
VLSI Design
1994, Vol. 1, No. 3, pp. 217-232
Reprints available directly from the publisher
Photocopying permitted by license only

(C) 1994 Gordon and Breach Science Publishers S.A.
Printed in the United States of America

Using PDM on Multiport Memory Allocation
in Data Path

CHIEN-IN HENRY CHEN
Dept. of Electrical Engineering, Wright State University, Dayton, OH

(Received November 13, 1989, Revised March 10, 1990)

A data path consists of memory elements (i.e. registers), data operators (i.e. ALUs) and interconnection units
(i.e. buses) to control the data transfers in the digital system. Many approaches to memory synthesis have been
proposed in the literature. However, only single port memory is considered for register allocation and no efficient
synthesis approach for multiport memory synthesis. In this paper, an efficient method, Partitioned Dependence
Matrix (PDM), is presented for memory synthesis which deals not only with single port memory synthesis but
also multiport memory synthesis according to the design constraints. With suitable modifications, the proposed
technique can also be applied to multiport memory synthesis in which the maximum number of read ports is
different from the maximum number of write ports. Therefore, the entire design space is explored and has the
capability to handle early architectural design exploration so that the quality of designs produced by an automatic
synthesis tool is more adequate for production use in comparison to manual design. Illustrations of applying this
method to different synthesis examples are presented. Results and improvements over previous techniques are
demonstrated. A key element in our approach is the successful adoption of techniques originally developed for
problems in test generation to the field of memory synthesis.
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INTRODUCTION

rom the input specification, the synthesis system
produces a description of register-transfer (RT)

level structure that realizes a specified behavior. The
structure may be divided into two parts, a data path
and a control unit. The data path consists of memory
elements (i.e. registers), data operators (i.e. ALUs)
and interconnection units (i.e. buses) to control the
data transfers in the digital system. The control unit
is a finite state machine capable of generating the
control signals to evoke a data transfer in the data
path so as to produce the specified behavior. High-
level data path synthesis is concerned with the au-
tomatic generation and allocation of registers, ALUs
and buses. Many approaches to automated data path
synthesis have been proposed in the literature [1-11,
17-22]. However, current high-level synthesis tools
lack the capability to handle early architectural de-
sign exploration so that the quality of designs pro-
duced by an automatic synthesis tool is not com-
pletely adequate for production use in comparison
to manual design.

An interesting and powerful approach to all phases
of data path synthesis was proposed by Tseng and
Siewiorek [1, 3]. In their approach, the problems of
register, operator and bus synthesis are cast into the
"Generalized Clique Partioning" (GCP) problem in
which it is necessary to partition the nodes of a com-
patibility graph into a set of disjoint clusters. Their
objective is to partition the nodes of this graph in
such a way that the minimal number of disjoint clus-
ters is obtained. In terms of the corresponding data
path element, this implies that the minimal hardware
cost for a given degree of system concurrency is
thereby achieved.
One of the drawbacks of their approach is that the

time complexity of the GCP algorithm is large and
involves following multiple paths with backtracking;
this occurs especially in bus system synthesis. To
overcome these problems, a more efficient approach,
Weighted Cluster Partitioning (WCP), was presented
in [12], which eliminates the need for backtracking.
WCP, and a variation called WCP II, were shown to
produce designs requiring the fewest number of
buses in large synthesis examples. These algorithms
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have polynomial time complexity and also yield ex-
cellent results when applied to the test generation
problem of Built-In Self-Test design in [13].
With suitable modification, WCP and WCP II can

be applied to the other two phases of resource al-
location. However, WCP or WCP II like GCP can
only be applied to allocate registers having the prop-
erty of disjoint access requirements to single port
memory modules. Obviously, there are several ad-
vantages to merge registers to form multiport mem-
ories, such as saving interconnections, reducing the
number of multiplexers, minimizing the chip area,
and being more easily testable due to a smaller num-
ber of design modules. Moreover, multiport memory
synthesis can be applied to many applications ac-
cording to the architectural design. In [11], it was
shown how the problem of finding the maximal set
of registers which can be grouped into a multiport
memory module can be treated as the 0-1 integer
programming problem. A branch-and-bound strat-
egy [14] was then used to obtain the solution. As
stated in [11], this technique uses a sequential ap-
proach (i.e., generating the memory modules in se-
quence) which generates a locally optimal solution
and may not generate the globally optimal solution
of producing the minimum number of multiport
memory modules.

In this paper, we exploit and modify the algorithm
that has been proposed to solve the test generation
problem in Ref. [15, 16] to generate a more globally
optimal solution for multiport memory synthesis than
does the previous techniques [11]. It will be shown
how these algorithms can be modified and adapted
to the multiport memory synthesis. The limits of the
problems we aim to solve and the definitions and
algorithms of the proposed PDM techniques will be
discussed. The efficiency of this approach is illus-
trated through some explicit synthesis examples. Sec-
tion 5 describes the PDM techniques can be adapted
and modified for the synthesis of multiport memory
with ports of different type. Simulation results and
comparisons with other techniques are presented.
Following this the complexity analysis of PDM tech-

niques are discussed. Finally, the results of this work
are summarized.

DEPENDENCE MATRIX

Let R and R. be two registers. For single port mem-
ory synthesis, Ri and Rj can be allocated to the same
memory module if and only if Ri and Rj. have disjoint
access times. However, for multiport memory syn-
thesis, R and Rj can be allocated to the same memory
module with K ports, where K >- 2, even if R and
Rj are accessed simultaneously.

In the following, Lemma 1 and Lemma 3 are the
design constraints of multiport memory synthesis
with ports of same and different type respectively,
which are adapted from Ref. [11] for the convenient
discussion of the algorithm proposed in this paper.
Lemma 1: Let R, R2, Rm be registers. R, R2,

and Rm can be allocated to the same memory
module with K ports if and only if no more than K
of these registers are accessed simultaneously.
The ports in the multiport memory module may

not all be of the same type, i.e., some may be read
only while others may be write only or read/write.

First, we will consider only multiport memory mod-
ules with the same type of ports (i.e. read/write).
Second, with suitable modification, the technique
can be applied to synthesis of memory modules with
ports of different type, and this part of discussion
will be presented in the later section.

Definition 1: A dependence matrix DM(C) for a
code sequence C has s rows and n columns. Each
row represents one of the control steps in the code
sequence C and each column represents one of the
registers. An entry is 1 if and only if the correspond-
ing register is accessed in the specified control step.
All other entries are 0.
The dependence matrix DM(C) is easily calculated

from a given code sequence C. In the following dis-
cussion, we use the code sequence of Ref. [1], shown
in Table I, as an example. The DM(C) for the code
sequence C in Table I is shown in Table II.

TABLE
Example Code Sequence of Ref. [1]

$I:R3 = RI + R2, R12=R1;
$2:R5 R3 -R4, R7 R3 * R6, R13=R3;
$3’R8- R3 + R5, R9- R + R7, R11 RIO I R5;
$4: R14- R11 AND R8, R15- R12 OR R9;
$5:RI =R14, R2 = R15;
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TABLE II
DM(C) for Table

Sl
S2
S3
$4

S5

R1
Registers

R2 R3 R4R5 R6 R7 R8 R9 R10R11 R12 R13 R14 R]5

0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

PARTITIONED DEPENDENCE MATRIX

The first step in finding the minimum number of
memory modules is to determine the set of registers
which can be grouped into the same memory module.
This can be done by partitioning the dependence
matrix DM(C) to form a partitioned dependence ma-
trix.

Definition 2: Given a code sequence C and a mem-
ory module with K ports, a partitioned dependence
matrix PDM(C,K) corresponding to DM(C) is

formed by partitioning the columns of the DM(C)
into sets so that:

(1) each row of a set has at most K 1-entries.
(2) the number of sets p is a minimum.
The partitioned dependence matrices PDM(C,K),

K 1, 2, 3, 4 corresponding to Table II are shown
.in Table III (a)-(d). For each partitioned depen-
dence matrix, there is a corresponding partition p of
the registers in which all registers belonging to the
same set of columns of PDM(C,K) are allocated to
the same memory module with K ports. For example,

$I

$2

$3

$4

$5

TABLE III(a)
Partitioned dependence matrix for Table II. PDM(C, 1) for Table II

Registers
RI R4

0
0

0
0 0

0

R2 R5 R3R14
0 0
0
0 0

0 0
0 0

0
0
0
0 0

0

R6 8
0
0

0

R7R12
0

0
0

0
0 0

R9R13 R10R15R11
o o o
0 0 0

0
0
0 0

0 0
0

0
0

0 0

TABLE III(b)
PDM(C,2) for Table II

$I

$2

S3
$4

$5

R R2 R4 R5
0 0

0 0
0 0

0 0 0 0
0 0

Registers
R3 R6 R8 R14

o o o o
0 0

0 0
0 0 0
0 0 0 0

R7 R9 R12 R13
0 0
0 0

0 0
0

0 0 0

RIO R11 R15
o o 0
0 0 0

0
0
0 0
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TABLE III(c)
PDM(C,3) for Table II

$I

$2

$3

$4

$5

R R2 R3 R5 R6 R14
0 0 0

0 0 0
0 0 0

0 0 0 0 0
0 0 0

Registers
R4R7 R8 R9 R12 R13 RIO RII RI5

0 0 0
0 0 0

0
0
0 0

0 0 0 0 0
0 0 0

0 0 0
0 0 0
0 0 0 0 0 0

TABLE III(d)
PDM(C,4) for Table II

$I

$2

$3

$4

$5

Registers

R R2 R3 R4R5 R6 R8 R14R15
0 0 0 0 0 0

0 0 0 0 0
0 0 0 0 0

0 0 0 0 0 0
0 0 0 0 0

R7 R9RIO R11 R12R13
0 0 0 0 0

0 0 0 0
0 0

0 0 0
0 0 0 0 0 0

as seen in Table III (a)-(d), to form register files for
the code sequence shown in Table I, we need eight
single-port memory modules or four 2-port memory
modules or three 3-port memory modules or two 4-
port memory modules.

PDM: ALGORITHM,
IMPLEMENTATION AND RESULTS

In this section, a detailed discussion of the algorithm
used to form PDM(C,K) from DM(C) is presented.
We will make use of the technique proposed to solve
the graph coloring problem posed in Ref. [16] and
show that, with a suitable modification of the tech-
nique, it can be applied to solve the memory syn-
thesis problem.
The basic components of the algorithm are as fol-

lows. The columns of the DM(C) are ordered from
1 to n where n is the number of registers. An integer
number label is assigned to each column. The first
column is labeled as 1. The other columns are se-
quentially labeled with as small a label number as
possible with some constraints (for details, see Def-
inition 4 below.) After that, we check if the current
maximum label equals the lower bound (for details,

see Lemma 2 below). If it does, then that maximum
label is the minimum number of sets p in PDM(C,K).
Those columns having the same label are allocated
into the same set. In other words, the registers cor-
responding to columns having the same label are
allocated to the same memory module. Otherwise,
there is an attempt to decrease the label of that col-
umn which has the maximum label number and
which is the lowest in the ordering. It can be shown
that this is an efficient approach to change the labels
of the columns which are lower than the maximum
label column in the ordering so that the maximum
label number can be decreased (i.e., the number of
partitioned sets, p, is decreased). We continue this
process until a minimal labeling scheme is found.
Before we discuss the full details of the algorithm,
we need to define some basic operations:

Definition 3: ColumnParents(CRi): Let CRi rep-
resent the column of DM(C) corresponding to the
register R;. This operation lists those columns (i.e.
CRj) of DM(C) which have a 1-entry in a row where
CR has 1-entry in the same row and whose order
(the ordinal of the column associated with a register)
are less than that of CRi in the ordering (i.e. j < i).
Example: In Table II, CRy, CR3, and CR4 have ’1’

entry while CR5 has also ’1’ entry in the same row.
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Therefore, CRy, CR3 and CR4 are called the
ColumnParents of CRs. Similarly, CRy, CR2, CRy,
CRs, CR9 and CR are the ColumnParents of CRy2.

Definition 4: Label(CRi): CRi is a column to be
labeled. Assume that the columns CR1 through CR_
have been labeled. The column CR is labeled with
as small a positive integer as possible with the con-
straint that no more than K columns in Column-
Parents(CRy) have the same label and the number is
greater than zero.

Definition 5: ColumnAncestors(CR): CR is a col-
umn whose ancestors are to be determined. Every
column in the ColumnParents(CR) is defined as a
member of ColumnAncestors(CR). Every column
which is a ColumnParent of a ColumnAncestor of
CR is also a member of ColumnAncestors(CR).
Example: In Table II, CR2 is not a ColumnParent

of CRy, but it is a ColumnAncestor of CRs. Accord-
ing to the definition of ColumnAncestor, Column-
Parent of a ColumnAncestor is considered to be a
ColumnAncestor. CR3 is ColumnParent of CR., so
CR is a ColumnAncestor of CRs. CR2 is a
ColumnParent of CRy, therefore CR2 is a
ColumnAncestor of CRs. Similarly, CRy, CR2, CR3,
CR4, CRs, CR6 and CR are the ColumnAncestors
of CR3.

Definition 6: Relabel(s, maxorder, maxlabel): Let s
be the order of the column where the relabel oper-
ation begins. Let CR,. be the column which has the
maximum label and lowest in order (we may have
more than one column having the maxlabel) after the
relabeling procedure and let maxlabel be the maxi-
mum label before the relabeling process. The order
of CRm,. is returned in maxorder. Starting from
s + 1 to n, we label CR by Label(CRy). If a
column is labeled as maxlabel, or if the last column
is labeled, then the procedure is completed. If Re-
label is called with s 1, then the label of CR is
set to 1 and the regular procedure is executed.

Definition 7: Backtrack(sl,s2,flag, maxlabel): CR.I
is the column whose label is being decreased. If the
backtrack procedure cannot make any improvement
in the labeling, then it returns false in the flag. Oth-
erwise, it returns true in the flag, and that indicates
that there exist a column CRs2 whose label may be
increased so that the maximum label can be de-
creased. Let maxlabel be the maximum label before
the backtracking process (i.e. the label of CR,1). Let
V be the set of the columns whose order is lower
than CRs, and S be the set of ColumnAncestors of
CR.l. The detailed procedure of backtrack includes
two steps:

Step 1; If S is empty, then set flag is false and exit.
Otherwise, setflag is true and find the largest ordered

column CRs2, which belongs to both S and V. Let S
S-{CRs2}.
Step 2; The label of CRs2 should be increased as

little as possible with the constraints that no more
than K columns in ColumnParents(CRs2) have the
same label and the label should be less than maxlabel.
Then, call the procedure Relabel(s2,maxorder, max-
label). After the relabeling process, if the maximum
label is decreased, than flag is set to true and exit
the backtrack procedure. Otherwise, go to step 1.
Example: In the code sequence of example 1: sin-

gle port memory synthesis shown in Table IV, after
the application of Label procedure the column reg-
isters CR and CR2 are labeled ’1’, CR3 is labeled ’2’,
CR4 is labeled ’3’ and CR5 is labeled ’4’. Therefore,
the maxorder is ’5’ and the maxlabel is ’4’. The Back-
track procedure is then applied to decrease the max-
label number among all the column registers. In the
Table IV (c), Backtrack(5,3,true,4) indicates that
CR is the column register whose label is being de-
creased and CR3 is the column register whose label
is being increased (the true flag is returned, which
indicates there exists the column register CR3 whose
label can be increased so that the maxlabel ’4’ may
be decreased). The procedure Relabel(3,5,4) indi-
cates that ’3’ is the order of the column register CR3
where the label operation begins. CR5 is the column
register which has the maximum label ’4’ and lowest
in the order. So, starting from 4 to 5, we label
CR by the operation Label(CRi).
Lemma 2: The lower bound on the number of

multiport memory modules can be derived from the

TABLE IV(a)
Example l: single port

memory synthesis. A code
sequence

$I:R3 = RI + R4;
$2:R4 = R3 * R5;
$3:R2 = R5 R3;

$I

$2

$3

TABLE IV(b)
DM(C) for Table IV(a)

R.qisters
R1 R2R3R4R5

0 0
0 0
0 0
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Algorithm
R el abe] e( 1,5
B ck trc k(5,3,true ,4)
Rel abeled(3,5,4)
Backtrack(5,2,true,4)
Relabeled(2,3,3)
Backtrack(3,-, f a se,3)

TABLE IV(c)
Example of the algorithm to form PDM(C,1) for Table IV(b)

labels
CRI CR2 CR3 CR4 CR5

3 3 4
3 2 4

2 3 2 4
2 3 2
2 3 2

$I

$2

$3

TABLE IV(d)
PDM(C, 1) for Table IV(b)

Regi sters
RI R5

0
0
0

R2 R4 R3
0
0

0

following equation.

LowerBound

[max. no. of registers accessed simultaneously ]-). -f -n memo module

The complete algorithm of forming PDM(C,K)
from DM(C) can be stated as follows.

Step 1: Order the columns CRi of DM(C) from 1
to n, where n is the number of registers.

Step 2: Call Relabel(1,maxorder, maxlabel).
Step 3: If label of the column whose order is max-

order is equal to the LowerBound, then go to step 4.
Otherwise, call Backtrack(maxorder,s2,flag, max-
label). If flag is false, then go to step 4. Otherwise,
call Relabel(s2,maxorder, maxlabel). Ifthe label ofthe
column whose order is maxorder is less than maxla-
bel, then maxlabel is set to the lower label. Return to
step 3.

Step 4: The value ofmaxlabel is the minimum num-
ber of sets p in PDM(C,K). The columns of DM(C)
that have the same labels belong to the same partition.
Example 1: Consider the single port memory syn-

thesis of the registers in the code sequence as shown
in Table IV(a). The dependence matrix DM(C) is
shown in Table 4(b). The step-by-step operation of
the algorithm is shown in Table IV(c). Using the final
results from Table IV(c), the partitioned dependence

matrix can be derived (see Table IV(d)). Note that
three memory modules (LowerBound [] 3) are
required for the data path synthesis, i.e., they are
{R,, R5}, {R2, R4} and {R3}.
However, using the 0-1 integer programming tech-

nique proposed in [11], the problem reduces to
Max (x + x2 + x3 + x4 + x.s)

Subject to
X -[- X -[- X 1
X -Jr- X -[- X 1
x2 + x3 + xs <- 1
The formulation of the algorithm in Ref. [11] at-

tempts to include the largest number of registers into
the current memory module, a desirable result. How-
ever, our overall objective is to find the minimum
number of memory modules that will cover all the
registers which do not have any conflict in use during
memory access. Thus, one may expect that the local
optimization produced by the 0-1 integer program-
ming technique will act to limit the degree of global
optimization that can be achieved. Besides, the for-
mulation leads to the arbitrary selection of one of
several equally valid choices at each step of the al-
gorithm. Thus, many possible solutions may be ob-
tained. In the above problem, the algorithm may
produce the first grouping of registers to be {R, R2}
(that is x x2 1). Then, the same approach is
applied to the remaining registers. The final solution
of example 1 by using the 0-1 integer programming
technique may generate four memory modules, spe-
cifically {R1, R2}, {R3}, {R4}, and {Rs}. Note that this
result is the same as the result of the first step of our
algorithm, as shown in Table IV(c). This contrasts
with the final result of three memory modules ob-
tained at the final step of our procedure. Thus, the
lack of any backtracking step in the 0-1 integer pro-
gramming approach leads to the selection of a locally
optimal but globally sub-optimal solution to the
problem.
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Example 2: Consider the 2-port memory synthesis
of the registers in the code sequence as shown in
Table V(a). The dependence matrix DM(C) is shown
in Table V(b). The operation of our algorithm is
shown in Table V(c) and, from its final results, the
partitioned dependence matrix can be derived in Ta-
ble V(d) in which two 2-port memory modules
(LowerBound [-] 2) are required, i.e., they are
{R, R3, R.} and {R2, R4, R6}. However, using the 0-
1 integer programming technique, it may produce
three 2-port memory modules, specifically {R1, R2},
{R3, R4, R6}, (Rs}. as the final solution.

For completeness, we also used the proposed tech-
nique for multiport memory synthesis for the ex-
ample code sequence in Ref. [1]. After applying the
technique to the dependence matrix DM(C) in Table
II, we find the partitioned dependence matrices
PDM(C,K) for K 1,2,3,4 as shown in Tables 3(a)-
(d).

TABLE V(a)
Example 2: multiport memory synthesis. A code

sequence

S I"RI R2 + R5, R4- R2* R5;
$2R2- R3- R4, R5- R3 / R4;
$3" R1 R2 + R6, R3- R2* R6;

$I

$2

$3

TABLE V(b)
DM(C) for Table V(a)

Registers
R1 R2 R3 R4R5 R6

0 0
0 0

0 0

MULTIPORT MEMORY SYNTHESIS
WITH PORTS OF DIFFERENT TYPES

Consider a multiport memory module M with rn
ports where r ports are read only, w ports are write
only, and the rest m r w are read/write ports.
Lemma 3: Let Rl, R2, Rm be registers. R, R2,

and Rm can be allocated to the same memory
module M if and only if the following three condi-
tions are satisfied:

(1) no more than rn w of these registers are
accessed by read instructions simultaneously.

(2) no more than m r of these registers are
accessed by write instructions simultaneously.

(3) no more than rn of these registers are accessed
by read/write instructions simultaneously.

Definition 8: A dependence matrix DM(C,R,W)
for a code sequence C has s rows and n columns.
Each row represents one of the control steps in the
code sequence C and each column represents one of
the registers. An entry is R (or W) if and only if the
corresponding register is accessed by read (or write)
instruction in the specified control step. All other
entries are 0.
The dependence matrix DM(C,R, W) is easily cal-

culated from a given code sequence C. In the fol-
lowing discussion, we use the code sequence in Table
I, as an example. The DM(C,R, W) for the code se-
quence C in Table I is shown in Table VI.
The problem of finding the minimum number of

memory modules with ports of different type for reg-
isters allocation still can be solved by partitioning the
dependence matrix DM(C,R,W) to form a parti-
tioned dependence matrix PDM(C,m,r,w).

Definition 9: Given a code sequence C and a mem-
ory module M with m ports where r ports are read
only, w ports are write only, and the rest m r
w are read/write ports, a partitioned dependence
matrixPDM(C,rn,r,w) correspondingto DM(C,R, W)

TABLE V(c)
Example of the algorithm to form PDM(C,2). for Table V(b)

Algorlthrn
Rel abeled(1,5,3)
Backtrack(5,2,true,3)
Rel abeled(2,2,2)
Backtra ck(2,-,f al se,2)

labels

CRI CR2 CR3 CR4 CR5 CR6
2 2 3 2

2 2 2 3 2
2 2 2
2 2 2
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$I

$2

$3

TABLE V(d)
PDM(C,2) for Table V(b)

Re.cli sters
R1 R3 R5R2 R4R6

0 1 0
0 0

0 0

is formed by partitioning the columns of the DM(C)
into sets so that:

(1) each row of a set has at most rn w R-entries.
(2) each row of a set has at most rn r W-entries.
(3) each row of a set has at most rn R/W-entries.

(4) the number of sets p is a minimum.
In the following a detailed discussion of the al-

gorithm used to form PDM(C,m,r,w) from
DM(C,R, W) is presented. We will make use of the
technique for memory synthesis with ports of same
type which was proposed in the last section and show
that, with a suitable modification, it can be applied
to solve the multiport memory synthesis problem
with ports of different type.

Definiton 10 (a): ColumnParents(CRi) for multi-
port memory with READ and WRITE ports, but
without READ/WRITE ports: Let (CRi)r be the en-
try of the i-th column, r-th row of the dependence
matrix DM. CR is considered to be a parent of (CR)
if and only if

(i) CR/has R-entry in the r-th row where CR has
R-entry in the r-th row; or

(ii) CR has W-entry in the r-th row where CR has
W-entry in the r-th row.
ColumnParents of CR are then defined as a union

of all parents of (CR)r for I -< r -< s, i.e. LJ__ parents
of (CR,)r.
Example: In Table VI, (CR7)I, (CR7)4 and (CR7)

have no parents. CR is a parent of (CRy)2. CR1, CR

and CR are parents of (CR7)3. Therefore,
ColumnParents of CR are the union of all parents
of (CRy) for 1 _< r -< 5, i.e. U5r= parents of (CRT)

{CRy, CR3, CRs}.
Definiton 10 (b): ColumnParents(CR) for multi-

port memory with READ, WRITE and READ/
WRITE ports" Let (CRi)r be the entry of the i-th
column, r-th row of the dependence matrix DM. CR
is considered to be a parent of (CRi) if and only if
CRi has R-entry or W-entry in the r-th row where
CR has R-entry or W-entry in the r-th row.
ColumnParents of CR are then defined as a union

of all parents of (CRi)r for 1 -< r -< s, i.e. U__ parents
of (CRi)
Example: In Table VI, (CRT)I, (CR7)4 and (CR7)5

have no parents. CR3, CR4, CR5 and CR6 are parents
of (CR7)2. CRy, CR3, CR5 are parents of (CRT)3.

Therefore, ColumnParents of CRy are the union of
all parents of (CR7)r for 1 _< r -< 5, i.e. U= parents
of (CR7)r {CR,, CR3, CR4, CRs, CR6}.

Definition 11" Label(CRi)" CR is a column to be
labeled. Assume that the columns CR1 through CR_
have been labeled. The column CRi is labeled with
as small a positive integer as possible with the fol-
lowing constraints"

(1) no more than rn w columns in Column-
Parents(CRi) have the same label and have a R-entry
in a row where CR has a R-entry in the same row.

(2) no more than rn r columns in Column-
Parents(CR;) have the same label and have a W-entry
in a row where CR has a W-entry in the same row.

(3) no more than rn columns in Column-
Parents(CRy) have the same label and the number is
greater than zero.

Definition 12" Relabel(s, maxorder, maxlabel)"
same as Definition 6.

Definition 13." Backtrack(sl ,s2,flag, maxlabel)
is the column whose label is being decreased. If the
backtrack procedure cannot make any improvement
in the labeling, then it returns false in the flag. Oth-

$I

$2

$3

$4

$5

TABLE VI
DM(C,R, W) for Table

’, ’., Registers
RI R2 R3 R4R5 R6 R7R8 R9 RIO R11 R12 R13 RI4R15
R R w 0 0 o 0 0 0 0 0 w 0 0 0
0 0 R R W R W 0 0 0 0 0 W 0 0
R 0 R 0 R 0 R W W R W 0 0 0 0
0 0 0 0 0 0 0 R R 0 R R 0 W W
W W 0 0 0 0 0 0 0 0 0 0 0 R R
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erwise, it returns true in the flag, and that indicates
that there exist a column CRs2 whose label may be
increased so that the maximum label can be de-
creased. Let maxlabel be the maximum label before
the backtracking process (i.e. the label of CR,1). Let
V be the set of the columns whose order is lower
than CR,1, and S be the set of ColumnAncestors of
CR.,.. The detailed procedure of backtrack includes
two steps"

Step 1: If S is empty, then set flag is false and exit.
Otherwise, setflag is true and find the largest ordered
column CR,.2 which belongs to both S and V. Let S

s-{cR,..}.
Step 2: The label of CRs2 should be increased as

little as possible with the following constraints"
(1) no more than rn w columns in Column-

Parents(CRi) have the same label and have a R-entry
in a row where CR has a R-entry in the same row.

(2) no more than rn r columns in Column-
Parents(CRi) have the same label and have a W-entry
in a row where CR has a W-entry in the same row.

(3) no more than rn columns in Column-
Parents(CRs) have the same label.
Moreover, the increased label should be less than

maxlabel. Then, call the procedure Rela-
bel(s2,maxorder, maxlabel). After the relabeling pro-
cess, if the maximum label is decreased, then flag is
set to true and exit the backtrack procedure. Oth-
erwise, go to step 1.
Lemma 4: The lower bound on the number of

multiport memory modules M can be derived from
the following equation.

LowerBound

Max{Max{[mr(i)- w]’
for ltos.

where r(i) no. of registers accessed by read in-
struction at control step
w(i) no. of registers accessed by write instruction
at control step
The complete algorithm of forming

PDM(C,m,r,w) from DM(C,R,W) can be stated as
follows.

Step 1: Order the columns CRi of DM(C,R,W)
from 1 to n, where n is the number of registers.

Step 2: Call Relabel(1,maxorder, maxlabel).
Step 3: If label of the column whose order is max-

order is equal to the LowerBound, then go to step
4. Otherwise, call Backtrack(maxorder, s2,flag, max-
label). If flag is false, then go to step 4. Otherwise,
call Relabel(s2,maxorder, maxlabel). If the label of

the column whose order is maxorder is less than max-
label, then maxlabel is set to the lower label. Return
to step 3.

Step 4: The value of maxlabel is the minimum
number of sets p in PDM(C,m,r, w). The columns of
DM(C,R, W) that have the same labels belong to the
same partition.
Example 3: Consider the 3-port memory synthesis

(2 ports are read only, 1 port is write only) of the
registers in the code sequence as shown in Table I.
The dependence matrix DM(C,R, W) is shown in Ta-
ble VI. After application of the PDM algorithm to
the dependence matrix, three multiport memory
modules (LowerBound 3) are required for the
data path synthesis, i.e., they are {R1, R3, R4, R8,
R,3, R4}, {R2, R, R6, R9, R0, R12, RlS} and {R7, RI}.
Note that the multiport memory module M has 3
memory ports where 2 are read only and 1 is write
only. Using the previous techniques for memory
modules with ports of same type, we still need the
same number "3" of memory modules, but, the
memory modules have all three ports of same type
i.e. read/write.

Using the 0-1 integer programming technique pro-
posed in [11] to the example 3, the problem reduces
to
Max (xl + x2 + x3 + + Xls)

Subject to

x +X2<--2
X -+- X12 1
X -- X + X -Jr- X12 3
x, + x4 + x6<-2
x5 + x7 + x13
x3 + x4 + x5 + x6 + x7 + x3<-3
x + x3 + x + x7 + xo<-2
X -t- X + Xll 1
x + x + x5 + x7 + x8 + x9 + x0 + Xl-<3
x8 + x9 + xl + x12<-2
X14 -+- X15 l
X --1-- X -t- Xll -t-- X12 nt- X14 -t- X15 3
X14 + X15 2
X +X2--<l
x + x2 + x4 + Xls-<3
The formulation of the algorithm in Ref. [11] at-

tempts to include the largest number of registers into
the current memory module, a desirable result.
Therefore, the algorithm will produce the first group-
ing of registers to be {R2, R6, R7,
(that is x2 x6 x7 x8 Xlo Xl2 x 1).
Then, the same approach is applied to the remaining
registers. The final solution of example 3 by using the
0-1 integer programming technique generates four
memory modules, specifically {R2, R6, R7, Ra, R0,
Rl2, R5}, {R, R3, R4, Rs, R14}, {R9, R3} and {R}.
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TABLE VII
Example of the algorithm to form PDM(C,3,2,0) for Table VI

Algorithm Labels

CR1 CR2 CR3 CR4 CR5 CR6 CR7 CR8 CR9 CR10 CRll CR12 CR13 CR14 CR15

relabeled(1,11,4)
backtrack( 11,10,T,4)
relabeled 10,11,4)
backtrack(11,8,T,4)
relabeled(8,11,4)
backtrack(11,10,T,4)
relabeled 10,11,4)
backtrack(11,7,T,4)
relabeled(7,11,4
backtrack( 11,1 0,T,4)
relabeled 10,11,4)
backtrack(11,8,T,4)
relabeled 8,11,4
backtrack( 11,1 0 ,T,4)
relabeled 10,11,4
backtrack(11,6,T,4)
relabeled 6,11,4
backtrack(11,10,T,4)
relabeled 10,11,4
backtrack(11,8,T,4)
relabeled 8,11,4
backtrack(11,10,T,4)
relabeled 10,11,4)
backtrack( 11,7,T,4)
relabeled (7,11,4)
backtrack( 11,1 0,T,4)
relabeled 10,11,4
backtrack(11,8,T,4)
relabeled (8,11,4)
backtrack( 11,1 0,T,4)
relabeled 10,11,4
backtrack(11,5,T,4)
relabeled (5,13,4)
backtrack(13,6,T,4)
relabeled(6,11,4)
backtrack(ll,10,T,4)
relabeled (10,11,4)
backtrack(11,8,T,4)
relabeled (8,11,4)
backtrack( 11,1 0,T,4)
relabeled 10,11,4
backtrack( 11,7,T,4)
relabeled(7,7,3)

2 2 2 2 3 2 4 2 3 2
2 2 2 2 3 3 4 2 3 1 2
2 2 2 2 3 3 4 2 3 2
2 2 2 3 3 3 4 2 3 2
2 2 2 3 2 2 4 2 3 2
2 2 2 3 2 3 4 2 3 2
2 2 2 3 2 3 4 2 3 2
2 2 3 3 2 3 4 2 3 2

1 2 2 3 2 3 2 4 2 3 2
2 2 3 2 3 3 4 2 3 2
2 2 3 2 3 3 4 2 3 2
2 2 3 3 3 3 4 2 3 2
2 2 3 3 2 2 4 2 3 2
2 2 3 3 2 3 4 2 3 2
2 2 3 3 2 3 4 2 3 2
2 3 3 3 2 3 4 2 3 2
2 3 2 2 3 2 4 2 3 2
2 3 2 2 3 3 4 2 3 2
2 3 2 2 3 3 4 2 3 2
2 3 2 3 3 3 4 2 3 2
2 3 2 3 2 2 4 2 3 1 2
2 3 2 3 2 3 4 2 3 2
2 3 2 3 2 3 4 2 3 2
2 3 3 3 2 3 4 2 3 2
2 3 3 2 3 2 4 2 3 2
2 3 3 2 3 3 4 2 3 2
2 3 3 2 3 3 4 2 3 2
2 3 3 3 3 3 4 2 3 2
2 3 3 3 2 2 4 2 3 2
2 3 3 3 2 3 4 2 3 2
2 3 3 3 2 3 4 2 3 2
2 2 3 3 3 2 3 4 2 3 2
2 2 3 2 2 3 2 4 2
2 2 2 3 2 2 3 2 4 1 2
2 2 2 2 3 2 4 2 4 1 2
2 2 2 2 3 3 4 2 4 2
2 2 2 2 3 3 4 2 4 2
2 2 2 3 3 3 4 2 4 2
2 2 2 3 2 2 4 2 4 2
2 2 2 3 2 3 4 2 4 2
2 2 2 3 2 3 4 2 4 2
2 2 2 3 3 2 3 4 2 4 2
2 2 2 3 2 2 3 2 2

Example 4: Consider the 3-port memory synthesis
(2 ports are read only, 1 port is read/write) of the
registers in the code sequence as shown in Table I.
Three memory modules are derived from the parti-
tioning results. The step-by-step operation of the al-
gorithm is shown in Table VII. Using the final results
from the algorithm, the partitioned dependence ma-
trix can be derived in Table VIII.

SIMULATION RESULTS

The fifth order elliptic wave filter was chosen as a
benchmark example for which the force-direct sched-
ule [17] is shown in Figure 1. The available hardware
consists of two adders and one pipelines multiplier
where the multiplication requires an execution time
that is twice as long as that for additions. One input
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TABLE VIII
PDM(C,3,2,0) for Table VI

SI
$2

$3

S4
$5

Registers
R1 R3 R4R8 R13 R14R2 R5 R6 R9 RIO R12 R15
R W 0 0 0 0
0 R R 0 W 0
R R 0 W 0 0
0 0 0 R 0 W
W 0 0 0 0 R

R o o o o w o
0 W R 0 0 0 0
0 R 0 W R 0 0
0 0 0 R 0 R W
W 0 0 0 0 0 R

R7R11
0 0
W 0
R W
0 R
0 0

Control Slep

3

4

6

7

8 8
33

10

II

12

13

15

16

17

18

19 13

OUT

FIGURE Force-directed schedule of wave filter.
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to the multiplier is always a constant, and has been
omitted in the Figure 1.

Using the PDM with 2-port memory synthesis for
the wave filter example, 5 memory modules are par-
tioned and they are: (We use integer representing
the corresponding register number.)
MI: {1,2,4,5,7,9,10,11,12,13,14,17,20,21,23}
M2: {3,6,8,15,24,25,26,32,34,36}
M3: {16,18,19,22,28,30,33,37,40}
m4:{27,29,31,35,38}
M5: {39,41,42}
The register to memory port mapping for different

control steps, generated by PDM, is listed in Table
IX. The data path design is shown in Figure 2. For
completeness, we also give the results produced by
six previously proposed methods ("HAL" [17],
"SPLICER" [18], "CATREE" [a9], "SPAID" [20],
"EMUCS" [21], and "Grant and Denyer" [22]) for

the wave filter example. Table X compares the cost
using this approach "PDM" with that obtained using
six previously proposed methods. As can be seen
from Table X, the PDM requires fewer MUX inputs,
register files, and buses.

Using the PDM with 2-port memory synthesis for
the code sequence shown in Table I, 4 memory mod-
ules are partioned. The register to memory port
mapping is listed in Table XI. The data path design
is shown in Figure 3. The ALU1 and ALU3 do no
operations but pass data to registers in control step
5.

COMPLEXITY ANALYSIS

The PDM algorithm described in the previous sec-
tions has been implemented in C code where we use
the two-dimensional linked list data structure to store

Control Step

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19

TABLE IX
Register to memory POrt mapping of Fig.

P1 P2 PI
M2 M3
"PZ P2

R1
RI2
R20

R12
R12
Rll

R9
R7
R7

R1
R23
R17
R4
R14
R5

R2
RI3
R12
R20

R21
R21
Rll

R9
R23
R10
R10

R4
R17
R14
R5
R13
R2

R3
R3
R26 R32
R32 R25
R25

R24
R32
R8
R3
R15
RI5

R26
RI5
R36

R25
R24
R32
R25
R3
R8

R6
R6

R36
R8
R34
R34

R33

RI9

R19
R22
R19
R18
R28
R28
RI6
RI8
R37
R37

R19

R22

R30
R30

R16
R18

R40
R40
R33

M4
’P1 V2 Pl

R39

R27
R29
R29

R27
R27

R31
R27
R35
R35

R38
R31

R31
R38
R31

R38
R35

R39

R41
R41

R42
R42

R39

R39
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BUS 1

BUS 2

FIGURE 2 Data path for wave filter using 2-port memory.

the values of R or W-entry in the dependence matrix.
The major operations in the PDM algorithm include"
columnparent, relabel, and backtrack. The complex-
ity of each operation is summarized as follows: for
each column register, the complexity for column-
parent is O(MN) and the complexity for relabel and
backtrack is O(MN2). If there are N registers, each
register has at most N 1 columnancestors in the
worst case. Then, relabel and backtrack operations
will be executed at most N (N 1) times in the
worst case. The complexity of the algorithm can then
be calculated as O(MN4) where N is number of col-
umns (i.e. registers) and M is number of rows (i.e.
control steps) in dependence matrix DM(C). We may
refine the algorithm to have the complexity of
O(MN3) by binding the Column-Ancestor to the

one with the lowest order. Using the refined algo-
rithm, most of the results (no. of memory modules)
obtained are the same as the results of the PDM
without refinement, and the run time is significantly
reduced.

SUMMARY

This paper presents an efficient algorithm to explore
the design space for memory allocation in data path
synthesis. The technique can be applied not only to
single-port memory synthesis but also to multiport
memory synthesis. It avoids certain locally optimal
solutions to achieve more globally optimal solutions
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TABLE X
Cost summary for wave filter example

System

Cycles

Multipliers

Adders

Mux lnpuls

Registers

Buses

HAL

19

26

1

SPLICER

21

1

2

35

N/A

CATREE SPAID

19

2 1

4 2

12

N/A

38 17

12

EMUCS

19

* PDM uses 5 two-port Registers

15

19 12

5 7

Grant &
Denyer

19

1

18

17

N/A

PDM

19

12

than were obtained in the previously proposed 0-1
integer programming technique. With suitable mod-
ifications, the proposed technique can also be applied
to multiport memory synthesis in which the maxi-
mum number of read ports is different from the max-
imum number of write ports. Thus, an alternative
data path design which requires less hardware in mul-
tiport memory synthesis can be achieved.
The proposed techniques of memory synthesis is

applied to the code sequence generated from com-

piler. As we know, the results of memory synthesis
can be affected by manipulating the code sequence.
Therefore, investigating the interface between the
compiler and memory synthesis to achieve a better
design becomes interesting and important in this
area. Finally, with suitable modifications, the parti-
tioning techniques should also be applicable to the
other phases of data path synthesis, namely the al-
location of data operators and interconnection units.
These issues are currently under investigation.

Control Steps

S1
$2

$3

$4

$5

TABLE XI
Register to memory port mapping of Fig. 3

M1

P1 P2

R1 R2
R5 R4
R1 R5

R1 R2

M2

P1 P2

R3
R3
R3
R8
R14

R6
R8
R14

M3

PI’ P’

R12
R13 R7
R7 R9
R12 R9

R10
R15
R15

M4

Rll
Rll
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J P2 M1 P2"
R1,R2,R4,R5

P1 P1

R3,R6,RS,R14
P1 P1

._ P2 M3 P2.,

R7,R9,R12,RD
.P1 P1

P2 M4 P2

R10,Rll,R15

P1 P1

BUS

ALU2

(+,-nd)

FIGURE 3 Data path for code sequence of Table using 2-port.
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