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ABSTRACT

in the present paper first a statistical theory of 2-dimensional grain
growth for the textureless case based on first principles the von Neumann
Mullins equation and the topological grain size grain sides relationship is des-
cribed. Then it is shown that the latter relationship follows from two fundamen-
tal topological principles, the principles of complete and random surface cove-
ring, which are shown to be responsible also for other empirical topological 2-D
and 3-D relationships (e.g. Weaire equation). Finally, textures are introducext
into the topological discussion.

INTRODUCTION

In order to completely describe grain growth one has to know the true
evolution of a function p(M, M2, ...M0 which gives the distribution of grain
shape and size identified by the parameters M, M2, Mk. In the rather com-
mon case of equiaxed grains it is usual to make an assumption on the shape of
the grains which allows, with a good approximation, to treat the grains by only
a single parameter namely the grain size, here expressed by the grain radius R.
In this case only the time evolution of a size distribution o(R,t) must be consi-
dered. In the most general case of texture presence this requires to know the
time evolution of the different grain size distributions corresponding to the va-
rious orientation classes.

There are two types of assumptions one needs for obtaining a quantitati-
ve description of grain growth kinetics:
(a) Physical assumptions as those for the expressions of the driving force and the
rate ofgrain boundary motion. They. were applied to an individual grain in the
textureless case by yon Neumann using first principlest’2. It turned out that here
the number n of grain sides plays an important role in the kinetics.
(b) Tooologica! assumptions which are required to transform the n-dependence
of the krain growth kifietics into an R-delndence. These are as important as the
hysical assumptions but treated less thoroughly in literature. This point will
ere be emphasized.

2-DIMENSIONAL CASE WITHOUT TEXTURE

The physical expressions for driving force and grain boundary
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velocity are:

_
dO rnT (1)

where 3’ specific _grain boundary_ energy; m grain boundary mobility; k
radius of curvature; O-- inclination of the grain boundary element. It is further
assumed that these boundaries only meet at triple points where they form 120
angles. This represents the equilibrium condition which in grain growth should
be fulfilled quite well.

For a polygonal grain one can obtain a simple expression for the growth
rate of the grain area by calculating the mean curvature with the total change
AO of the inclination 0 occmTing by going along all boundaries around this
grain. AO is obtained by substracting .from the total change 2r an angle of 60
for each corner (which is due to the 120 intersections, see also Fig.l):

Fig. 1: Exwle ofan individual grain
with boundaries meeting under 120 C.

dA
-rnT (2r n .=) rn7 (n 6)

or by replacing the grain area A by A=xR2

dR my (n 6)
dt 6R

(3)

This "von Neumann- Mullins equation" contains two parameters describing a
grain, namely n and R, and in order to treat the time evolution of the bidimen-
sional distribution o(n,R), one has to have an indendent equation for the rate
of changing of the number of corners dn/dt based on first principles. However,
at present such equation is not available which is also due to the discontinuous
character of this parameter.

Therefore, in order to solve the problem of grain growth without further
assumptions one has to look for a correlation between n and R. However, since
one of these parameters changes discontinuously and the other continuously, this
relationship cannot have unique but only statistical character. Dividing the grains
in size classes one can substitute for each class i the average value of the scat-
tered n values (see Fig.2) thus obtaining a continuous function f-f(P.). It can
be inserted in the von Neumann Mullins equation (Eq.(3)) averaged over all
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Fos" 2: Noedradius and number
ides of 2000 grains ofan

Al 3% Mg specimen (points); average
number ofsides for each radius class
i vs. r (circles). The straight line is
obtained by linear regression.

grains of the size class but of various side numbers n yielding

dR, mT (,(R,) -6) (4)

valid for each size class i.

In order to apply Eq.(4) the fight expression of fii(l), must be known.
In the literature often the existence of a linear relationship like

n ao + a.r r R/R

is mentioned. Since in a 2-D network like a grain microstructure where only
three lines meet at a vertex the average number of comers per grain over the
whole microstructure must be six, one has

=_, q=6=ao.a (6)

with ,p as the normalized frequency of grains belonging to the size class i. In the
literature very many results were presented which do not fulfill this condition or
use the wrong type of averages, e.g. the most probable numbers of sides. The-
refore, here Eq.(5) has been checked by thorough own experimental investi-
gations for very large numbers of grains (see Fig.2). Application of the I_east
Square Method yielded a linear equation given very accurately by

3 + 3r (7)

One can see that it fulfills Eq.(6) and that for the smallest grains (r=0) f=3 is
obtained reflecting the fact that the disappearing grains are 3-sided ones.

Introducing Eq.(7) in the averaged von Neumann Mullins equation (4)
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leads to the equation

dRil [1 1] (8)

given by HillerP for 2-dimensional grain growth, but derived on a more heuri-
stic basis. Now it shows more clearly the physical meaning of its origin. This
equation together with a continuity equation can be used to describe the time
evolution of the grain size distribution to(R,t) in the textureless case4:

Eqs. (8) and (9) give a complete solution of the problem of quantitative descrip-
tion of 2-D grain growth. R is derived from first principles except for the as-
sumption of the empirical linear relationship Eq.(7). In the next section, howe-
ver, it will be shown that also this relationship is based on fundamental topologi-
cal principles.

UNDERLYING TOPOLOGICAL PRINCIPLES

The agreement of the linear relationship with the average values in
Fig.2 shows that this is not only an empirical law but expresses some topological
facts. Therefore an (approximate) derivation of Eq.(4) will be given on the basis
of .fundamental topological principles. A model will be used in which polygonal
grmns are substituted by circles of equivalent area. Two basic assumptions are
made:

Fig.3: (a) Grain ofsize Ri sur-
rounded by grains ofone size R.
(b) Grain ofsize R surrounded-
by grains ofdifferent sizes Rr

(i) Total surface covering (Fig.3a). The grains j with radius P which can sur-
round grain with radius are calculated by

r is valid for grains being strictly circular whereas for polygonal grains the va-
lue 3 is more correct.
(ii) Random surface co.vedng (Fi.3b). The average number of neighbours of a
grain i is given by

(11)
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Here represents

(12)

the fraction of the total grain surface occupied by grains of the size . This
means Eq.(11) is valid for the case that the surface of any grain i is ocupied by
gra.ns j in a random way, i.e. only according to the surface fraction of the j-

The above derivation reveals the two first principles which determine
the validity of Eq.(7), namely the principles of total and random surface cove-
ring being approximately expressed by Eqs.(10) and (12). On the other hand if
one wants to describe a micmstructure where topological correlations are pre-
sent, i.e. that the principle of random surface covering is not fulfilled, the linear
relationship is maybe no longer valid5.

These topological principles can also be applied to the_3-D case in order
to derive a relationship between size Ri and number of faces fi of the grains.
Considering a sphere covered by spheres j one obtains

(13)

wsn= 4 + 8-- +4---- (14)

where one has

(15)

(o2 distribution variance). One sees that the relationship Eq.(14) is no longer
linear but quadratic in R and depends on the shape of the size distribution
Fig.4 shows the so far most complete 3-D data, measured by Rhines and Patter-
so on Aluminium. Here it has to be pointed out that all the data for the 3-D
case in the literature, also those from Rhines and Patterson are always discussed
in terms of a linear relationship. However, even the rather rough straight line
shown in Fig.4 represents a non-linear law in the (fi,R) space, namely
fi=Rt. Moreover, the downward deviation of the experimental data for low
fis values shows that the exponent of the re law should be higher than 1.33. In
Fig.5 the data from Rhines and Patterson .are transformed to linearly divided
axes. Here it can be seen easily that the relation is rather quadratic than linear.
This is_ in agreement with the above predictions of a quadratic law (Eq.(14))
with fly (R=0) 4 (tetrahedron).

From the principles of total and random surface covering also the aver-
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average boundary length L of the grains as a function of the grain size i
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can be calculated. If a grain is surrounded only by grains of the size j, the
length of its boundary is given with Eq.(lO) by

L# =
2xR, = ___6R’ 2 RtRI (16)

and by applying the random surface coveting postulate it follows for the average
length of grains i:

2
r, (17)

1 +r

L,(R, 0) =0; L+(Ri--*oo )--,2R (18)

Such type of relationship (Eq.(17)) was also observed experimentally.
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Finally it should be mentioned that the above topological principles are
also determining other topological relationships, e.g. the correlation between
number n of sides of a grain and the average number f of sides of the first
neigbhours in a 2-D microstructure:

6+ (19)
nffi5+

( variance of the distribution of grgi_’n comers). This relationship has empiri-
cally been found by Aboav andW7, but no clear derivation based on funda-
mental assumptions, is reported yet in the literature. As will be shown in another

ave’ also thistype of rather complex correlation can be derived from the
fundamental topological principles. All these agreements demonstrate that

the grain structure even in rather large detail is determined by the principles of
complete and random surface coverages.

INTRODUCTION OF TEXTURE FOR THE 2-D CASE

In the case that different orientations are present the linear relationship
and the fundamental law fi--6 for the whole microstructure are still valid. Even
if one applies the above topological principles Eqs.(10) and (12) to a single
orientation class (H) one still gets a linear relationship

f 3 + 3 --=-_,R (20)
R

since these principles concern only the grain geometry independent on the orien-
tation. But one sees that the average number of sides of the given orientation can
be different from 6 as much as Rwdeviates from R:

H= 3 + 3---- 6 (21)
R

IntegrateA over all orientation classes, one obtains again the fundamental law
fir6 for the whole microstructure.

(22)

with 0H being the relative frequency of grains belonging to the orientation class
H. The contribution of different texture classes to the total linear relationship is
schematically shown in Fig.6. Here the simple case of only two orientation
classes with different sizes was chosen so that their radii do not superimpose.
Such microstructures can be found e.g. during secondary recrystallization where
one has primary and secondary grains of rather different sizes.
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Re|ative radius rt.Rilfi

Fcses" 6: Conuution oftwo orientation
L and K with different mean

sizes IP and Rt to the total linear rela-
tionship. The average number ofsides
ofthe grains belonging to different size
and orientation classes are presented by

Furthermore it follows for all other topological rules which are derived
from these principles, e.g. the grain size delndence of the grain boun__

__
length or the Weaire-Equation (Eqs.(17),(19)) that they are not only valid for the
whole microstructure, but also for grains of a single orientation class.

CONCLUSIONS

Any statistical theory of grain growth must contain some topological
assumptions capable to take into account all the complex features or grain arran-
gement. Here it has been shown that important topological laws, as e.g. the
relationship between grain size and number of sides (faces in 3-D), the depen-
dence of the mean grain boundary length on the grain size and the Weaire-equa-
tion, can be derived from fundamental topological principles, namely the postu-
lates of total and random surface covering. It is further shown that these rela-
tionships are also valid if, instead of the whole microstructure, only grains
belonging to individual orientation classes are considered.
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