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ABSTRACT
In this paper, the author combines the topological degree theory and the
monotone iterative technique to investigate the existence of solutions
and also minimal and maximal solutions of the initial value problem
for nonlinear integrodifferential equations of mixed type in Banach
space. Two main theorems are obtained and two examples are given.
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1. INTRODUCIqON

Consider the IVP of the nonlinear integrodifferential equation of mixed type in the

Banach space

(1) u’=f(t,u,Tu,Su), u(0) = u0,

wheref C [IxExExE,E], E is a real Banach space, I [0,a] with a >0, u0 E and
a

(2) Tu(t) k(t,s) u(s)ds, Su (t) h(t,s) u(s)ds.
0 0

In (2), k C[D,R ] and h C[D0,R], where D = {(t,s) R210<s<t<a} and

Do = { (t,s) R2lO<t,s<a }. In the special case wheref does not contain Tu and Su,

the minimal and maximal solutions of (1) have been obtained by means of the monotone

iterative technique in ]. But, it is easy to see that the monotone iterative technique is not

successful in the general case. Therefore, in this paper, we shall combine the topological
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degree theory and the monotone iterative technique to investigate the existence of solutions

and also minimal and maximal solutions of the IVP (1). Two main theorems are obtained

and two examples are given.

Consider the nonlinear integral operator

(3) Au(t) p(t) Uo+F(t,s,u(s),Tu(s), Su(s))ds,
0

where p C[I,R1] and F C[DxExExE,E]. Let k0 = max { Ik(t,s)ll (t,s) e D } and

h0 max {Ih(t,s)ll(t,s) Do}.

LEMMA 1. Let F be uniformly continuous on DXBRXBRXBR for any R > 0, where

BR = {x E Ilxll _< R }. Suppose that there exist Li > 0 (i=1,2,3) with
1(4) a(Ll+ ak0 L2+ ah0 L31 <

such that

(5) ot(F(t,s,U,V,W)) <-L o(U) + L2 o(V) + L3 gt(W)

for any bounded U,V,W c E and (t,s) D, where ct denotes the Kuratowski measure of

noncompactness. Then, A is a strict set contraction from C[I,E] into C[I,E], i.e. A is

bounded and continuous from C[I,E] into C[I,E] and there exists a real number r strictly

between 0 and 1 such that a(A(Q)) < r a(Q) for any bounded Q c C[I,E].

PROOF. It is easy to see that the uniform continuity of F on DXBRXBRXBR implies

the boundedness of F on DXBRXBRXBR and so A is a bounded and continuous operator

from C[I,E] into C[I,E]. The uniform continuity of F and (5) imply (see [21 Lemma 1.4.1)

(6)
ot(F(t,[O,t],U,V,W)) = sup {ct(F(t,s,U,V,W)) 0 < s <_ t }

-< L a(U) + L2 tx(V) + L3 gt(W)

for any bounded U,V,W c E. Let Q c C[I,E] be bounded, i.e. there exists R0 > 0 such

that Ilullc = max [llu()ll t e I} _< Ro for any u e Q. By the uniform continuity and

boundedness of F on DXBRXBRXBR with R max Ro, ako Ro, aho Ro}, we can easily
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show that the functions {Aulu Q} are uniformly bounded and equicontinuous; hence

(see [2] Lemma 1.4.1)

(7) a(A(Q)) sup {a(A(Q(t)))lt I},
where A(Q(t)) = {Au(t) u Q, t is fixed }. Using formula

x(t)dt III co{x(t) lt I } for x C[I,E]

and observing (6), we get

a(A(Q(t))) = (t,s,u(s),ru(s),Su(s)) ds u . Q
0

<t (-6{F(t,s,u(s),Tu(s),Su(s)) [s [0,/] ,u

=t c({F(t,s,u(s),Tu(s),Su(s))[s [0,/] ,u Q}I
< t (F(t,[o,t],U,V, W))

(8)
<_ til a(U) + L20:(V) + L3 o(W)),

where U {u(s) s I, u Q}, v Tu(s) s i, u Q} and W = { Su(s) s I,

u Q}. Since Tu(s) s co--(k(s,y) u(y) ly e [O,s]}, we have

co{s k(s,y) u(y) ly [O,s], s e I, u Q}

c co{ akou(Y), O,-ako u(y) ly e I, u e Q},

where 0 denotes the zero element of E, and consequently

= ako a(U).

Similarly, we find

(10) a(W) <_ aho a(U).

It follows from (7) (10) that

(1 1) a(A(Q)) < L+ ak
0 L2+ ah0 L3) o(U)

On the other hand, for given e > O, we can find a ptition Q =lJ=Qi, satisfying
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(12) diam(Qi) < a(Q) + e, = 1,2,...,n.

Choosing U E Qi (i =l,2,...,n) and a partition 0 to < t < < tj. < tj < < tm such

that

II ui(t) Ui(S) II < e for i =l,2,...,n, and t,s e = [. ],
(13)

j = 1,2, rn.

Clearly, U=Ujn=IUi=IBi where Bij = {u(s) u e Qi, s . Ij}. For any two x,y e Bij

we have x = u(t) and y v(s) for some u,v Qi and t,s Ij. It follows from (12) and

(13) that

II x-y II N II u(t) ui(t) II + It ui(t) Ui(S) II + II Ui(S) V(s)ll

< II U u IIC + e + II U V IIC
< 2 diam (Qi) + t < 2 Q) + 3e.

Consequently,

diam(Bij) < 2a(Q) + 3e, = 1,2,...,n and j = 1,2,...,m,

and therefore

a(U) < 2a(Q) +3e,

which implies

(14) a(U) < 2a(Q),

since e is arbitrary. Finally, it follows from (11), (14) and (4) that a(A(Q)) _< r o:(Q) with

r 2a (L + ako L2 + aho L3) < 1. This shows that A is a strict set contraction and the

Lemma is proved.

3. MAIN THEOREMS

THEOREM 1. Letf be uniformly continuous on IXBRXBRXBR for any R > 0.

Assume that there exist L >0 (i 1,2,3), which satisfy (4), such that

(15) a(f(t,U,V,W)) _< L a(U) + L2 a(V) + L3 a(W)

for any bounded U,V,W c E and e I. Assume further

(16) lin--q M(R)
< (aao)-
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where M(R) sup { IIf(t,u,v,w)ll (t,u,v,w) IXBRXBRXBR} and

ao = max { 1,ako,aho}. Then IVP (1) has at least one solution in C[I,E].

PROOF. It is well known that u is a solution of IVP (1) in C [I,E] iff u is a solution in

C[I,E] of the following integral equation:

(17) u(t) = u0 + ff(s,u(s),Tu(s),Su(s)) ds.
0

Let

(18) Au(t) = u0 + f(s,u(s),Tu(s),Su(s)) ds.
0

By virtue of Lemma 1, A is a strict set contraction from C[I,E] into C[I,E]. On the other

hand, (1 6) implies the existence of a real r strictly between 0 and (aao )-1 and R0 > 0 such

that

(19) M(R)<r for R>_aoRo.

Let R* max { R0, Ilu011(1-aao r)-1 }. Then, for u e C[I,E] and IlullC R*, we have

IlZullC ako IlullC ako R*, IISullC < aho IlullC aho R*,

and therefore, by (1 8) and (19),

IIAuilC Ilu011 / a M(ao R*) < Ilu011 / a a0 R* r < R*.

Hence, by the Darbo fixed point theorem (see [3]), A has a fixed point in the ball

{u C[I,E] llullc < R*}.

EXAMPLE 1. Consider the IVP of the infinite system of sublinear

integrodifferential equations

u’ 3t2 un ++ 2u2n ets sin(t- 2s) un(s) ds -1
n 17 10

5

(20) 2 ll2n cos n" (t-s) un+ (s) ds 0

_
t < 1;

n+ o

u (0)= --=-_ (n 1,’,3 .)
.1...
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Then IVP (20) has at least one continuously differentiable solution

{ u(t),u2(t),...,un(t),... } such that un(t) ---) 0 as n oo for and t [0,1]. To show this,

we let a =1 and E co = { u = (u,u2,...,un,...) un ---) 0} with norm Ilull = sup,, lu,,I.

Then, system (20) can be regarded as an equation of the form (1), where u0 = (1, -,...), k(t,s) = e t sin(t-2s), h(t,s) = cos /r (t-s), u = (Ul,U2,...,un,...), v =

(Vl,Y2,...,Vn,...), W (Wl,W2,...,Wn,...) and f (fl,f2""fn"")’ in which

fn(t,u,v,w) 3t2 )_ 2 .(u2nw )K---if- (un+ + 2U2uVn 1 ’n’l’ n+l
(21)

(n 1,2,3,...).

On account of (21), we have
2

3 + IIwlIfn(t,u,v,w)l < - (Ilull + 2 Ilull Ilvll + 1)
3 2 ilull

5 5

(22)
(t I, n 1,2,3,...),

and so
2

(23) IIf(t,u,v,w)ll < 3 (Ilull + 2 Ilull.llvll + 1)
3
+ Ilull 5" Ilwll 5.

Hence
3

M(R)<3(R+2R2+I) 3 +R 5,

and consequently,

lim
M(R) =0.(24)

R-- /,,* R

This implies that (16) is satisfied since 1 < k0 < e, h0 =1 and a0 = k0. Obviously, f is

uniformly continuous on IXBRXBRXBR for any R > 0 and, by virtue of (22), it is easy to

show that the setf(t,U,V,W) is relatively compact in E co for any bounded U,V,W c E

and t e I [0,1 ] and therefore (15) and (4) are satisfied for L L2 L3 = 0. Hence,

our conclusion follows from Theorem 1.

In the following, let P be a cone in E, and then P define a partial order in

E "x<y iff y-x e P (see [4]). u e C[I,E] is called a lower (upper) solution of (1) if

ll’<_ f(t,u,Tu,Su) for t I and u(O) < uo (u’ >f(t,u,Tu,Su) for t e I and u(0) >__ u0).
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THEOREM 2. Letfbe uniformly continuous on IXBRXBRXBR for any R > 0, k(t,s)

> 0 for (t,s) D and h(ts) > 0 for (t,s) e D0. Let cone P be normal and Yo(t) and Zo(t) be

lower and upper solutions of (1) respectively with Yo(t) < Zo(t) and t I. Suppose that

there exist M > 0 and L > 0 (i 1,2,3,...) with
1(25) a (M + L + ak0 L2 + ah0 L3) < -such that

(26) f(t,u,v,w) -f(t,fi,,w-’) >- M(u-’fi)

(27)

< - < u < t), TYo(t) < <_ < Tzo(t),for t I Yo(t) Zo( v

SYo(t) <_- < w < Szo(t), and

c(f(t,U,V,W)) < L o(U) + L2 o(V) + L3 c(W)

for any bounded U,V,W c E and t e I. Then IVP (1) has minimal solution u.(t) and

maximal solution u*(t) in [y0,z0]; and yn(t) ---) u.(t) and zn(t) --) u*(t) as n ---) oo uniformly

int I, where

(28) yn(t) U0 eMt + fe"M(t’s, [f(s,Yn.l(S),TYn_l(S),SYn.l(S)) + MYn.l(S) ds
0

and

(29) Zn(t) = U0 e’Ml + eM(ts) [f(S,Zn.l (S),TZn.l(S),SZn.l (S)) + MZn.l (S)] ds,

0

n = 1,2,3,

which satisfy

(30)
< y (t) < < < ...< u. (t) < u’(t) <Yo(t) Yn(t)

< z (t) < ...< z (t) < I.
n Zo(t) t

PROOF. For any x e [y0,z0] c C[I,E], it is easy to see that the linear IVP

(31) u’ =f (t,x,Tx,Sx) M(u-x), u(O) =u0

has an unique solution in C[I,E] given by

(s),Tx(s),Sx(s)) +Mx(s)) ds.(32) tt(t) u0 e-Mt +
o
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Define operator A by

(33) Ax(t) = uo e-Mr + fe-M(ts)(f(s,x(s),Tx(s),Sx(s)) +Mx(s)) ds.

0

It is evident that u is a solution of (1) (in C[I,E]) iff u is a fixed point of A in C[I,E]. By

virtue of (26), we see that Y0 < x _< X2 < Zb implies that

f(t,x (t),Tx (t),Sx (t)) +Mx (t) <f(t,x2(t),Tx2 (t),Sx2 (t)) +Mx2
(t) tel;

and therefore, observing (33), we have that A is a nondecreasing operator from [y0,zo] into

C[I,E].

Now, let y A Y0 and y = y Y0" Then
y’= y y =f(t,Yo,TYo,SYo) M(y Yo)- Y;

> f(t,Yo,TYo,SYo)-My- f(t,Yo,TYo,SYo)
=-My, te I;

y(O) Yl(O) Yo(O) _> u0 Uo= , and

(t) eMt)’= ’(t) + M(t)] eMt >_ O, t I.

And therefore

y(t) e’ y(O) + (s) eMs) ds >_ O, t I.
0

Hence, (t) > 0, t e I; i.e. Ayo >_ Yo. Similarly, we can show Azo <_ zo.

On the other hand, let

p(t) e-Mt and F(t,s,u,v,w) e-M(t-S)f (s,u,v,w)

where f(s,u,v,w) =f(s,u,v,w) + Mu. Then, F is uniformly continuous on DxBIxBRxBe,

for any R > 0 and, observing (27) and the fact that 0 < e-M(t-s) _< 1 for (t,s) e D, we have

c(F(t,s,U,V,W)) <_ O(E’5{fl(S,U,V,W),O} 1
-< (L + M) a(U) + L2 a(V) + L3 a(W)

for any bounded U,V,W c E and (t,s) D. This inequality together with (25) implies, by

Lemma 1, that A is a strict set contraction from C[I,E] into C[I,E]. Finally, our



Solutions of Nonlinear Integrodifferential Equations of Mixed Type in Banach Spaces 9

conclusions follow from a fixed point theorem due to Amann (see [5], Theorem 3).

EXAMPLE 2. Consider the IVP of the infinite system of superlinear

integrodifferential equations

u=8n(t_un)3+u4 ]+ 5 inE(t_3s) uz(s)ds2n+
0

(34) + ets (s) ds 0 < t < 1Un+
0

Un(0) = 0 (n 1,2,3,...).

Then IVP (34) has minimal and maximal continuously differentiable solutions
t

satisfying 0 < un(t) < - (t [0,1], n = 1,2,3,...).

To show this let a 1, E = co {u =(u, U2, U3, Un, ...) u 0} with

norm Iluil =sup lunl and P { u (UlU2,...,Un,...) . Co IUn >-- 0, n 1,2,3, ...}. Then,

P is a normal cone in co and system (34) can be regarded as an equation of the form (1). In

this situation u0 (0,0, ,0,...), k(t,s) sin2(t-3s), h(t,s) e ts,

U (Ul,U2, ,Un,...), V (Vl,V2, ,Vn,...), W (Wl,W 2, ,W n, ...) and

f (ff2’ d’n, .’.), in which

fn(t,u,v,w) -n (t- un)
3
+ u42n+l

(35)
(n 1,2,3, ...).

5 v2 + 2- w3+’n 2n n +1

Equalities in (35) imply

ifn(t,u,v,w)l< 8_ [(/ + ilull)3 + Ilull4] 5 2 2--+-----Ilvll / Ilwll
3

(36)
(t I, I= [0,1] ,n 1,2,3,...).

It is clear thatf is uniformly continuous on IXBRXBRXBR for any R > 0; and by virtue of

(35) and (36), we can easily prove thatf(t,U,V,W) is relatively compact in E co for any

bounded U,V,W c E and t e I. Hence, (27) is satisfied for L L2 L3 0. Let

Yo(t) = (0,0, ,0,...) and Zo(t) (t,, , ...) for t I. Then Yo(t) <_ Zo(t), t I.
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Y0(0) = z0(0) = (0,0, ,0, ...) = u0 and

y(t) = (0,0, ,0, ...), t I.

z(t) = (1@, ,n1--, ...), t I.

t
3
>0"[t’y(t)’-" (t)’Sy(t)J 8n

(t I, n = 1,2,3,...).

(fn[t’zO(t)’TzO(t)’SzO(t)] = -n (t- %)3 + (2n +1)

2

+ 5 I’’n sin(t -3s) ds
0

3

+ -n;i as

5 e3<4-+ +
16n:Zf’ 16n(n +1)3

(t I, n = 1,2,3, ...).

Consequently, Yo and zo are lower and upper solutions of (34) respectively.

When t I, Yo(t) < ff < u < Zo(t), TYo(t) < < v < Tzo(t),

SYo(t) < w < w < Szo(t), i.e.

0 < fin < un < t

0 < 7n < vn < sin2(t- 3s) ds <’n’ and
0

0 _< "n < Wn < Isn ets ds -< 2n
0

(t I, n = 1,2,3, ...),

and

we have
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(t- "n_3fn(t,u,v,w) fn(t,-fi,,w----) = (t- un)
3
+ u2n +1 u2n +1

+ 5 (1,’ 1,’2n) + (Wn+ W )n n+l

> 1--[-I (t- un)
3

(t- fin)3]-8nk

> _3__ (u.-8n
>.3__ (u.- ,,)8
(n= 1,2,3, )

(since --9 (t s)3 -3(t s)z _> -3 for 0 < s < t, 0< t _< 1).
bs

Consequently, (26) is satisfied for M . Moreover
3 1a(M + L + ako Lz + aho L3) = a M = - < .;

this shows that (25) is also satisfied. Hence, our conclusion follows from Theorem 2.
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