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ABSTRACT

A systematization of orientation characteristics describing the various
orientation aspects of the microstructure of the polycrystalline material is
presented.The statistical quantities which are functions of orientation or
orientation differences are defined on the set of orientation measurements
or derived from the conditional orientation correlation function (presented
by Adams}. The variety of the orientation characteristics comprises princi-
pal distributions which are texture functions and such which are partial
distribution for the description of correlation between orientation.The pre-
sented analysis is based mainly on the use of regular grids for selecting
the measuring points of orientations. The usefulness is demonstrated by an
example.

INTRODUCTION

The properties and anisotropy of a polycrystalline material are strongly
related to its microstructural characteristics. Such statistical quantities
which are defined on the spatial arrangements of different phases and
grains and their crystallographic orientations expose the preferences and
the the correlations occurring in the microstructure.These quantities are in
general functions of many parameters but (depending on the problem under
investigation and on the material and its state the most required informa-
tion is supplied by various particular forms of the characteristics with a
small number of parameters {see e.g.H.J.Bunge [1]}.
Essential forms of characteristics are defined on arrangements of the orien-
tation measuring points which can be picked with reference to certain
spatial elements of the microstructure such as grains, grain boundaries,
various kinds of deformation inhomogenities etc. In other cases in which,for
example, details of these spatial elements are not sufficiently
distinguishable as it is often the case in deformed samples, they can be
arranged in the form of random arrays or of regular grids.The arrangement of
the orientation measuring points which xnust be statistically homogeneous
represents the basic source of informatAon abou the orientation aspects of
the microstructure.
If the geometry of locations of the measuring points is established, then
this situation can be described by the conditional form of the two-point
orientation correlation function {COCF} C{g’,g"lr} described and discussed
by B.Adams [2]. According to its definition dN/N := C{g’,g"lr}dg’dg" the
COCF gives the frequency dN/N of the occurance of orientations g’ and g"
from the interval dg’ and dg",respectively, when their measuring points
are separated by a fixed vector r. In particular cases a many-point corre-
lation function may be preferred.
In general, in the analysis of the various orientation aspects of the
microstructure one-point forms of distributions which can be represented in
the 3-dimentional orientation space are of special interest.In a earlier
paper by A.Morawiec and J.Pospiech [3] some basic relation concerning the
COCF and some one-point forms of the microstructural quantities have been
derived and discussed.In the present paper basing on the results in [3,4]
these treatments have been extended in view of direct applications by syste-
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matizing the distribution functions named here orientation characteristics.
An example of application will be demonstrated using a set of orientation
measurements arranged in a form of a regular grid for rolled copper supplied
by Long [5].

ORIENTATION CHARACTERISTICS

There exist various kinds of orientation characteristics which are chosen
depending on the nature of the considered problems. They can be derived from
the many-point COCF or directly defined on the set of measured orientations.
A general systematization of the orientation characteristics is given in
Table 1.
All these functions represent distributions of orientations or distributions
of orientation differences, This means that both types of function are
described in the orientation space. Among these functions the texture func-
tions are distinguished as the principal distribution.There are two kinds of
texture functions which are distribution densities formed on a whole set of
measurements independently of the locations of the measuring points in the
sample space.
The first kind formed on a set of orientations is the well known Orientation
Distribution Function (ODF) f(g) [5] -the most important characteristics of
the microstructure. It is defined by the expression AN(g}/N := f(g}Ag,
where N is the total number of the measuring points in the sample space and
AN{g}/N is the frequency of occurrence of an orientation in the range Ag
around g.
The second one is completely determined by1the texture and is created on the
set of orientation differences F g’g’-between the orientations g’ and
g for any two measuring points in the sample. This is the Orientation
Difference Distribution Function (ODDF u(F) defined by Ap(F)/:= u(F)AF
where I is the total number of pairs of the orientation measuring points and
Av{F}/p is the frequency of the occurrence of the orientation difference
inside the range AF around F.
As can be seen from the scheme (Table 1, Eq(2) or Eq(3)) these texture
functions represent the particular case of one-point forms of distribution
densities obtained by integration of the two-point COCF.
For a detailed study of local regularities which may exist between
orientations in the polycrystalline matrix partial distributions are
introduced. According to the scheme in Table 1 there are partial
distribution functions of orientations {partial ODFs H(g) and such of
orientation differences (partial ODDF’s V(F)). lleasurements used for the
various partial distribution functions are selected from the total sets by
certain conditions determined depending on the problem under consideration.
Some of these functions can be analytically connected with the two-point
COCF.
Partial distributions are here expressed by using the weight factors Qi<l or
Tj<I assigned to the orientation measuring points pi or to each pair pj of
orientation measuring points (when orientation differences are considered),
respectively. This includes the cases when the weight factors assume the
values 1 or 0 or when they can vary between 1 and 0, respectively.
The partial distributions are defined (and normalized to one) similarly as
the principal distributions when the corresponding weight factors Q or T
are taken into account.
The partial ODF If{g) is then defined by the expression

H(g)Ag AQ(g) AQ{g} AN(g) N (1)

where Q is the sum of the weight factors Q counted from the whole set of N
orientation measuring points, and AQ(g) is the sum of weight factors
belonging to the AN(g) neasuring points whose orientations fall into the
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range Ag around g. Expression (1) leads to the form (4) and to the texture
reduced form (6 in Table 1, where K(g)= {AQ{g)/AN{g))/ Q is the
statistical weight which in the orientation space occur for a given

TABLE 1
GENERAL SYSTEMATIZATION OF THE ORIENTATION CHARACTERISTICS

and some relations obtained from the COCF

Conditional two-point orientation correlation function {COCF)
C(g,g’lr)

Integration over the volume v in a statistically homogeneous sample space

__l_v fv C(g,g’lr) dar fig) f(g’)

For random spatial arrangement: Crand (g,g’) f(g) f(g’)

Texture reduced COCF: c(g,g’Ir):= C(g,g’Ir}/ f(g) f(g’)

principal

distributions

Orientation distributions Orientation difference
distributions

ori’ntation orie’i’at{0n difference
distribution function distribution function

{ODF) (ODDF)

f(g)=fGC(g’g’lr)dg (2) u(F)=--/V d3rfGC(g’rg rldg=

(3)
-1

ff(g) f(Fg) dg, F=g.g’

partial orientation
partial distribution functions

distributions
{selected by partial ODF

weight factors Hig) K(g) f(g) (4)
defined by
conditions)

partial orientation difference
distribution functions

partial ODDF

v(r) w(r) u(r) (5)

a partial ODDF derived from COCF

Vlrl=---/dg Clg,rglr) 15a)

special case:
misorientation distribution

function (MODF) (Sb)

M( ):--f(dgfvd rClg,Fgr)p(rll)

texture reduced texture reduced
preference

partial ODF partial ODDF
or
correlation h(g) H(g)/ f(g) (6) v(F) v(F)/ u(F)
functions

(7)

special case:
nearest
neighbour
distribution
around
a special
orientation

orientation distribution misorientation distribution
function of neighbours function for a special

of a special orientation go
orientation go

H(g)go,r C(glgolr)

C(g,golr)/ f(go) (8)

v(r)go= c(rgol golr) (9)

texture reduced form

h(g)Uo,r H(g)go,r / f(go)=

C{g,go Jr)
f(g) f(go) (10)

texture reduced form

v(r) / (r)vlF)o
(11)
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orientation referred to O Q/N, i.e. to the weight factor which on
the average occurs for one measuring point.
Analogously, the partial ODDF V{F} is defined when the weight factors Tj

selecting the orientation differences are used, The corresponding relation
following from the definition is given in Table 1 by Eq{5} and the texture
reduced form by
The texture reduced partial distributions h{g)=K{g} or
and Eq{7} will be denoted as "preference functions". They express how much
more frequently an orientation or orientation difference,respectively,occurs
if the weight factors are considered in comparison with the cases when the
weight factors are not considered.
Among the partial ODF very important is the special case H(g)go or h(g)go
formed by those orientations whose measuring points P’ are seperated from
the locations Po of a special orientation go by the vector r (or by the
distance r [rl ). Here the weight factor Q 1 is assigned to points P’i
and the factor Qi 0 is assigned to the others.According to Eq(8) and Eq(10)
in Table 1 these functions are directly connected with the two-point COCF.
For a sufficiently large distance r from Po (rrc) the correlations
disappear and one obtains H(g}go f(g). The other limit case is when the
points with Qi 1 are chosen to be the nearest neighbour points to go.
The first and essential form of the partial ODDF V(F) is obtained by
selecting pairs of such measuring points which are seperated by the fixed
vector r (or by the distance r). To orientation differences of such pairs
the weight factor 1 is ascribed,to others- the weight factor 0. This form of
describing correlations between orientations is connected with the COCF by
Eq{5a) shown in Table 1.
If the distance r is sufficiently large (rrc), then the correlation
disappears leading to T(F) 1 and V(F) u{F). Of great importance is the
other limit case in which r is the nearest neighbour distance. The resulting
partial ODDF, the misorientation distribution function (MODF) V(F)
describes the distribution density of orientation differences F to the
nearest neighbour measuring points. A general form of the IIODF is given by
Eq{5b} in Table 1, where p(rll) denotes the probability density that two
points of neighbouring crystallites are separeted by the vector r.
A further kind of a partial ODDF is defined on a subset of orientation
differences F selected by additional conditions. An important example is
based on the additional condition that the pairs of orientations separated
by the fixed vector r contain the special orientation go. The resulting
partial ODDF V{F}go follows from the conditional form of the COCF
expressed by Eq{9} in Table t. In order to obtain the preference function
v(F}go it appears here reasonable to relate V{F}o not to the ODDF u(F} but
to the MODF lt{F} {Eq(ll} Table 1}.

AN EXAMPLE OF APPLICATIONS

The presented method described by a simple system of orientation
characteristics is easily applicable in the analysis of the orientation
aspects of the microstructure. The usefulness of such analysis was
demonstrated in [4] on examples based on a set of orientation measurements
arranged in form of a regular {quadratic) grid of a copper sample rolled to
97% reduction supplied by Long [5]. The number of measured orientations was
165, i.e. relatively small, so that the theoretical possibilities of the
analysis could not be fully utilized. In the present paper using the same
data set only one example will be shown to illustrate the method of analysis.
Fourier series up to the range 34 were used in the calculations.
In general, the basic initial information which is necessary for a detailed
analysis is supplied by the ODF and by the MODF. Here some results obtained
basing on the IIODF m(F) will be analysed. This partial ODDF characterizes
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the distribution of the orientation differences F of pairs of the nearest
orientation measuring points. These pairs obtain the weight factor T j=I, and
all others- TJ=0. In each case 8 (not 4) nearest neighbour points were used
and the number of orientation differences was equal to 737.
In fig.1 the MODF m(F) M(F)/ u(F) is plotted in the space of rotation
axes a and rotation angles on the sections 0=const in the region of
disorientations. The obtained MODF re(F) reveals some correlations
characterized by a maximum in <111> 50 and by a weaker one in <112> 55 and
in some others.

Fig.1
The misorientation
distribution
function

(normalized by
the ODDF)

For a closer examination of the observed correlations the probability will
be investigated that a given orientation is connected with its nearest
neighbour orientatior y <111> 50 or <112>a rotations. For this reason
the weight factors Qia Ni(<111>50)/8 or Qi Ni(<112>55)/8 are ascribed
to each measuring point Pi being equal to the relative number of neighbours
for which the corresponding rotation angles (=50 or =55) lie within the
range 0-5<0+5 and the corresponding rotation axes (a=<lll> or a=<l12>)
deviate from the exact positions by les_t.an 15.
Fig.2a shows the preference function h-g) selected by weights Qi

1
presen-

ted in the space of Euler angles. This function reveals two lines of orien-
tations which are distinguished byoa high number of nearest neighbours
forming the relationship of <111>50 to the orientations g. Both pass the
main rolling component in the position C=(ll2}[lll]and S=(213)[364]. The one
of the line indicated by X shows the maximum values of 4.0 in the range
60<2< <75 and the other one,indicated by Y, the highest values of 8.0
within the range 40<2<55.Thus in the above ranges the orientations of the
X-line show a preference of 4 times and those of Y-line a preference of 8
times for the occurrence of the relation <lll>50compared with the average
frequency Q 0.073,i.e. 1/2 neighbours of each measuring point. It could be
also shown that if one orientation of the pair forming the relation <111>50
is lying on X, then the other one is mostly found in Y and vice versa. For
example, the partners of the orientations forming the maximum Y are mostly
scattered in the range Xa-Xz-X3. Also the B-orientation with the preference
of 1.9 have the relationship <111>50, the positions of such neighbours are
indicated by
Fig.2b shows the preference function hg) selected by the weight Qi
exposing orientations related with the nearest neighbours the sample
space by the rotation <112>55. The highest concentration of h g) run over
the main rolling components from C-position {2=55 to B-position pass the
S-component splitting in its neighbourhood (2=65) into three regions. The
concentrations are more spread and their highest values are much lower than
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in the former case and do not exceed 2.5. The values show preferences refer-
red to the unit of Q 0,05 which corresponds to about 1/3 neighbours on
the average for each measuring point.

1.5
.’ 1.5

k ,,..
"..

7.) ’.o ,.;,..<.

1.7 2.1

2.0

10(.

Fig.2a. The hllg) function Fig.2b. The hg) function
The normalized {texture reduced) partial ODFs

(a) revealing the <lll>50-relation
(b) revealing the <112>55-relation

Similarly as before no preferences are recognized for the S-orientations and
for the B-orientations with the maximum of 1.4 neighbours creating the
relation <112>55 were found in the positions indicated by , In the present
case (in oposite to the former) the C-orientations are preferred by a
maximum of 2.0 and the recognized neighbours creating the above relation are
indicated by .
The obtained results characterised by distinguished relations of the type
<111>50 and <112>55 are created by positions which are not typical for the
most observed ODFs of rolled copper.It is possible that it has been measured
accidentally in a special region of inhomogenities.

CONCLUSIONS

The orientation characteristics the general systematization of which is
given in Table 1 provides basic information on microstructure by allowing
identification and description of occurring preferences and correlations.
Using partial distributions with appropriately chosen weight factors these
microstructural regularities can be exposed and analysed.
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