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ABSTRACT

Ergodicity, continuity, finite approximations and rare visits of
general Markov chains are investigated. The obtained results permit
further quantitative analysis of characteristics, such as, rates of
convergence, continuity (measured as a distance between perturbed and
non-perturbed characteristics), deviations between Markov chains, ac-
curacy of approximations and bounds on the distribution function of the
first visit time to a chosen subset, etc. The underlying techniques use the
embedding of the general Markov chain into a wide sense regenerative
process with the help of splitting construction.
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1. Introduction

In paying tribute to Lajos Takcs, one must remember that he is one of the few outstanding
mathematicians who paid much attention to transient behavior in queueing systems, which he in-
vestigated by analytic methods in his classic book Introduction to the Theory of Queues (Oxford
University Press, New York, 1962). The problem of transient behavior turned out to be ex-

tremely difficult even for simple queueing models. Because of this, it is often reasonable not to
obtain explicit formulas for different characteristics but to approximate these characteristics or to
investigate general properties of underlying processes.

This paper deals with general Markov chains. The theory of such chains has undergone dra-
matic changes recently. These changes were caused by the discovery of an embedded renewal pro-
cess and, therefore, the feasibility of employing a recurrent events technique (as in Feller [3])
which has been employed successfully for denumerable chains. We refer to Nummelin [13] and

Meyn and Tweedie [14] for further details. Though a general Markov chain can be considered as

a regenerative process, there are at least two features that distinguish the general case from the de-

numerable or finite case. First, a general Markov chain (even Harris-recurrent) has no "proper
atom" (by Nummelin’s terminology, this is an analog of a recurrent state) and so a traditional
choice of recurrent times to a specific state as regenerative epochs is inadmissible in general. This

was the reason for E. Nummelin to suggest a so-called "splitting," which enables one to construct
an enlarged Markov chain comprising the initial chain as a component and possessing a proper
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atom. Second, a regenerative process, describing a general Markov chain, is not a classic sense re-

generative process introduced in Smith [16] with independent cycles, but represents a wide sense
regenerative process. That class of regenerative processes has been studied intensively in Asmus-
sen [1] and Thorisson [17-19].

Although a representation of a general Markov chain as a regenerative process was initially
used for investigating the steady state regime, such a representation can also be used for other pur-
poses. This paper is intended to show how the "regenerative approach" elaborated recently in
Kalashnikov [5], [7], [8], and Thorisson [20] can be employed for studying the continuity property,
obtaining finite approximations, proving limit theorems, and deriving various bounds for general
Markov chains. We will refer known assertions from the theories of regenerative and Markov
processes to as "Propositions." They are given here without proofs. Their corollaries concerning
Markov chains are called "Lemmas" and "Theorems", and they are furnished with proofs.

2. Necessary Definitions

We will preserve definitions introduced in Nummelin [13] and Meyn and Tweedie [14]. Let
X- (Xo, X1,... be a general Markov chain with state space (X, ) that is a complete separable
metric space endowed with metric h and r-algebra generated by all open subsets of X. Denote
its initial distribution by P0(" ), its m-step transition function by P(x, m; ), and let

P(x; .)- P(x, 1; .),

Px(’)- P(" Xo x).
Let .)+ denote the collection of r-finite nonnegative measures p that are defined on and

satisfy the inequality P(X)> 0. The following definitions are standard and can be found in
Nummelin [14].

Definition 1: We say that state x E X leads to B E and denote this by xB, if
P(x,n;B) > 0 for some n > 0.

Definition 2: Given x B for any x X, B , and p(B) > 0, Markov chain X is called p-
irreducible.

Definition 3:
measure +.

Markov chain X is called irreducible if it is p-irreducible for at least one

Proposition 1 (Numrrielin [14]): Given an irreducible Markov chain X, there exists a maximal
irreducibility measure J + for which

(i) X is (-irreducible;
(ii) if X is p-irreducible, then p<<(I) (this means (I)(B)-0=p(B)-0,

B
(iii) if ((B) 0 and U’ {x:xB}, then P(B’) O.

Proposition 2 (Nummelin [14]): Given an irreducible Markov chain X, there exist a subset
C , an integer m

_
1, a positive and a measure v J,+ such as

P(x, m; B) >_ lc(x)(B), B e , (1)

where 1c(X is the indicator of the set C. Moreover, if CO is such that (Co) > O, then there
exist C, m, and such that C C Co and (1) holds.

The relation (1) is called a minorization condition and set C is called a (t,,m)-small set. The
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measure u can be regarded as a probability measure, u(C) 1, without loss of generality.

Definition 4: An irreducible Markov chain X is called periodic with d >_ 1, if there exists a
collection of subsets Xo,..., Xd 1, Xi E , 0 _< _< d 1, for which:

(i) inf P(x; Xi + 1)- 1, 0 _< < d- 1, where Xd- X0;
x Xi d 1 c;(ii) (3f)-O, where=(i=oO

(iii) d is the smallest number satisfying the conditions (i), (ii).
If d- 1, then X is called aperiodic.

Det’mition 5: An irreducible general chain X is Harris-recurrent if for any C with (I)(C) > 0

Pz {XneC} -lforallxex. (2)
k=ln=k

Proposition 3 (Orey [15])" Markov chain X is Harris-recurrent if and only if there exist a

subset C , an integer m >_ 1, a positive fl, and a probability measure u, u(C) 1, such that
(1) (2)

Throughout this paper, we consider (by default) only Markov chains which are Harris-
recurrent for which condition (1) holds, even though C, u, /3, and m can differ for different
chains.

Since we will use notions concerning discrete time regenerative processes, we give necessary
definitions due mainly to Thorisson [18]; see also Kalashnikov [8].

Let Z- (Z0, Z1,...) be a sequence of random variables (r.v.) taking values from a complete
separable metric space (%,) and S- (S0, S1,...), S0 _< S1 _< ..., be a sequence of nonnegative
integer r.v.’s. For the random pair (Z,S), define the shift

where

Z) Zk +,k > O,

S(o >_ n, >_ 0}

i(n)-min{i:Si>_n}

S) Si() + k n,k > O.

Definition 6: A random pair (Z,S) is called a classic sense regenerative process if for any

>_ 0 all shifts 0:. (Z,S) are identically distributed and do not depend on the "prehistory"

(Zo,.. ZS _1S0, .
The sequence S is called the renewal process embedded in (Z,S).

Definition 7: A random pair (Z,S) is called a wide sense regenerative process if for any _> 0

the shifts Osi (Z,S) are identically distributed and do not depend on (So,...,Si).

Obviously, any classic sense regenerative process is regenerative in the wide sense. Definition

7 still implies that the sequence S is a renewal process which means that all inter-regeneration
times W S -S 1, _> 1, are i.i.d.r.v.’s.
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Definition 8: A wide sense regenerative process (Z,S) is called stationary if all shifts
On(Z,S), n > O, are identically distributed and hence On(Z,S d_ (Z,S), where d

means identity
in distribution.

Definition 9: A wide sense regenerative process (Z’, S’) is a version of a process (Z, S), if

eS,o(Z’,S’) s).-Oso(Z,

Proposition 4 (Thorisson [18])" In order for a stationary version (Z’,S’) of
regenerative process (Z,S) to exist it is necessary and sufficient that

a wide sense

E(S1 -So) <

In this case, a probability distribution of (Z’, S’) is defined uniquely by the equality

P((Z’, S’) E E((S1 So)I(Oso(Z,S )),

where I(. is the indicator of the event (.).
Consider now a splitting construction (see Nummelin [14]). In essence, it consists of embed-

ding the initial Markov chain X into a wide sense discrete time regenerative process (Z, S).
Let X be a Markov chain. Embed it into a regenerative process (Z,S) which is constructed

as follows. Let Z,- (Ya, i,), where Y, takes values from (X, ) and in is a binary r.v. taking
values 0 and 1. We will call in the bell variable after Lindvall [12] (if n- 1 then the bell rings).
From the construction below it will follow that

Y (Y0, Y1," ") d_ X. (3)

Define random times
TO min{i: Yi C},

Tk + 1 rain{i: Yi C, >_ Tk + m}, k > O.
(4)

Let in, n > 0, be a set of i.i.d.r.v.’s, P(n 1) ft. Let

SO min{T + m: 6tT.- 1},

Sk + 1 min{Ti + m" Ti 1 T + m > Sk} k > 0
(5)

i.e. the time is declared to be a regeneration epoch if m steps ago, one of the instants (4) occurred
and the bell rang that time.

If Yn Y and T + m < n < T + 1 (hence, y C), then we define Yn + 1 as a r.v. which
depends only on y and has the distribution P(y;.). If Yn-Y and n- T (hence, y G C), then
two cases are possible according to whether or not the bell rang at time n. We combine these two
cases, denoting

,(.), if 6n 1,
Qn(

(1 fl)- l(P(y,m;.)-/3,(.)), if 6n O.

Let Y, + m be a r.v. with the distribution Qn(. and therefore possibly dependent on y. Define
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the collection Yn + 1"’" Yn + m by defining their joint distribution-

P(Yn + BI,"’, Yn + Bm 1 Yn Y, Yn + m x)

P(Xn+ 1 Bl,’",Xn+m-1 Bin-1 [Xn Y’Xn+m x). (7)

Note that the probability in the right hand side of (7) is defined uniquely by the transition
function of the chain X.

Though the process Z is not Markov in general (it is Markov under m- 1), the relation (3)is
satisfied. It is obvious that the constructed process (Z,S) is classic sense regenerative if m- 1
and wide sense regenerative if m > 1. In all cases

P(Ys .)-u(.), n>_O. (8)
The construction above is not unique. It is quite similar to the splitting construction sug-

gested in Nummelin [14] for m- 1. Other variants can be found in Kalashnikov [8] where the
bell variable not only marks virtual regeneration epochs but counts residual times until these
epochs in order to prove the Markov property for Z.

Let us agree that if we use notation (Z,S), this means that it is a regenerative process
constructed according to (4-7) which includes the initial Markov chain as a component.

Denote by
Wo So,

Wk Sk Sk- 1, k

_
1,

(9)

successive inter-regeneration times for the process (Z,S). By the construction, all Wk, k >_ 1, are

i.i.d.r.v.’s. Recall that we consider here only Harris-recurrent Markov chains. Therefore, all
r.v.’s Wk, k >_ O, are finite a.s. The following two assertions are direct consequences of the
construction above. Their proofs are straightforward and can be found in Kalashnikov [8].

Proposition 5:
the sense that

Given an irreducible aperiodic Markov chain X, the r.v. W1 iS aperiodic in

GCD{j:P(W1 j) > 0) 1, (10)

where GCD stands for the greatest common divisor.

Let
vC min{n:Xn C,n > 0}.

We will use the notation c (possibly with indices) for different constants appearing in different
relations. We will also introduce a class (9 of functions G(n) > O, n >_ O, such that

O {G. lim
G(n) G(n) }n n oo, n--,oclim n2

=0

which is useful for a characterization of uniformly integrable r.v.’s; see Kalashnikov [7].

Proposition 6: For Harris-recurrent Markov chain X, the following implications are true.

(i) tf

/ ExTb,(dx _< c,
x
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(it)
for some s > 1, then EW < C1 Cl(c, 8, fl, m).
If /ExG(rc)u(dx < c,

x

(iii)
for some G E O, then EG(W1) < c2 c2(c G, , m).
If /Exexp(rc)u(dx < c,

x

for some > O, then there exists ’(c,,/3, m) > 0, such thai

E exp($’Wa) < C3 c3(c,/,/,m).

The constants ci, i-1,2,3 and ’ can be evaluated in a closed form in terms of the involved
parameters.

For simplicity, we assume that P0(" )- u(. which corresponds to the case S0 W0 -0, i.e.
to a zero-delayed regenerative process (Z,

3. Ergodic Theorems

Let us call a Markov chain X’ a stationary version of another Markov chain X if the two
dchains have the same transition functions and, in addition, X’ is stationary, i.e. Xk Xo, k > O.

Theorem 1: If Markov chain X is positive recurrent, that is

f ExvcU( )<oo,dx 1 1

x

then there exists a stationary version X’.

Proof: By Proposition 6, the inequality EW1 < c holds for the wide sense regenerative
process (Z,S). In turn, this inequality is necessary and sufficient for existence a stationary
version (Z’,S’). Consider the first component Y’- (Y), Y,...) of the process Z’. Evidently, it is
a stationary sequence. Prove that it comprises a Markov chain. Suppose first that the chain X is
aperiodic. Denote 7r(. )- P(Y E ). Since # < and Wa is an aperiodic r.v. by Proposition 5,
then

Var(Xn, Yn) Var(Xn, Y0)-*0, when n---,cx,

where Var stands for the total variation metric (see Kalashnikov [4], Thorisson [17]). Hence,

dLmP(, n; )-- (. ),

for any x X. It follows that

7r(. / P(x;. )r(dx). (12)
x

Introduce now a Markov chain X’ with the transition function P(x;. and the initial distribution

7r(. ). Equation (12) yields that X’ is stationary. By Proposition 4, X’ d y, which completes the
proof in the aperiodic case. The periodic case can be treated by using standard arguments,
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reducing it to an aperiodic case by considering the Markov chain each d steps. El

The following statement discloses the rate of convergence in the ergodic theorem.

Corollary: If Markov chain X is aperiodic and at least one of the cases (i) (for s > 1), (ii) or

(iii) from Proposition 6 takes place, then

Var(Xn’X’) <- hn)’ (13)

where"
h(rt)- sns-1 in the case (i);
()- a(n)/ c ();
h(n)- exp(n), where 0 < 5 <_ ’, in the case (iii).

The proof follows from Propositions 5 and 6 and from the rates of convergence to the steady
state for regenerative processes contained in Kalashnikov [4, 7], Kalashnikov and Rachev [10], and
Thorisson [17].

In order to evaluate the constant c in equation (13), one can use estimates of c from
Proposition 6 as well as bounds of moments of the r.v. vC which can be obtained, for instance, by
the test functions methods: see Kalashnikov [4, 7, 8], and Meyn and Tweedie [13].

4. Continuity

Very often, we can not obtain necessary characteristics of a Markov chain or we do not know
exactly its transition function. In such cases we need to investigate a continuity property of
Markov chains, namely, to learn whether "small deviations" of transition functions lead to "small
deviations" of non-stationary or stationary distributions of the chains. To this end, we introduce
a notion Feller chain. Let f: X---R1 be a real function defined on the state space of a chain X.
Define the operator

Pf(x): / f(y)P(x; dy),
x

when the integral in the right hand side of (14) converges.

(14)

Definition 10 (Meyn and Tweedie [13]): Markov chain X is called a weak Feller chain if the
function Pf(x) is continuous and bounded provided that f is continuous and bounded. If the
mapping Pf is continuous and bounded for any measurable bounded function f, then X is called
a strong Feller chain.

The following assertion is trite but we will need this in the sequel.

Lemma 1: Let X(n), n _> O, be a sequence of weak Feller chains with the transition functions
p(n). /f

P(n)f(x)P()f(x) Vx E X, (15)

for any continuous and bounded f, then

/ f(y)P(U)(x, k; dy) ]" f(y)P()(x, k; dy)
x x

(16)

for any fixed k > O.

If X(n), n _> O, is a sequence of strong Feller chains, then the statement above holds for any



364 VLADIMIR V. KALASHNIKOV

bounded measurable function f.
We start with the case when all chains X(n), n _> O, are strong Feller and X() satisfies the

minoriation condition

P()(x, m; B) >_ fl’lc(x)’(B), B E . (17)

By the strong Feller property, there exist fl and u such that

P(n)(x, m; B) >_ lc(x)(B), B (18)

for all n beginning from some no >_ 0. Because we are interested in the case n--+oo, we can put
n0 0 without loss of generality.

Let us embed the chains X(n) into regenerative processes (z(n),s(n)), n >_ O, constructed with
the aid of condition (18) and assume, as earlier, that the instant zero is a simultaneous regene-
ration epoch for all those processes. In particular, all X(on), n _> 0, have the same distribution .
Denote by (wn))k > 1, successive inter-regeneration times for the n-th process and set for n _> 0

’(Cn)-min(k’Xn)C,k)O),
(19)

i P .) .(dy), k >_ l.

x

Theorem 2: Let all chains X(n), n >_ O, be strong Feller satisfying the common minorzafion
condition (18), and o, an bounded f and any x X. iel, in addition,
chain X() irreducible and aperiodic and fhe family of distributions (b )k >0, n O, be
uniformly inlegrable. Then

n k>O

Proof: By the strong Feller property,

lim bln) bO) (21)

for any fixed k > 0. Therefore, without loss of generality, all chains X(n) can be regarded as

aperiodic and irreducible. Moreover, the distributions (bn))k > O, u >_ O, are uniformly aperiodic
in the sense that there exist integer N and real ct > 0 such that-

GCD{k: bn)> c, l < k < N}-I (22)

for all n > 0. Since the family (bn))k > 0, n > 0, is uniformly integrable, there exists a function
G @ and a constant g such that

EG(v(cn)) _< g, (23)

for all n _> 0 (see Kalashnikov [4]). It follows from Proposition 6(ii), that

< c <

By Lemma 1 and construction of the regenerative processes (z(n),s(n)),

(24)
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for any k _> 0. According to Theorem 6.5.3 from Kalashnikov [4] (see also Corollary 1 to
Theorem 3.5.1 in Kalashnikov [8]), the inequality (20) is a consequence of relations (24) and (25)[21

What is more, it is possible to obtain a quantitative bound on

given that one can estimate

j<k

see Kalashnikov [8].
The requirement that X(n) are strong Feller chains is restrictive enough (though, instead we

get a continuity property in terms of the total variation metric). We now relax this, requiring
that all X(n) are weak Feller chains. In this situation, the relation (17) does not yield (18), in
general, and limiting relation (21) can be violated. So, additional restrictions, appearing in the
following Theorem 3, are engaged to overcome undesirable consequences of such violations. In
addition, we will need a "weak" metric BL for a metrization of a weak convergence of X(n) to
X() which is defined as follows (see Kalashnikov and Rachev [10])-

(BL(X,Y) sup{ Ef(X)- Ef(Y) I" f _< 1, f(x)- f(Y) <_ h(x,y)},

where f" x-R1, h is a metric in the space 2:, X and Y are r.v.’s with values from the space X-

Theorem 3: Let all X(n) n > 0 be weak Feller chains satisfying the "common" minorization

condition (18) and P(n)f(x)-P()f(x) for any bounded continuous f and any x E X. Let, in
)addition, chain X() is irreducible and aperiodic, and the family of distributions (b )k > , n O,

is uniformly iutegrable and uniformly aperiodic, i.e. the relation (22) holds. Then

o.
nk > 0

The proof completely repeats that of Theorem 2.

Statements of Theorems 2 and 3 admit a quantification which follows from results obtained
in Kalashnikov [4] and [8]. Display only a bound which is valid under a "power case" G(n)- ns,
s > 1. let probability rnetric d is defined as d- Vat in the case of Theorem 2 and d- (BL in the
case of Theorem 3. Then, in both cases,

In particular, if

spd(X(kn) X))<if_ {maxk<_T d(Xn)

then

8p d(Xn), x(kO) )
_

c(((rt)) (s -1)Is.

Relation (27) arise naturally in queueing theory; see Kalashnikov [7]. For example, single-server,
multi-server and multi-phase models can be described by general Markov chains satisfying finite-

time continuity inequality (27).
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5. Approximations

Let us turn to a problem which is complementary to that considered in Section 4.
Specifically, we now consider an approximation problem which can be outlined as follows. Let
X-- X() be a general Markov chain. The problem consists of the construction of a sequence of
X(n) belonging to a prescribed class (e.g., having a finite number of states) such that (26) is true.

First, let us assume that the chain X() with the transition probabilities p(0)_ P(x;.)
satisfies the minorization.condition (1). In addition, let I’n, n > 0, be a collection of nested
compacts such that

C C r0 C r1 C r2 C...; (.J Fn- X.

For each n _> 1, define the chain X(n) as a restriction of the chain X() to the compact Fn. It has
the following transition probabilities:

P(n)(X; B) P(x; B) + P(x; x\r.)u(B), B C r,. (28)

Let Wn), k > 1, be inter-regeneration times for the process (Z(n), S(n)), n > 1, into which X(n) is
embedded. D"enote Wk =_ W). By (28),

P(W1 _< x) _< P(Wn) _< x) (29)

for all x >_ 0 and n > 1. In particular, EW1 > EWn). Hence, the collection of r.v.’s (Wn))n > o
forms a uniformly integrable family.

Lemlna 2: Let X be an aperiodic strong Feller chain satisfying the minorization condition
(1), and assume the processes X(n), n > 1, are constructed according to (28). Then

lira sup Var(Xk,Xn)) O. (30)
n-- k >0

The proof immediately follows from the fact that X(n) are strong Feller chains, Lemma 1 and
Theorem 2. !-!

Similarly, using Theorem 3, one can prove the following.

Lemma 3: Let X be an aperiodic weak Feller chain satisfying the minorization condition

(1), and the processes X(n), n >_ 1, are constructed according to (28). Then

lirn suPBL(Xk,Xn)) O. (31)
n"*CX k >0

Without loss of generality, we can (and will) assume that, in each subset F.., the mean
t c (n) (n) sresidual time until he nearest regeneration time of the pro ess (Z ,S bounded from above

by n given EW1 < pc. Really, if EW1 < 0c, then EWn)< EW1 < 0c and one can redefine (if
necessary):

where R’’)’- is a forward recurrence time for the renewal process Stnj’ given that X(n) starts from
the state x.

Lemma 2 and 3 show how to approximate a general Markov chain X() by another chain
X(n) having a compact state space. We now move on to conditions ensuring the possibility of
approximating Markov chain X(n) with a compact state space Fn by a finite chain.
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Take an arbitrary e > 0 which can be treated as the accuracy of approximation.
a0,...,aN be a e-net in Fn such that a0 E C (evidently, N may depend on e). Divide Fn

(N) follows:N + 1 subsets F(n),...,Fn as

r.() {: h(,0 _< , rn};

r(1) {x:h(X, al)

_
e,x e r\r(.)};

r(.) (: h(,) < , e r\(r(. r(.1))};

Let
into

Recall that h stands for the metric that the complete separable metric space X is equipped with.
Each I’(nj) represents a neighborhood of the point cj its radius being less than or equal to e. Let

p(0 p(n)(ai; r(.)), i, j 0 N, (32)z3

and introduce a finite Markov chain X(n’e)

wi!jstate space {a0,...,aN} transition probabilities
(38), and initial state X(on’)= j if X(0n) E ). In order to compare X(n’) with X(n), we

embed X(n’) into a regenerative process (Z(n’),S(n’e)) in a quite similar way as it has been

done for the process X(n). Denote inter-regeneration times for (Z(n’e),S(n’e)) by (wn’e))k > 1"

Lemma 4: Let X satisfy the conditions of Lemma 2. Suppose that X(n) is a Markov chain
constructed as in (28). Then, for any fixed n,.;c(x),x,)1 o.

e--,0

Proof: Let V(Cn) --rain(k: k > 0, Xn)e C} and define a test function (see Kalashnikov [4, 7,
8], and Meyn and Tweedie [13]) by the equation

V(x)- E=-("). (34)

By remark to Lemma 3, we can assume (without loss of generality) that

sup V(z) < n.
xEFn

Let A(n) be a generating operator of the Markov chain X(n). Then equation (34) yields

(35)

A(’)v(x)- -1, xC. (36)

By the strong Feller property of X, the chain X(n) is strong Feller too, and, hence, V(x) is
continuous in Fn. Therefore,

sup A(n’)V(aj) <_ A(e) < 0, (37)
I<j_N

where A(n’) is the generating operator of the finite chain X(n’) and A(e)--l as e--0. Function

Y(x) is bounded in Fn; see (35). This fact, together with relations (36) and (37), yields that all
conditions of Corollary 3 to Theorem 1.1.5 in Kalashnikov [8] (see also Kalashnikov and Rachev
[10], Theorem 2, Appendix 5) hold, which, in turn, imply that
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sup Ex v ’) x E C, c

for any s > 1 (for example, for s 2). Therefore, by Proposition 5, the family of r.v.’s

(Wn’)) > 0 is uniformly integrable. The strong Feller property of X(n) and the construction
(32) yield

0,

for any fixed k, where k- 0 is a simultaneous regeneration time for both X(u) and X(’). This
means the relation (33) is a consequence of Theorem 4.

Threm 4: Let X be an aperiodic Harris-recurrent, positive, strong Feller chain. Then
there exists a sequence of finite chains X(N) such that

lira suPBL(Xn X,(N))- O.
J oo

(39)

The proof follows from statements of Lemmas 2 and 4 if one takes X(N) X(n’).

Having examined the proof of Lemma 4, we can notice that the strong Feller property is
required only for the continuity of V(x). But the proof is still valid if one supposes that there
exists a bounded continuous function V(x) such that

AV( ) < ZX < 0, C. (40)

Therefore, using Lemma 3 and repeating main arguments of the proof of Theorem 4, we arrive at
a weaker version of the above statement.

Theorem 5: Let X be an aperiodic Harris-recurrent, positive, weak Feller chain, and let
there exist a continuous function V(x) such that relation (40) holds. Then there exists a sequence
of finite chains X(N) such that the relation (45) is still true.

Let us mark the following two circumstances. First, for many queuing models (single- and
multi-server, multi-phase and others) test functions V(x) satisfying Theorem 5 have been known;
see ialashnikov [7, 8]. Second, the limiting relation (39) can be quantified just like it has been
for the continuity problem in Section 4.

6. Rarity and Exponentiality

Suppose now that general Markov chain X visits some subset Q c x infrequently. Then it
can be expected that the passage time from some specific initial state (random, in general) to Q is
exponentially distributed to good approximation. Similar problems have been investigated
earlier, mainly, by analytic tools; see Keilson [11]. We will now show how to solve them by pro-
babilistic methods.

Let us suppose that X satisfies (1) with m 1. It follows that, in this case, X can be em-

bedded into a classic sense regenerative process (Z,S). But we would like to emphasize that the
restriction m 1 is not of exceptional importance and can be relaxed. Suppose, in addition, that
(Z,S) is a zero-delayed process, i.e. SO =0, which implies that the initial distribution of X
coincides with (B), B E . Formalize the supposition about "rare visits" to Q as follows. Let
Fj, j >_ 0, be a sequence of nested subsets of X such that

Fj C Fj + 1’ J >- 0, U Fj X. (41)
j=0
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Define the first passage time of the subset Q Qj x\rj as

(42)

Denote bo P, and Eu the conditional probability and expectation provided that X0 is a r.v.

having the distribution u.

In order to state the results, we need some propositions associated with so-called "geometric
sums" of i.i.d.r.v.’s. Let Y (Yi)i > 1 be a sequence of nonnegative i.i.d.r.v.’s with a finite
mean #, and let Y0 be a r.v. which does not depend on the sequence Y. Suppose that g is an

integer r.v. that does not depend on both Y and Y0 and has a geometric distribution

Let
P(g-k)-q(1-q)k-1 k>l 0<q<l

B(x) P(Y1 < x), Bo(x P(Y0 < x).

(43)

(44)

Consider two random sums
r Y1 +"" -- Ya, (45)

r0 Y1 +"" + Y- 1 -- Yo, (46)

and denote their distribution functions by

W(x) P(a < x), Wo(X P(r0 < x). (47)

From (45)and (46), we have

Wo(x (1 q)W,Bo(x + qBo(x). (48)

Relation (48) shows that if the distribution functions B and B0 vary along q--,0 in such a way
that B0(x)--l for any fixed x and the distribution function W has some limit then the distri-
bution function W0 has the same limit.

Let us find conditions ensuring that a r.v. after "normalization" has a limiting exponential
distribution function. These conditions generalize the conditions of a well-known theorem of
Renyi; see Daley and Vere-Jones [2]. Define, for each x > 0,

x

Ml(x) / (1 B(u))du.
o

Proposition 7: Let the distribution function B vary in such a way that for each fixed x > 0

lira lwMl(P-fix) -1. (49)
qO

Then
W()-1-exp(- x).lira

qO

The proof of Proposition 7 can be found in Kalashnikov [8] (Theorem 4.2.1), where one can

also find two-sided bounds of the distribution function W. Similar estimates under an

assumption that there exists the second moment for the v.v. Y1 are obtained in Kalashnikov [6].
Numerous properties of geometric sums are considered in Kalashnikov [9]. Proposition 7 and

equation (48) yield the following statement.

Corollary: If, under assumptions of Proposition 7, the distribution function Bo varies in such
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a way that

for any fixed x > O, then
1 exp( x).

Now, return to the chain X.

Theorem 6: Let X satisfy assumptions imposed above in this section and

Evrj #j--,oc, when joc, (5o)

ErrC < oc. (51)

Then, for any x > O,

(rj )P -fi <_ x -,1 -exp(- x), when jc. (52)

expectation
Because of Proposition 6(i) and (51), the inter-regeneration time of (Z,S) has a finite

EW1 #0 < cx. (53)

It follows from (50)and (51) that

q- P(rj < W1)--,0 (54)

En(rj;rj < Wl)---O

Ev(Wx W1 <_ rj)- __#o,

(55)

(56)

when j--oc.

Now let
B(x) P(W1

_
x Wl

_
7"j),

Bo(x Pv(rj _< x W1 > rj).

Then, by the fact that (Z,S) is a classic sense regenerative process, r.v. rj defined by (42) has the
same distribution W0 as the r.v. ro defined by (46). In particular, according to (54)-(56), we

arrive at the relation

lira q#J--lira q#j

Relations (54) and (56) imply also that all assumptions of Proposition 7 are fulfilled.

(54) and (55) yield that
In addition,

lira qE(vj vj < Wl) 0,

and so lira Bo(#x/q 1 for any x > 0. Therefore, corollary of Proposition 7 yields (52).
q---0

As we have noted, convergence rate estimates in Theorem 6 can be obtained with the help of
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the results contained in Kalashnikov [6, 8, 9]. The assertion of Theorem 6 was proved in Keilson
[11] (Theorem 8.2B) by analytic methods.
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