is to be normal to the yield locus. This condition can be written as
follows:

8sp dSp pqdq 0 (31)

Now let us calculate the expression
Q

dQ qdq (32)

in two ways, first using Eq. (30):
Sp dq)/"c’- (Sq dq d- p dsp)/’ (33)dQ= (tpqsp dP.q d-P.peq

and secondly, using Eq. (28)"
OQ (Sq/zc) d.q (34)

Eqs. (33) and (34) are both true. This is only possible when p dsp is zero. So Eq.
(31) is satisfied.
Comparison of Eq. (30) to Eq. (18) (and taking account of Eq. (25)) shows that

Q is equal to Pm/c. It then follows from Eq. (15) and Eq. (27) that G(O.F/O.,,,) is
n.ot.hing else than M,,,(,/,,,), the average Taylor factor for the strain mode
E/E,,,. Hence it is possible to calculate the values of G for all possible strain
modes from the texture, as explained in the previous sections. An analytical
expression for G is then fitted to these data. In a first study, we have used the
following expression:

bpqrs.pqrs CpqrstupqrstuG(.p/.m)
apqepeq + -I- (35)em em em

i.e., a general sixth order expression containing only terms of even rank. This
means that the yield locus must be centrosymmetric. There is a considerable
number of coefficients such as the Cpq,.t,. However, many of these are always zero
because of various symmetry properties of this "tensor." The feasibility of this
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method depends on one’s ability to identify these zero coefficients and on one’s
programming skills.
Once the coefficients of the expression (35) have been found by least squares

fitting to the average Taylor factors, analytical expressions can be derived for the
stresses using Eq. (28). These then allow high-speed calculations of the stress
components from the strain rates, for application in the F.E.M. algorithms.

It is of course also possible to use Eqs. (21-23) (in which Mm is replaced by G)
in order to produce plane sections of the yield locus represented by Eq. (35). The
minimum of Eq. (22) can be found by means of a pseudo-Newtonian iteration.
Two examples of results will be shown here for f.c.s, metals with {111} (110)

slip systems:

(i) for a rather sharp texture, i.e. a (001) [110] orientation with a Gaussian
distribution around it:

f(g) =foe-(*/.0)2 (36)
is the angular distance from (001) [110] to g. I’o was given the value 16.5. f0

is adjusted in order to normalize the function (Bunge, 1982).
(ii) for a texture taken from a cold rolled 3004 aluminium alloy.

Example for the sharp texture. Figure 5 is a polar diagram that shows the
analytical approximation of the function G(/.m) by means of Eq. (31) in the
z-plane of stress-strain space. 6/m is unit vector in stress-strain space, so it
basically describes a direction. It is reminded here that G(6/,,) is nothing else
than the average Taylor factor Mm(_,/,m). The function shown by Figure 5 has
then been used to derive the n-plane section of the yield locus (Figure 6a). Figure

(33)

t4
0

(11) (22)

Figure 5 An analytical approximation of the function G(6/d,,,) (i.e., the average Taylor factor as a
function of the strain mode) for a f.c.c, metal with a moderately sharp texture: a Gaussian distribution
(Eq. 36) around the orientation (001) [110]. The drawing is a polar diagram in the -plane section of
stress-strain space. (The strain mode is represented by a direction in this space).
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6b shows the same yield locus section, this time obtained by the geometrical
method described in section 2.5. Figure 3 shows how this section would look like
for a single crystal. It must be emphasized here that it is difficult for the analytical
method to represent sharp corners of yield loci. It is not capable of representing
the yield loci of much sharper textures than the one of this example. The purely

St=St=S=O

(b) $33/T

St=St3=S=O

Figure 6 (a) a-plane section of the yield locus of a f.c.c, metal with a moderately sharp texture: a
Gaussian distribution (Eq. (36)) around the orientation (001) [110] (analytical method). (b) Idem,
geometrical method.
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(33)

Figure 7 An analytical approximation of the function G(6/.m) (i.e., the average Taylor factor as a
function of the strain mode) for a cold rolled 3004 aluminium alloy. The drawing is a polar diagram in
the x-plane section of strain space. (The strain mode is represented by a direction in this space).
Strains defined for a 45 (xl at 45 with the rolling direction).

geometrical method described in section 2.5 is much more powerful in this
regard, as is demonstrated by the example shown by Figure 3.

Example for a cold rolled 30004-alloy. Figure 7 shows the polar diagram in the
-plane of the function G(/m). Figure 8a shows the yield locus derived from it.
The representation of yield loci of such industrial materials by the analytical
method is usually unproblematic. For comparison, Figure 8b shows the same
section produced by the geometrical method.

3. SUMMARY AND CONCLUSIONS

The series expansion method for the representation of orientation distribution
functions makes it possible to obtain the yield surface of a textures sample in full
six dimensional stress space. No simplifying assumptions such as coincidence of
principal directions of stresses and strains are necessary. The calculations make
use of pre-calculated Taylor factors for a variety of strain modes. The method
could also be based on the results of other models for the plastic deformation of
polycrystals than the Taylor theory.
A method is proposed for an analytical representation of such six dimensional

yield loci. It will allow to replace von Mises’ yield criterion by a yield criterion
based on the actual yield locus in elasto-plastic finite element calculations of
forming processes. It has been found that this method works well for weak and
moderately sharp textures, but not for extremely sharp textures.
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(a)

Stt/a"

,z=S,==S=3=O

S2z/T

(b)

Figure $ (a) -plane section of the yield locus of a cold rolled 3004 aluminium alloy (analytical
method). Stresses defined for re= 45 (xl at 45 with the rolling direction). (b) Idem, geometrical
method.
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