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In the present paper we have put together some results of a cluster method that allows the calculation
of linear and also non-linear effective elastic constants of polycrystalline materials within an iterative
self-consistent scheme. The conceptual idea consists in simulating the real material by a suitably chosen
cluster of single grains. One can then determine the elastic properties of the material under study by
examining the elastic behavior of the cluster. The method is capable of resolving the effect of the grain
shape, that is determined by the coordination number of the grains on the effective constants.
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INTRODUCTION

The prediction of effective elastic constants of polycrystalline materials from properties
of the constituting individual grains and their interaction presents a frequently appearing
problem. First attempts to solve this problem were made by Voigt (1910) and Reuss
(1929). These authors assume that throughout the entire material the strain and stress,
respectively, are constant which is in far contrast with well-known experimental facts.
Their most important meaning consists in yielding upper and lower bounds, respectively,
of the actual polycrystal data (Hill, 1952). The self-consistent approach by Kr6ner
(Kr6ner, 1958; Kneer, 1964; Kneer, 1965; Morris, 1971) was the first successful method
of taking the grain interaction into account. If the moduli in space are perfectly
disordered Kr6ner’s value is identical with the actual polycrystal data (Kr6ner, 1977).
The well-known bounds of Hashin and Shtrikman (1962a, b) are much closer than Hill’s
bounds, but they are only valid if there is no correlation between the elastic moduli
of neighboring volume elements inside the material. In the seventies all these different
values for the effective moduli were classified after their order of correlation (Zeller
and Dederichs (1973); Kr6ner (1977)).

In the past decade the vast increase in the capacity of modem computers has led
to a new access to determine material properties. New methods were developed which
simulate the arrangement of grains inside a polycrystal by a cluster of 500 to 1000
grains (Kumar 1992; Kiewel and Fritsche (1994a, 1994b)).
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METHOD

Here, we only give a brief description of the used cluster approach (for details see
Kiewel and Fritsche (1994b) and Kiewel, Fdtsche and Reinert (1995)). The conceptual
idea consists in simulating the real material by a suitably chosen cluster of single grains.
The cluster is embedded in a homogeneous medium that has approximately the effective
elastic constants of the material under study. To determine the elastic properties we
subject to the entire surface of the cluster a homogeneous deformation. In order to
determine the deformation field inside the aggregate, one has to solve the associated
boundary value problem. To this end we expand the displacement field inside the
individual grains in terms of basis functions which fulfill separately the time-independent
fundamental equation of elasticity. The expansion coefficients are obtained from
minimizing the mean square mismatch of the displacement and the stress at the grain
boundaries. If one then averages the strain and stress tensor over the entire cluster and
employs a general stress-strain relation for the polycrystalline material one finally obtains
linear and also non-linear effective elastic constants.

RESULTS AND DISCUSSION

To gain a first impression of the elastic properties of polycrystalline materials we have
calculated the deformation field inside three different clusters. For clarity, each cluster
consists of only one type of grain shape. We have chosen Wigner-Seitz cells for the
grain shape to fill out the entire space and to avoid overlapping. Our construction scheme
of the aggregate starts with one grain in the origin which is surrounded by nearest
neighbors, next nearest neighbors, and so on. For that reason the shape of the cluster
is approximately spherical, since the grains are arranged in shells. The first type of
cluster consists of 365 Wigner-Seitz cells of a simple cubic (sc) lattice, the second
one of 181 cells of a body centered cubic (bcc) lattice and the third one of 201 cells
of a face centered cubic (fcc) lattice. These particular numbers of cells are due to the
arrangement in shells. For different grains the orientation of the lattice should be
completely uncorrelated. Each cluster is subjected to a uniaxial strain at its surface.
The resulting relative changes of the specific volume

V(r) Tr (()) ()

and the displacement

_u(_r) uo(_r), (2)

where u0__(r) denotes the given homogeneous displacement at the surface of the cluster
are plotted in Figures 1 to 3. For a medium with discontinuous elastic properties the
strain has to be discontinuous since the stress is always continuous. As a consequence
the field of the relative changes of the volume is discontinuous, which is apparent from
Figures l(a) to 3(a). At the grain boundaries the displacement has to be continuous
which is confirmed by Figures l(b) to 3(b) since it is impossible to resolve any grain
boundary. In the range of the applied displaying technique the displacerent field is
continuous.
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Figure 1 (a) Relative changes of the specific volume

6V(r)
Tr (=(r)) (1)

V0

in equidistant steps inside a cluster constituting of Wigner-Seitz cells of a simple cubic lattice that
are common cubes. The cut is taken through the center of the cluster (r 0) along the plane z
0 containing the strain axis. Because of the large number of grains, we only display a narrow region
centered at r 0.
(b) The displacement field u(r)- u(r) associated with the elastically deformed cluster shown in (a).
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Figure 2 (a) Relative changes of the specific volume and (b) displacement field inside a cluster
constituting of Wigner-Seitz cells of a body centered cubic lattice. The situation is the same as in
Figure 1.
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Figure 3 (a) Relative changes of the specific volume and (b) displacement field inside a cluster
constituting of Wigner-Seitz cells of a face centered cubic lattice. The situation is the same as in
Figure 1.
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After these introductory investigations we now calculate effective elastic moduli
depending on the grain shape. For simplification we examine only macroscopically
isotropic materials. Figure 4 and additionally Table 1 show the polycrystal constants
for copper. As has to be, all moduli lie within the bounds of Hill and nearly all moduli
fall within the bounds of Hashin and Shtdkman. The clusters consist of a number of
grains that is quite small in comparison with the great numbers used for statistical
investigations. For that reason the size of the grains is relatively large compared with
the size of the entire cluster. Therefore it is easy to understand that some values lie
a little outside the bounds of Hashin and Shtrikman, since the requirement that there

Table 1 Results for the moduli of macroscopically isotropic copper in GPa. The single crystal data
are taken from (Bradfield, 1962). The columns HS1 and HS2 contain the values of Hashin and
Shtrikman. The different grain shapes of the cluster method are labeled by fcc, bcc and sc (see text).

Reuss HS1 KrSner Cluster method HS2 Voigt
fcc bcc sc

B 137.6 137.6 137.6 137.6 137.6 137.6 137.6 137.6

_+0.0 _-+0.0 _+0.0

G 40.1 46.1 48.3 46.6 47.6 49.5 49.5 54.7

_+0.2 _-/-0.2 _-_+0.1

E 109.7 124.3 129.7 125.6 127.9 132.6 132.7 145.0
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Figure 4 The elastic moduli of macroscopically isotropic copper metal in GPa. We label the bounds
of Hill by Reuss and Voigt. The symbols HS1 and HS2 stand for the lower and upper bounds of
Hashin and Shtrikman (1962a,b), respectively. For every type of grain shape we have chosen 10 different
sets of random orientations of the crystal lattice inside the grains. The results for every set are displayed
by a short bar. We sign the different grain shapes by the common abbreviations for the Wigner-Seitz
cells constituting the cluster: sc (simple cubic), bcc (body centered cubic), fcc (face centered cubic).
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is no correlation between neighboring volume elements can only approximately be
fulfilled. The maximum difference of the effective moduli for different grain shapes
is about 6% of the average value for the three investigated types of cluster. In Figure
5 and Table 2 the results for graphite are presented. The values of Voigt and Reuss
and even the bounds of Hashin and Shtrikman vary enormously since single grains
of graphite are extremely anisotropic. Therefore the effective elastic constants depend
crucially on the grain shape. It is therefore absolutely necessary for the calculation of

Table 2 Results for the moduli of macroscopically isotropic graphite in GPa. The single crystal data
are taken from (Landolt-B/Srnstein, 1979). The columns HS1 and HS2 contain the values of Hashin
and Shtrikman. The different grain shapes of the cluster method are labeled by fcc, bcc and sc (see
text).

Reuss HS1 Kr6ner Cluster method HS2 Voigt
fcc bcc sc

B 35.8 42.0 88.5 104.9 120.1 138.4 204.2 286.3

+2.2 +3.4 +2.4

G 9.21 14.9 53.3 58.9 73.0 91.3 148.9 219.4

+0.9 +1.1 +1.2

E 25.5 39.9 133.1 148.9 182.2 224.5 359.4 524.2

+2.3 +3.0 +3.1
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Figure 5 The elastic moduli of macroscopically isotropic graphite in GPa. The situation is the same
as in Figure 4.
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reliable effective constants of graphite to take the grain shape into consideration. The
results for these two materials indicate an important effect which, is in more detail,
described in (Kiewel, Bunge and Fritsche, 1995): With increasing coordination number
of the grains the elastic moduli decrease.

Finally we show some results for the non-linear elastic moduli taken from (Kiewel,
Fritsche and Reinert, 1995). In Tables 3 and 4 the effective 3rd-order stiffnesses for
macroscopically isotropic aluminium and copper, respectively, are displayed. Especially
for copper there is a wide spread in the experimental values. Therefore they can hardly
serve as reliable values for the polycrystalline materials and a theoretical determination
becomes essential. For aluminium which has a very small anisotropy of the individual
grains, the Voigt value which is the average over all orientations, and the result of
the cluster approach, are nearly identical. Here, the Voigt value may serve as a criterion
to test the reliability of the extensive computer code used for the cluster method. For
the more anisotropic copper the Voigt value is less good and a calculation by use of
a cluster model becomes essential.

Table 3 Results for the non-linear effective stiffnesses of macroscopically isotropic aluminium in GPa.
The single crystal data are taken from (Landolt-Btimstein, 1992), the experimental data from
(Landolt-B6rnstein, 1984).

Voigt Cluster bcc Experiment

Cll -1506 -1496 -1479 -1634

C112 -302 -303 -287 -454

c23 -47 -51 -39 -204

c4 -128 -126 -124 -125

c55 -301 -298 -298 -295

c456 -87 -86 -87 -85

Table 4 Results for the non-linear effective stiffnesses of macroscopically isotropic copper in GPa.
The single crystal data are taken from (Landolt-B6rnstein, 1992), the experimental data from
(Landolt-Btimstein, 1984).

Voigt Cluster bcc Experiment

Cll -2470 -2187 -2745 -1753

C112 -544 -605 -313 -377

c123 -329 -288 -657 -173

c4 -107 -159 +172 -102

C155 -482 -395 -608 -344

c456 -187 -118 -390 -121
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CONCLUSIONS

The results of the present contribution show that the cluster method is a reliable tool
to determine linear and also non-linear elastic properties of polycrystalline materials.
The accuracy of this scheme is sufficient to resolve the influence of the grain shape
on the elastic constants. Further investigations will handle correlation effects between
different grains.

Acknowledgments

The present work was financially supported by the Deutsche Forschungsgemeinschaft
which is gratefully acknowledged.

References
Bradfield, G. (1962). Private communication to Kneer, G. (quoted in (Kneer, 1965)).
Hashin, Z. and Shtrikman, S. (1962a). On some variational principles in anisotropic and

nonhomogeneous elasticity, J. Mech. Phys. Solids, 1tl, 335.
Hashin, Z. and Shtrikman, S. (1962b). A variational approach to the theory of the elastic behaviour

of polycrystals, J. Mech. Phys. Solids, 10, 343.
Hill. R. (1952). The elastic behaviour of a crystalline aggregate, Proc. Phys. Soc., A 65, 351.
Kiewel, H. and Fritsche, L. (1994a). Calculation of average elastic moduli of polycrystalline materials

including BaTiO3 and high-Tc superconductors, Proc. ICOTOM-10, Materials Science Forum,
157-1112, 1609.

Kiewel, H. and Fritsche, L. (1994b). Calculation of effective elastic moduli of polycrystalline materials
including non textured samples and fiber textures, Phys. Rev., B 51, 5.

Kiewel, H., Fritsche, L. and Reinert, T. (199-5). Calculation of nonlinear effective elastic constants
of polycrystalline materials, Submitted to J. Appl. Phys.

Kiewel, H., Bunge, H. J. and Fritsche, L. (1995). Effect of the grain shape on the elastic constants
of polycrystalline materials, Submitted to Textures and Microstructures.

Kneer, G. (1964). Zur Elastizitt vielkristalliner Aggregate mit und ohne Textur, Doctoral Thesis,
Technische Universitt Clausthal.

Kneer, G. (1965). Ober die Berechnung der Elastizititsmoduln vielkristalliner Aggregate mit Textur,
phys. stat. sol., 9, 825.

Krtiner, E. (1958). Berechnung der elastischen Konstanten des Vielkristalls aus den Konstanten der
Einkristalle, Z. Phys., 151, 504.

KriSner, E. (1977). Bounds for effective elastic moduli of disordered materials, J. Mech. Phys. Solids,
25, 137.

Kumar S. (1992). Computer simulation of 3D material microstructure and its application in the
determination of mechanical behavior of polycrystalline materials and engineering structures, Ph.
D. Thesis, Pennsylvania State University.

Landolt-B/Srnstein (1979). Elastic, Piezoelectric and Related Constants, Group III of New Series Vol.
11, Springer, Heidelberg.

Landolt-B/Srnstein (1984). Elastic, Piezoelectric and Related Constants, Group III of New Series Vol.
18, Springer, Heidelberg.

Landolt-BSrnstein (1992). Elastic, Piezoelectric and Related Constants, Group III of New Series Vol.
29a, Springer, Heidelberg.

Morals, P. R. (1971). Iterative scheme for calculating polycrystal elastic constants, Int. J. Eng. Sci.,
9, 917.

Reuss, A. (1929). Berechnung der Flieflgrenze von Mischkristallen auf Grund der Plastizititsbedingung
ftir Einkristalle, Z. Angew. Math. Mech., 9, 49.

Voigt, W. (1910). Lehrbuch der Kristallphysik, Teubner, Berlin.
Zeller, R. and Dederichs, P. H. (1973). Elastic Constants of Polycrystals, phys. stat. sol. (b) 55, 831.


