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A new algorithm of quantitative texture analysis (QTA), which is called the modified maximum entropy
method (MMEM), has been proposed and applied to determination of textures in polycrystalline samples
of lower crystal symmetry with overlapping diffraction peaks (Wang and Xu, 1995a). By introducing
directly the maximum entropy principle into the least square procedure of pole figure inversion (Bunge,
1969), then both minimizing the differences between experimental and postulated pole figure data, and
maximizing entropy may be satisfied simultaneously. Thus, the maximum entropy principle is applied
to the entire process of QTA in frame of the harmonic method (HM). The detailed comparisons among
the three pole figure inversion methods, i.e. the traditional HM, the primary maximum entropy method
(MEM) and the MMEM, are given through a model example of simulated fiber texture. It is shown
that the precise and stable solution of inverse pole figure for the polycrystalline samples with smooth
or sharp textures will be obtained by the MMEM even using a less number of pole figures. The minimum
range of polar angle and the least number of pole figures, which are needed in the QTA for pretended
tetragonal materials by the MMEM, are discussed in detail.
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INTRODUCTION

As there has been of great interest in some advanced materials such as intermetallics,
ceramics, polymers and geological materials, much efforts were made to overcome the
difficulties in quantitative texture analysis (QTA) for the lower symmetry polycrystalline
samples with overlapping diffraction peaks. So far, many methods such as the iterative
positive method (Dahms and Bunge, 1988), the vector method (Ruer and Baro, 1977,
Vadon, 1981), the component method (Helming, 1991) and the WIMV (Matthies and
Vinel, 1982; Kallend, Schwarz and Rollett, 1991) have been applied to the QTA for
the lower symmetry crystallites with single or/fand overlapping diffraction peaks. The
concept of ‘maximum entropy’, which has been widely accepted in the information
theory and the image reconstruction, was introduced to QTA for cubic and hexagonal
materials with series coefficients as restrictive conditions (Wang, Xu and Liang, 1987,
1989), i.e. the maximum entropy method (MEM). Quite recently, it has been applied
to determining the fiber texture vector of tetragonal materials with overlapping Bragg-
diffraction (Wang, Xu, 1995b). In the MEM, while the positivity condition of ODF
is automatically satisfied, the assumption of maximum entropy may give an access,
with less number of pole figures, to the optimization of pole figure inversion within
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the variation width of solution. However for tetragonal materials a fair solution may
be obtained by the MEM even from less number of pole figures merely in the case
of smooth texture. If the texture is very sharp, because of the less number of pole
figures used, the lack of enough ODF coefficients as constraints would lead to an
unstable solutions with larger errors in the QTA.

The MMEM, which introduces maximum entropy principle directly into the least
square equation of pole figure inversion proposed by Bunge (1969), may overcome
the drawback of the QTA by the primary MEM. It has been proved that the satisfactory
results could be got by the MMEM even from less pole figure data. In present paper,
the minimum range of polar angle and the least number of measured pole figure data
which are needed in QTA for tetragonal materials by the MMEM are also discussed
through the inverse pole figure analysis.

MAXIMUM ENTROPY PRINCIPLE IN QTA

The MEM with series coefficients Wi, as constraints

The series coefficients Wi, and normalized factor N, of the jth single lattice plane
of the Cth measured pole figure can be solved by using least square method from
overlapping pole figures (Wang, Xu, 1995b), i.e.
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Where S and Q are the number and the range of measured pole figures, respectively;
g, ) is the pole density of the Cth measured pole figure; p;"(cos }), p/"(cos ©) are
the normalized Legendre polynomials; ©., ®. are the spherical polar coordinates of
the jth single lattice plane of the Cth measured pole figure.

Following the MEM proposed by Wang, Xu, Liang, (1987, 1989), the restrictive
conditions can be written as
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and the texture vector Y; can be expressed by following Eq.
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Where 6%, is the matrix connecting the texture vector and the series coefficients Wiy,
K is the total number of vector boxes as defined by the VM (Ruer and Baro, 1977);
A and Ay, are the unknown Lagrangian multipliers.
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In primary MEM, it was suggested to proceed as follows: calculate texture coefficients
Wim from Eq. (1), then calculate texture vector Y; by solving the non-linear Eqgs. (2)
with the restrictive condition (3). For the samples with smooth textures or enough number
of measured pole figures used as input data, the precise texture vector may be provided
by the MEM. However, according to the algorithm described above, the maximum
entropy optimum is only entered into the second stage in texture analysis (Schaeben,
1991). Thus, if less number of pole figures were used as the input data of QTA,
especially for the lower symmetry crystalline aggregates with extremely sharp texture
components, the texture coefficients obtained would be too few to get a fair solution.

The MMEM with pole figure data as constraints
According to the MMEM, Eqgs. (4) are directly introduced into Eq. (1)
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There, L is the order of the series expansion in orientation space which should correspond
to the total number of measured pole figures; L' is the order of the series expansion
of pole figure inversion which may be extended to a larger value according to the
texture index of measured materials. If L' — oo, the pole figure inversion should be
replaced by the matrix in the VM. In this paper, for tetragonal materials, L' and L
are 22 and 10 respectively.

It is shown that the new algorithm introduces maximum entropy principle directly
into the least square procedure of pole figure inversion in frame of the HM. Thus,
it can be applied to the entire processes of the QTA.

In the case of fiber texture, Eq. (5) reduces to
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where g.(y) is the axial density of the Cth measured pole figure. The fiber texture
analysis is important not only to the samples with rotational texture, but also to the
verification of the MMEM suiting for materials with arbitrary textures.

EXAMPLES OF FIBER TEXTURE ANALYSIS

Methodology Comparisons

Three methods, i.e. the MMEM, the MEM and the traditional HM, are compared through
model function of fiber texture of tetragonal materials (Assuming c/a = 1.02) with single
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or/and overlapping diffraction peaks. The ideal fiber textures are given in Gauss
distribution. The axial intensity S is described by

2
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where o; is the orientation of fiber i in the crystallographic space; ¥ its standard scatter
(half) width of the Gauss distribution and By the background. Five pretended axial pole
figure with single or overlapping reflections, ie. (110), (111), (002)+ (200),
(112) + (211), and (131) + (113), are pre-determined by the HM (Lyax = 22).

Firstly, the smoother texture with two components, (111) and (110) (y; = 14°), and
10% background are assumed (Figure 1(a)) (Wang and Xu, 1995b). Figure 1(b) gives
the inverse pole figures derived by the traditional HM from above five incomplete pole
density curves (y; = 70°). It can be seen that some negative regions and ‘ghost’ peaks
are present there and all the peaks are lowered as compared to the original.
Figure 1(c) (d) give the inverse pole figures derived by the MEM and the MMEM,
respectively, from the same number of incomplete pole densities. Here negative regions
and ‘ghost’ peaks disappear and the peak intensities are considerably increased.
Obviously, introduction of maximum entropy principle into the QTA overcomes the
serious series truncation of the traditional HM.
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Figure 1 The inverse pole figure (a) assumed with (111) and (110) components in Gauss distribution
(yi = 14° and 10% background) and calculated by (b) the traditional HM, (c) the MEM (Wang, Xu,
1995b) and (d) the MMEM from the five incomplete pole densities (x; = 70°), i.e. (110), (111),
(002) + (200), (220) + (022) and (311) + (113).
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Secondly, the sharper texture with the same components with scatter width of 10°
and 10% background are assumed (Figure 2(a)) (Wang and Xu, 1995a). Figure 2(b)(c)
give the inverse pole figures determined by the traditional HM, the MEM respectively.
Similarly to those in Figure 1(b), considerable negative intensities and ‘ghost’ peaks
are also shown in the inverse pole figure derived by the traditional HM. In spite of
no more negative regions in the inverse pole figure recalculated by the MEM, the ‘ghost’
peaks still remain a little and, compared to the original, the extremely higher value
and the distorted shape of the peaks are illustrated. However, the precise inverse pole
figure is reproduced by the MMEM (Figure 2(d)). The negative regions and ‘ghost’
peaks disappear and the peak intensities are close to the assumed value.

Figure 3 gives the postulated and recalculated pole densities as a function of tilt
angle for (110) and (200) + (002) pole respectively. It is shown that the pole densities
recalculated by the MMEM, for both (110) and (200) + (002) poles, agree well with
the postulated value. However, the recalculated value by the MEM shows obvious
difference from the postulated, especially for superimposed pole densities (Figure 3(b)).
Therefore, the MMEM shows great advantage over the primary MEM in the QTA for
the polycrystalline samples of low symmetry with overlapping diffraction peaks.
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Figure 2 The inverse pole figure (a) assumed with (111) and (110) components in Gauss distribution
(y: = 10° and 10% background) and calculated by (b) the traditional HM, (c) the MEM (Wang, Xu,
1995b) and (d) the MMEM from the five incomplete pole densities (y; = 70°), i.e. (110), (111),
(002) + (200), (220) + (022) and (311) + (113) (Wang, Xu, 1995a).



108 Y. D. WANG ET AL.
S —— postulated :3' . —— pestulsted
S e ——. by the MMEM e —~—. by the MMEM
®© ° v . .. by the MEM
° . . by the MEM « . y
-t [ ] .é
a - ~
H s
2w 2 -
2 2 o
- O —
] 2 -
0 10 20 30 40 B0 ®0 70 0 10 20 30 40 50 80 70
Polar angle Polar angle
@ ®)
Figure 3 The postulated and recalculated pole densities as a function of tilt angle for (a) (110)

(b) (200) +(002) poles (Wang, Xu, 1995a).

The range of polar angle and the least number of pole figures for fiber texture analysis
by the MMEM

The assumed inverse pole figure with three components, (111), (110) and (100)
(y; = 10°), and 10% background is shown in Figure 4(a). Figure 4(b)(c) give the inverse
pole figures recalculated by the MMEM from five pole densities described above with
X = 90° and 70° respectively. It can be seen that the precise inverse pole figure may
be obtained from the input data y; = 70°. However, if incomplete pole figures (y; =
50°) are used as input data, the ‘ghost’ peak with (001) component appears in the
recalculated inverse pole figure, which indicates that it is not possible to derive the
inverse pole figure from the five incomplete pole figures (¥ < 50°) by the MMEM
in present assumed textures. In fact, if another constraints are introduced into the QTA,
the range of polar angle or the input data may be further reduced.

Figure 5(a) gives the inverse pole figure recalculated from four incomplete pole
density curves, i.e. (110), (111), (002) + (200) and (220) + (202) (x; = 70°), which almost
the same as that recalculated from five incomplete curves. The precise inverse pole
figure (Figure 5(b)) can be derived even from only one (110) incomplete pole density
Xy = 70°), which indicates that the MMEM may obviously reduce the pole figure data
in the QTA for lower symmetry polycrystalline aggregates.

Figure 6 gives the inverse pole figure recalculated from one superimposed pole density
curve (113) + (311) with ) = 90° and 80° respectively. It is shown that more precise
inverse pole figure may be obtained only from complete pole density (x; = 90°) (Figure
6 (a)). However, as the range of polar angle decreases, the lost information leads to
the unstable solution of inverse pole figure (Figure 6(b)). Thus, it may be drawn that,
compared to the single pole figure, the superposed pole figure provides less information
in the QTA.
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Figure 4 The inverse pole figure (a) assumed with (111), (001) and (110) components in Gauss
distribution (y; = 10° and 10% background) and calculated by the MMEM from the five pole figures
) (g = 90°), (c) (xr = 70°) and (d) (xr = S0°), i.e. (110), (111), (002) + (200), (220) + (022) and
(B11) +(113).
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Figure 5 The inverse pole figure calculated by the MMEM from (a) the four pole density curves,
ie. (110), (111), (002) + (200), (220) + (022), and (b) (110) pole density curve (x; = 70°) only.

CONCLUDING REMARKS

The MMEM has been proposed and successfully applied to the QTA for lower symmetry
polycrystalline aggregates with single or/and superposed pole figures. Thus, we apply
the maximum entropy principle to the entire process of QTA in frame of the HM.
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Figure 6 The inverse pole figure calculated by the MMEm from only (113)+ (311) superimposed
pole figures with various range of polar angles. (a) (xy = 90°) and (b) (3 = 80°).

Compared to the primary MEM, the less pole figure data are needed to obtain a stable
solution in the QTA by the algorithm described above. It is also shown that, compared
to the single pole figure, the superposed pole figure provides less information in
orientation analysis.
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