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Channel routing problem is an important, time consuming and difficult problem in VLSI layout design. In this
paper, we consider the two-terminal channel routing problem in a new routing model, called knock-knee diagonal
model, where the grid consists of right and left tracks displayed at +45 and -45. An optimum algorithm is
presented, which obtains d + as an upper bound to the channel width, where d is the channel density.
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INTRODUCTION

outing is a crucial problem in the VLSI layout
design automation process. The process of rout-

ing is generally divided into two stages: global rout-
ing, which is global assignment of the wiring paths
for each net, and detailed routing, which is detailed
wiring in individual routing regions. Detailed routing
is an important, time consuming and difficult prob-
lem. The Channel Routing Problem (CRP) arises in
the detailed routing. It consists of connecting ter-
minals belonging to nets, which are displayed on two
opposite sides (entry and exit lines) of a rectangular
channel.
Channel routing problems have been extensively

studied in different traditional routing models. In
particular, we recall Manhattan Model (MM) [1], the
Knock-knee model (KK) [2]. In the Manhattan
model, two wires may share a grid point only by
crossing at that point, but the wires are not allowed
to overlap. In the knock-knee model wires may share
a grid point either by crossing or by bending at that
point, but two wires are not allowed to overlap.

Besides the usual square grid, other tessellations
of the plane, such as the hexagonal, octosquare grid,
etc., have been proposed for routing. In this paper,

*This work has been supported in part by Progetto Finalizzato
Sistemi Informatici e Calcolo Parallelo of CNR, Italy.

we consider a new routing model, called Knock-Knee
Diagonal model (KKD), where the grid consists of
right and left tracks displayed at +45 and -45.
We present an optimum algorithm which obtains d
+ 1 as an upper bound to the channel width, where
d is the channel density.

DEFINITIONS OF PROBLEMS

Let P and Q denote two sets of terminals on the
entry and exit lines, respectively, IPI IQI m.
The terminals are identified by their integer coor-
dinates along the lines. A two-terminal net N (p,
q) is a pair of integers where p P and q Q. A
net is trivial ifp q. A two-terminal CRP is specified
as a set {N N,} of n nets. The main goal of a
CRP is to construct a layout in a channel of minimum
width.
A fundamental parameter is the density d defined

as follows. LetcPt2 Qandx c + e(0<e<
1/4), and let d(x) be the number of nets (p, q) which
cross the vertical line x, i.e. ((p < x)/ (q > x)) or
((p > x)/ (q < x)). The density of a CRP is d
max{d(x)}. In MM and KK the density d is a trivial
lower bound to the channel width.

Instead of using a horizontal-vertical grid, we con-
sider a diagonal grid for routing. The word "diago-
nal" means a slope of --45. Diagonal line segments
which are displayed at +45 and -45 are called

233



234 XIAOYU SONG

right and left tracks. The grid consists of diagonal line
segments which are composed of the left tracks and
the right tracks. A channel on the diagonal grid is
shown in Figure 1. The entry terminals and exit ter-
minals are located at unit distance on two horizontal
(entry and exit) lines. The distance between these
two lines, called vertical width w, is a multiple of the
unit; hence terminals lie at the intersections of left
and right tracks.
To judge the interest on the routing models on a

diagonal grid, let us compare them with the tradi-
tional routing models. As a variation of MM, the
routing model: Diagonal Model (DM), has been pro-
posed in [3]. There have been some interesting re-
sults on CRPs in DM [3, 4, 5, 6, 7, 8]. Note that
some problems which are very difficult in MM, such
as the shift-by-1 problem, where each entry terminal
must be connected to the exit terminal + 1 (or

1), can be solved easily in DM. In MM it requires
lq(k/-) tracks although its density is one. In DM the
problem can be optimally embedded in a channel of
vertical width equal to one. Moreover, the whole
class of problems, shift-by-i, 1 <- <- n, can be op-
timally solved in DM using a channel of vertical width
equal to i. Shift-by-O is also optimally laid out with
vertical width one.

In the theoretical investigation of two-terminal
CRPs in MM, the best algorithm for MM [1, 9] ob-
tains w d + O(f) where f is the flux and f -<
/-n, n is the number of nets. In particular, the worst
case of f usually holds for dense problems [10]. The
best DM router [8] yields w -< 2d + 1, for d even,
or w _< 2d + 3, for d odd, where the difficult pa-
rameter f (channel flux) disappears. We can only use
the density d to measure the difficulty of problem.
Due to the difficulty of MM, other routing models

have been proposed. Among them, the knock-knee
model is the most important one due to its great
advantage of the saving in the area. Recall that the

two-terminal CRP, which is NP-complete in MM, can
be solved optimally in KK, namely, d + 1 is an upper
bound to w. There exists a complete theory for CRPs
in KK [2, 11], while no result in the knock-knee
model on a diagonal grid. In order to fill up this
lacuna, we investigate in this paper the efficiency of
the knock-knee diagonal model for CRPs. In KKD
wires may share a grid point either by crossing or by
bending at that point but cannot share segments. As
in KK, it may require more than two layers to obtain
a good layout. We shall show that there is a similar
optimal result for the two-terminal CRP in KKD,
namely, d + 1 as an upper bound to the channel
width, where d is the channel density.
Note that in the study of routing problems, for the

same terminal locations, the distance between two
adjacent tracks is smaller by a factor ofV in KKD
than in the traditional routing models. If the same
track distance is to be maintained for technological
reasons, then the unit distance between terminals
and the vertical size of the channel for a given routing
must be enlarged by a factor of k/. A general re-
mark on the diagonal model is that the conductive
tracks of each layer are closer than those in the tra-
ditional models, by a factor 1//. However, this
may not seem to cause problems in the current and
future technology.
As mentioned before, in the traditional routing

models, such as MM and KK, the density of problem
d is a trivial lower bound to the channel width w. In
KKD an immediate lower bound to w is [d/2] [3]. It
has been shown [8] that d is a non-trivial lower bound
to w in DM and in KKD.

THE ROUTING ALGORITHM

We give an optimal algorithm which never requires
a channel width more than d + 1. The whole algo-
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FIGURE A channel on a diagonal grid.
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rithm consists of three parts:

1. Construction of chains;
2. Routing the CRP in a channel of width [3/2 d];
3. Compacting the obtained routing into a channel

of width d + 1.

In what follows, we discuss these parts one by one,
and finally give the complete routing algorithm.

Construction of Chains

We represent nets with arrows. For a net (p, q), if
p q, its arrow is a directed horizontal line segment
from the starting point with abscissa p to the ending
point with abscissa q; and if p q, its arrow is a
vertical arrow with one unit length. Let II be an
instance of two-terminal CRP.

Definition 1. A chain is a sequence of nets C
(P, q), (P2, q2),..., (Pn, qn)such that any two
nets do not overlap with each other, i.e. Pi+ ->
max(p, q) and q+ -> max(pi, qi), and p : qi,
1,...,n.
The main idea of our routing process consists of

the following steps:

(i) Partitioning the arrow set into chains E, E2,
Eo.

(ii) Routing each pair of chains Ei and Ei+ (i odd)
successively in a stripe of width 3.

Definition 2. For each chain Ei, we define a set Ti
of trivial nets, which includes the original trivial nets

of II, and a trivial net (s, s) for each net S (r, s)
Ej, j < i; and for each net S (s,r)Ej, j>i
+ 1.
In the process of routing there exist some nets

previously routed and occupying their final positions,
and they may block the routing of some other nets
not yet handled (see Figure 2). Therefore, some nets
have to be prolonged or contracted for the time being
in order to have other wires pass. More specifically,
consider two nets N1 (p, q) and N2 (q, r) such
that N1 Ei and N2 Ei. If < j and p < q, after
the routing of N, N1 becomes a trivial net (Definition
2) and must occupy the position of q, this causes a
conflict (see Figure 2), because N2 has not been
routed and is also a trivial net. To avoid such con-
flicts, we introduce the concept of target point. For
N1, we replace N by two nets Nl’ (p, t) and N"

(t, q), where is a proper target point defined
below, > q. NI’ and N" are respectively called the
extended and compensation nets of N1.
Definition 3. The target point of a net (p, q) with
p < q is the minimum integer -> q such that the set
of nets still to be inserted in the chains does not
contain either a net (t, r) with r -< or a net (r, t)
with r < t; and the set of nets already inserted in the
chains does not contain a net (r, t) (see Figure 2).

Using the extended and compensation nets, we can
avoid the conflicts between the nets handled previ-
ously and successively. The compensation net is used
to return to the original destination. Note that after
the construction of the extended and compensation
nets, it may well be that there are two arriving and
two leaving nets at point t, but this does not cause

"Trivial Net"

Trivial Net

Nz= (q,r)

A Conflict

q t

Ni’=(t.q)

q t

FIGURE 2 Illustration of the definitions of trivial, extended, and compensation nets.



236 XIAOYU SONG

the inconsistency because they are routed in different
routing phases.
We now construct the chains of a CRP H. Let I-I
{N1, N2, Nn} be a CRP and El, E2,. Ed

be the chains.

The Chain Construction Algorithm

Function Target(t);
if (-=l(t, r) l-I with r -< t)/ (q(r, t) II with
r < t)/ (=l(r, t) Ek with k < i)
then Target :=
else Target(t + 1);

begin {Algorithm}
i’= 0;
while (II O)/ (=IN II is not trivial) do
begini’= + 1;j’= 1;

while < n do
if (=l(j, q) H with q > j) / (-=i(r, j) H
with r < j)

then while :l(j, q) II with q > do
(j, Target(q)) ---> Ei;
if Target(q) q
then begin

Change(j, q) to (j, Target(q))
in II; (Target(q), q)-+ II
end;

j: Target(q)
end {while}

else ir (p, j) rI with p > j)/ (-::l(j, r)
II with r < j)

then while (:i(p, j) II with p > j) do
(p, j) Ei;j:= p
end; {while}

j:=j+l
end; {while}
II:= II Ei
end {while}

end. {Algorithm I} 7q

The chains are built from left to right packing the
nets as tightly as possible. Any pair of nets with
adjacent span [a, b], [b, c] will be inserted in the
same chain. For instance, using the chain construc-
tion algorithm, we can attain a set of chains for a
CRP II {(1,5), (2,6), (3,8), (5,9), (6,3), (7,2), (8,15),
(10,10), (11,14), (12,19), (13,11), (14,12), (16,16),
(17,20), (18,21), (19,13)}. The extended, compensa-
tion nets and their chains are indicated with dashed
and dotted arrows, respectively, in Figure 3. For ex-
ample, the extended and compensation nets of net
(2,6) are nets (2,11) and (11,6), respectively. Note
that the target point 11 because of the existence
of nets (7,2), (3,8), (5,9) and (10,10).
The following proposition guarantees that the ex-

tended and compensation nets do not increase the
density of the problem.

Proposition 1 [61. The number of chains in the ex-
tended construction of a CRP II is equal to d.

Routing the CRP in a Channel of Width [3/2 d]

The channel consists of stripes S1, Sid/21, each
of width 3. The basic connections in a stripe of chan-
nel are two busses, called lower bus and upper bus,
and O-connections (for "trivial" nets). Each bus goes
through the channel. The busses introduce a division
of the points on the stripe borders into two groups,
called 1-points and 2-points, respectively (see Figure
4). The 0-connection of point p (connection of p for
short) is defined as shown in Figure 4, depending on
the position of p.
The chains E, E are grouped in pairs (E,

Ei+l) (i is odd), and each pair (E, Ei+) is routed in
stripe Sli/21. In general, the "trivial nets" of E and
E+ use 1- or 2-connections, while the long connec-
tions of E and Ei+t are routed by using the lower
and upper bus, respectively.

2 3 4 5 6 7 8 9 10

r",l k, ILl
r’i

Er.__ ,’’’,’’’,=’’,’’’,, ,-

" "’ ’lr_.o

UA ’..

I
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’ "

-, -, -,

FIGURE 3 The construction of chains for a CRP.
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0-Connection Upper bus

Lmaer bus

FIGURE 4 Basic connections in a stripe.

For an oddi, 1-<i_<d, let

Wow {(p, q): (P < q)
Rup {(p, q): (P < q)/ ((p, q) Ei+l)},
L,OW {(p, q): (P > q)
Lup {(P, q): (P > q)/ ((P, q) Ei+ 1)}"

Namely, W and Llw contain the right and left nets
of E=, respectively; Rup and Lup contain the right and
left nets of E=+I, respectively.
We now construct the routing using the five routing

rules presented below. We enumerate all the possible
cases in the routing of E and Ei+ in stripe S[i/2].

Rules 1 to 4 deal with the cases in which if an
extended net is in E, its compensation net will be in
Ei, > + 1, while the case in which such a net is
in Ei+l is treated in rule 5.

Rule 1. Routing (p, q) W

1. Connect the entry point p of the current stripe
to the lower bus. There are three cases:

(a) p is a 2-point.
From p start with the left track and move on the
0-connection of p to meet the lower bus (p’ in
Figure 5.1).
(b) (p is a 1-point)/ (-z::l(r, p) Ww).
From p start with the right track and move on the
0-connection of p to meet the lower bus (p" in
Figure 5.1).
(c) (p is a 1-point)/ (:l(r, p) Ww) (i.e. nets (r,
p) and (p, q) are adjacent in Ww).
This case is covered in the following point (3),
while treating the connection of the end point of
(r, p).
2. Proceed on the lower bus to the right.
3. Connect the lower bus to the exit point q of

the current stripe. We have four cases:

(a) q is a 2-point.
Use the routing shown in Figure 5.1.

(b) (q is a 1-point)/ (Ei(q, r) Ww) A (::l(r,
q + 1) L’w).
Use the routing shown in Figure 5.2.

(c) (q is a 1-point)/ (EIB (q, r) Ww).
Let A (p, q). The routing is shown in Figure
5.3.

q

p" p’ 2

FIGURE 5.1 Rule 1. Case l(a), l(b), and 3(a).

q

p 2

FIGURE 5.2 Rule 1. Case 3(b).

2

q q+l

FIGURE 5.3 Rule 1. Case 3(c).
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2

q q+l

FIGURE 5.4 Rule 1. Case 3(d).

2

p-lp

FIGURE 5.6 Rule 3. Case l(d).

(d) (q is a 1-point) A (:IB (r, q + 1) Uw).
Let A (p, q). The routing is shown in Figure
5.4.

Rule 2. Routing (r, s) U
This rule is symmetrical to Rule 1, exchanging left

and right, and 1-points with 2-points.

Rule 3. Routing (p, q) Rap

1. Connect the entry point p of the current stripe
to the upper bus. There are four cases:

(a) p is a 1-point.
From p start with the right track and move on the
0-connection of p to meet the upper bus (p’ in
Figure 5.5).
(b) (p is a 2-point) A (:l(r, p) Rup).
From p start with the left track and move on the
0-connection of p to meet the upper bus (p" in
Figure 5.5).
(c) (p is a 2-point) A (El(r, p) Rap)/ (:t(q
1, r) LUp).
This case is covered in the following point (3),
whil treating th connection of the end point of
(r, p).
(d) (p is a 2-point)/h (::IB (p 1, r) Lup).
Let A (p, q). The routing is shown in Figure
5.6.

2. Proceed on the upper bus to the right.
3. Connect the upper bus to the exit point q of

the current stripe. We have three cases:

(a) q is a 1-point.
Use the connections of Figure 5.5.

(b) (q is a 2-point) A (::l(q, r) Rup).
Use the routing shown in Figure 5.7.

(c) (q is a 2-point) A (::IB (q, r) R"P).
Let A (p, q). The routing of A and B are shown
in Figure 5.8.

Rule 4. Routing (r, s) Lup

This rule is symmetrical to Rule 3, exchanging left
with right, and 1-points with 2-points.

Rule 5. Routing an extended net in Rlw and its
compensation net in Lup i.e. (N1 (p, q) Ww) A
(N2 (q, r) Ww)/x, (NI’ (q, v) Lup)/x, (N3

(s, q) Lup)/ (NI’ is the compensation of N1).
N2 and/or N3 may not be present. There are two
cases"

(a) q is a 1-point.

Use the global routing for N1 and NI’, and the
routing for N2 and N3 shown in Figure 5.9. Note
that the global routing for N1 and NI’ uses a portion
of the 0-connection of q. If there are not N2 and N3,
the 0-connection of q is modified by using a portion
of two buses as shown Figure 5.10.

q

P 2

FIGURE 5.7 Rule 3. Case 3(b).

q

2

FIGURE 5.5 Rule 3. Case l(a), l(b), and 3(a). FIGURE 5.8 Rule 3. Case 3(c).
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2

FIGURE 5.9 Rule 5. Case (a).

2

q-lq

FIGURE 5.10 The modification of 0-connection of q in Rule 5.

(b) q is a 2-point.

Use the global routing for N1 and NI’, and the
routing for N2 and N3 shown in Figure 5.11. This
does not cause any conflicts.
A layout of an arbitrary two-terminal CRP can be

obtained as the layout of El, E2,... Ed built one
on top of the other starting at the entry line, therefore
completing the whole routing. From the above dis-
cussion, we have:

Proposition 2. Two-terminal CRP can be solved in
a channel of width w [3/2 d].
Proof. The whole CRP is transformed into a set of
subproblems. Each subproblem is the problem of
routing a pair of chains. We only need to enumerate
all the cases for a pair of chains (E, Ei/), is odd,
routed in the same stripe of channel. All the different
cases for one net are covered by rules 1 to 4. Those
for two nets are covered by rules 1 to 5. This implies
the completeness of the algorithm.
Based on the properties of rules 1 to 5, the cor-

rectness of the algorithm is proved by noting that

2

FIGURE 5.11 Rule 5. Case (b).

each net N (p, q) can only use the 0-connections
of p and q, and/or the lower or upper bus in the
stripe reserved for N. There is no conflict among the
routing of nets. The channel width is attained by
recalling that each two consecutive chains are routed
in a stripe of width 3.

Compaction of the Routing

We now show how to compact the obtained routing
to have a channel of width d + 1. Let H be the
obtained routing which consists of stripes S,
Sid/21, each of width 3.

The Compaction Algorithm

Input: Routing H;
Output: Routing R;
Step 1: Eliminate the upper stripe of width /2 from

S1;
Step 2: for := 2 to [d/2] 1 do

Eliminate the upper and the lower stripes of
width /2 from each stripe Si;

Step 3: Eliminate the lower stripe of width /2 from

Sld/2I. [--1

In order to explain the compacting process more
explicitly, we introduce two auxiliary horizontal
lines, called LI and L, in each stripe Si, 1 -< -< [d/
2]. These lines pass through the lowest points of the
lower bus and the highest points of the upper bus,
respectively. Note that the auxiliary horizontal lines
do not belong to the routing. In addition, for each
two stripes Si, Si/l, we define the following sets of
points for each Li and L’, 1 -< -< [d/2].

(i) Al+l {a,, a2,..., an},

A {a’, a2’ a,’}

such that ai and a, (1 -< -< n) are respectively located
on the lines Li/ and L, and do not belong to the
lower bus of Si /, and to the upper of Si, respectively.
The points in each pair (a, ai,) have the same ab-
scissa.

(ii) BI+ {b,, b2,..., bn},

B’ {b, b2’, bn’}

such that bi and b[ (1 <- -< n) are respectively located
on the lines Li/ and L, and belong to the lower bus
of Si/l and to the upper of Si, respectively. The points
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FIGURE 6.1 Definitions of two adjacent L’ and

in each pair (b, b,) have the same abscissa (see Fig-
ure 6.1).

Considering two adjacent stripes S, S+, 1 -< -<
[d/2], we have the following compaction transfor-
mation rules.

Rule 1. Compaction of BI+I and BI.
Put each two points (b, b’), 1 -< <- n, together

by sharing one point with a knock-knee shown in
Figure 6.2.

Rule 2. Compaction of Ai+ and A’.
Put each two points (ai, ai’), 1 -< -< n, together

by sharing one point according to the different cases
shown in Figure 6.3. Note that these cases occur
when there are connections passing through ai and

a’. If this does not occur the compaction is done
simply by putting the corresponding points ai and a’
together.
The correctness of the compaction process can be

easily proved by noting that there are no conflicts
among the compacted points.
From the above discussion, we can see that, after

the compaction of H, we obtain a new routing R in
which the channel consists of stripes $2, S[d/2]-i,
of width 2, the stripes S and Sl0/.I, of width 5/2.

The Complete Routing Algorithm

We now give the complete routing according to the
above discussions.

FIGURE 6.2 Illustration of Rule 1.
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FIGURE 6.3 Different cases of Rule 2.

The Optimal Channel Routing Algorithm

Input: A CRP II {N1, N2 Nn};
Output: Routing R;
begin

baseline := 0; {Zero is the vertical coordinate of
the entry line}

Use the chain construction algorithm to construct
chains El, E2, Ed;
for := 1 to [(d + 1)/21 1 do
begin
Use rules 1-5 to route the nets of a pair of chains
(Ei, El+l) in the current stripe of height 3;
Use 0-connections to route nets in Ek, where (k -and k + 1), and trivial nets to reach the exit
line of the current stripe;
baseline:= baseline + 3
end;
if d is odd
then

begin

Use rules 1-4 to route the nets of a chain Ed in
the current stripe of height 2;
Use 0oconnections to route nets in E (k : d),
and trivial nets to reach the exit line of the cur-
rent stripe
end;

Use the compaction algorithm to compact the ob-
tained routing

end.

From the above discussions and proposition 2, we
conclude with the following theorem"

Theorem 1. The presented algorithm produces a
routing for two-terminal CRP with the channel width
d + 1 in KKD, where d is the channel density. The
running time of the algorithm is O(md), where m is
the length of channel, and d is the density.

Applying the algorithm to the example of Figure
3, we obtain the routing in a channel of width 6,
where d 5, as shown in Figure 7.

2 4 5 6 7 8 9 |0 |1 12 13 14 15 16 17 18 19 20 21 22

2 :5 4 5 6 7 8 9 10 11 12 1: 14 15 16 17 18 19 20 21 22

FIGURE 7 The routing of an example CRP.
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CONCLUSIONS AND OPEN PROBLEMS

In this paper, we have studied the two-terminal chan-
nel routing problem in the knock-knee diagonal
model. We presented an optimum routing algorithm
which obtains d + I as an upper bound to the channel
width, where d is the channel density.
There are still some open problems. The diagonal

routing often requires a lot of vias. This may be a
serious problem in practice. A comparative study of
traditional and diagonal models in this respect is still
under way. On the other hand, the only thing we
know is that any layout can be wired in four layers
[11]. To extend the above algorithm to solve the
problem in two or three layers is still open.
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