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Abstract

Model calculations of texture formation during cross-rolling are car-
ried out based on the full-constrained Taylor theory. Three variants
of cross-rolling were considered i.e. two-stage, four-stage and multi-

stas rollins. Three types of glide systems {110}(111), {112}(111),
{123}/111 and all possible combinations of them were compared.
The calculations were based on calculated orientation changes for
grid points throughout the orientation space, taking the spread range
according to the non-unique solution of the Taylor theory into ac-

count. The calculation were carried out in terms of the texture
coefficients C’ The best agreement between experimental and
calculated orientation densities was obtained with {123}(111) glide
systems.

Introduction

Plastic deformation of crystalline materials is based on glide and
twinning. Both these processes give rise to orientation changes of
the crystallites. This is the origin of the development of deforma-
tion texture. In the case of twinning, the orientation changes are
discontinuous whereas glide deformation leads to continuous orien-
tation changes. In the present paper only this latter case will be
considered.

The used mathematical model

Model calculations of the orientation changes during plastic deforma-
tion have been based on different assumptions. Wheras the strain-
rate sensitive model has a unique solution for the amount of shear in
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each glide system and hence for the orientation change, the Taylor
model is degenerated. In this latter case a crystal of a given orienta-
tion may assume a whole range of orientation changes, virtually with
the same deformation energy. Hence, the orientation changes of any
given orientation g must be described by a multivalued orientation
flow field in the orientation space, Fig. la.

The index rt numerates different energetically equivalent solutions.
Hence, any linear combination of flow vectors V"(g) may be chosen
as a possible orientation change. These orientation changes fill a
whole spread range tr

If we start with a given orientation distribution in the orientation
space and apply to it the flow field with a small deformation step d
then we end up with a slightly modified orientation distribution. This
can be described most concisely in terms of the texture coecients

G [2,3,4]
dC ..()(t)

(2)
d x=0 = =

with

I(g,n) = Y] crY(r/)’(g) (3)

In order to calculate the matrix [a] in eq. 2 we start with a tex-
ture consisting of only one orientation g Fig. lb. In this case the
coefficients C’ in eq. 3 have the form [1]

cF + (4)

The modified texture is a certain distribution within the spread range
tr, the shape of which has to be fixed by additional assumptions. In
a first approximation we assume that it has the shape of a Gauss-
distribution with spread w about a mean orientation g’. The coeffi-
cients of such a texture can be written in the form

C" = e(l,) T ( ) ()

with

e(l,,)
ezp(-1/4P’)- ezp(-1/4(l + 1)’)

1 ezp(-1/4w’)
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where o and g’ are functions of the starting orientation g. With
these assumptions eq. 2 takes on the form

:"
I, _!

:"
I’

:"
trpe(l..) T, ( )- (2/ +1) T, (9) d/ y a7"(2+1) Tx (g)

,--0 tr=l p=l

Then the starting orientation is chosen in equidistant steps
A, A throughout the whole orientation space and each time

9’ and , are calculated with the assumed model (e.g. the Taylor
theory). Eq. 7 can then be solved for the unknown coefficients

al)
If the coefficients a are known, eq.2 can be integrated nume-

rically by adding successively small deformation steps A/.
The flow field V"(9) and hence the matrix [a] in eq. 2 depend on

the crystallographic nature of the assumed glide system and on the
deformation tensor. In the present calculations, plane strain defor-
mation was assumed which is an approximation to rolling deforma-
tion. This kind of deformation leads to a texture which has orthor-
hombic sample symmetry. The same symmetry is also maintained if
the rolling direction is turned by 90 as is the case in cross-rolling.
This can be achieved by keeping the rolling direction fixed and tur-
ning the sample and with it the texture through90 This can easily
be expressed in term of the coefficients

Cf(90) --(-1)-C(0) (8)
With the matrix [a] for plane strain deformation and the transfor-
mation eq.8 any sequence of small rolling steps in longitudina and
transverse direction can easily be modelled. For comparison with
experimental results [5,6,7] three different sequences were chosen.

1. The rolling direction was changed after each deformation step
(mttlti-stage or true cross-rolllng)

2. The rolling direction was changed three times after equal de-
formation degrees (four-stage cross-rolling).

3. The rolling direction was changed only once, after half the total
deformation degree (two-stage cross-rolling)

Hence, in all three cases the accumulated deformation in longitudinal
and transverse direction was the same only the sequence of roiling
steps was different.
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Results and Conclusion

Numerical calculations were carried out on the basis of the classical
(full-constrained) Taylor theory assuming plane strain deformation
and the glide systems
{110}(111) {112}(111), {123}(111)
as well as all possible combinations of these. The deformation step
was chosen Ar/ 0.05 5%. In Fig.2 one section of the multi-
valued flow field is shown corresponding to {110}(111) glide. One
sees clearly that in certain regions of the orientation space the flow
field is nearly unique with only a very small spread range cr whereas
in higly symmetric orientations there is no average shift but a broad
spread range or.

In Fig.3 a,b the resulting textures are shown for multistage rol-
ling with total rolling degrees of 70% and 90% respectively. The
texture consists of an ideal orientation {001}(110) and a fibre com-
ponent (Xal)ll ND. Hence, it is sufficient to show only three sections

o = 0, 45, 90 of the texture. The results are qualitatively the
same for all kinds of glide systems. However, the maximum orienta-
tion densities as well as the spread ranges are different for different
glide systems The results are also in good agreement with experi-
mental results obtained in ARMCO-iron [5,7]. It is seen that the
calculated densities reach approximately the same magnitude as the
experimental ones. This is due to the inclusion of the spread tr into
the calculations. Without this spread the calculated densities were
found much too high Comparing the values in Fig.4 and Fig.5 it
is seen that the best agreement is obtained with the glide system
{123}(111).

lCig. shows the orientation distributions calculated for four-stage
rolling, lCig.7 shows the densities in the three main orientations
and lig.8 gives the corresponding experimental densities. Again the
{123}(111) -results are nearest to the experimental ones lthough
the densities of the fibre component (111)11 ND are higher than the
experimental ones.

Figs.,10,11, finally give the caulate and measured values for
two-stage rolling. Also in this case the qualitative agreement ist
good although the quantitative deviations &re larger.

linlly lCigs. 12,13 compare the calcuated densities of the orien-
tation {001}(110) for {123)/111) glide with the experimental ones.
The quantitative agreement is best for multi-stage rolling. In four-
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stage rolling the calculated values are slightly higher and in two-stage
rolling they are smaller than the experimental ones.

Comparing the calculated results with the experimental ones one
has to take into account that experimental rolling is not exactly
plane-strain deformation. Furthermore, the full constrained Tay-
lor theory is only an approximation and the assumption of Gauss-
distribution in the spread range r is an additional simplification.
Taking these premises into account, the agreement between experi-
mental and calculated orientation densities seem to be quite satis-
factory.
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Figure 1:

a) Orientation change of a given orienta-
tion 9 described by a multivalued orienta-
tion flow field
b) Approximation of Gauss-distribution in
the spread rang r

40

Figure 2:

Section of multivalued flow field corre-
sponding to {110}(111) glide, o 40.
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Multi-stage rolling
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Figure 3:

+\’[odPI textures for multi-stage rolling and different glide systems
a) total rolling degree 70 b) total rolling degree 90,

Multi-ste rolling calc.

Figure 4: M-,del e:dculati<:,, of nmlti-t:tge r-lling: Orient.ati,;t,.

densities for the texture components iI1.0(111), i111}(112} and
{001}(110) as a fun,:tior of the degree of the deformation f{+r d.if-
ferent glide systems.
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Figure 5:

Experimental multi-stage rolling: Orientation densities for the
textare components {111}(110), {111}(112) and {001}1110) as a

function of the defi)rmation degree.
Fom’-stage tolling 70.

Glide System o 0 !0 45"o] 90
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Figure 6:

Model textures for four-stage rolling and different glide systems
a) total rolling degree 70% b) total rolling degree 90%
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Figure 7:

Model calculation of four-stage rolling: Orientation densities for
the texture components {110}(111), {111}(112) and
as function of the degree of the deformation for different glide
systems.
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Figure 8:

Experimental four-stage rolling: Orientation densities for the tex-
ture components {111}(110), {111}(112) and {001}(110) as a

function of the deformation degree.
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Figure 9:

Two-stage rolling 90

Glide System o, 0 io, 45i0 90

Model textures for two-stage rolling and different glide systems

el total rolling degree 70, b) total rolling degree 90%

Two-stase rollins calc.

Figure 10: Model caJculation of two-stage rolling: Orientation
densities for the texture components [110)(111), {.111)(112) and
(001)(110) as function of the degree of the deformation for dif-
ferent glide systenm.
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4O ’1={111}(110)

Oeformal:ion derss

Fisure 11:

’:xperimentl two-stage rolling: Orientation densities for the tex-

ture components {1111}.(110), {111}(112} nd {001}(110) as a

unction o the deiormtion degree.
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Figure 12:

Model cdculation of the 3 cross rollin modes for {i123.(111) glide.

O:ientatot dcnsitie. o1 the {.001}(110) texture (:(.}.ponent as a

function of the degree ,)f the deformation.
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Figure 13:

Experimental cross rolling (3 modes). Orientation densities of the
(001}(110) texture component as a function of the degree of the
deformation.


