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A self-consistent numerical simulation model for a pin single-cell solar cell is formulated.
The solar cell device consists of a p-A1GaAs region, an intrinsic i-A1GaAs/GaAs
region with several quantum wells, and a n-A1GaAs region. Our simulator solves a
field-dependent Schr6dinger equation self-consistently with Poisson and drift-diffusion
equations. The field-dependent Schr6dinger equation is solved using the transfer matrix
method. The eigenfunctions and eigenenergies obtained are used to calculate the escape
rate of carriers from the quantum wells, the capture rates of carriers by the wells, the
absorption spectra in the wells, and the non-radiative recombination rates of carriers in
the quantum wells. These rates are then used in a self-consistent finite-difference
numerical Poisson-drift-diffusion solver. We believe this is the first such comprehensive
model ever reported.
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1. INTRODUCTION

The conversion efficiency of a single cell pin solar
cell can be enhanced by incorporating quantum
wells in the intrinsic region of the device. [1] The
incorporation of the quantum wells has two
counteracting effects: the short-circuit current is
increased because of the additional absorption of
the low-energy photons in the lower bandgap
quantum well and the open-circuit voltage is
decreased because of the increase in the recombi-
nation of the photoexcited carriers trapped in the

quantum well. Experimental results have shown,
nevertheless, that the additional photocurrent
resulting from the extension of the absorption
spectrum to lower energies can outweigh the
accompanying drop in the open-circuit voltage
[2-3].
Along with these experimental studies, a number

of theoretical investigations have been performed.
Corkish and Green [4] studied the effects of
recombination of carriers in the quantum well
and concluded that although the increased recom-
bination reduces the open-circuit voltage, limited
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enhancement in the conversion efficiency can be
obtained with incorporation of the quantum well,
albeit not as much as previously reported by
Barnham and Duggan [1]. Araujo et al. [5] used
detailed balance theory and predicted that the
conversion efficiency of the quantum well cell
would not exceed that of the base-line device. The
results of photoresponse calculations by Renaud
et al. [6] revealed that introducing the quantum
wells can lead to improved photocurrent without
much degradation of the open-circuit voltage.
Most recently, Anderson [7] presented an ideal
model for the quantum well solar cell device,
incorporating the recombination and generation in
the quantum wells. Anderson concluded that the
improvement in efficiency is achieved only when
the depth of the quantum well is less than about
200 meV.
The need for a comprehensive model is rather

obvious, now that there seems to be an unsolved
debate as to the ultimate advantage of incorporat-
ing quantum wells in the intrinsic region of a pin
solar cell. In this paper we present formulation of
one such model in which we self-consistently
include the effects of:

1) Capture of electrons by the wells,
2) Escape of electrons from the wells,
3) Absorption of light in the wells, and
4) Recombination of carriers in the wells.

The standard drift-diffusion equations are mod-
ified to account for generation and recombination
in the quantum wells and the transfer of electrons
and holes between the bulk and quantum well
systems.

2. SELF-CONSISTENT MODEL

The steady-state transport of carriers in the pin
structure is described by current continuity equa-
tion written for the bulk regions as:

Onb nw nb dJn =o,
Ot "ren - q dx

where nb and nw are electron densities in the bulk
and quantum wells, respectively. Jn is electron
current density. The two additional terms to the
standard bulk current continuity equation incor-
porate the effect of carrier transfer into and out of
the quantum wells. The terms nw/%n and nb/7 are
the electrons escape and capture rates, respec-
tively. These rates are also used in the continuity
equations for the quantum wells, as given by:

Onw nb nw
at 7-f 7-en

f- Gw Uw O. (2)

In the above equations -en and %n are the
electrons escape and capture times, respectively.
The escape times of carriers are calculated using
the model reported by Moss et al. [8] and capture
times are extrapolated from theoretical and experi-
mental data reported by Blom et al. [9]. Similar
equations are written for holes. The boundary
conditions for continuity equations are derived
from surface recombination velocity model.

In the above continuity equations, the recombi-
nation in the bulk is modeled with radiative and
non-radiative mechanisms. The term Gb is bulk
generation rate and is given by:

Ac
ab Nigh" exp ( foX a()dx) ] dA

(3)

where Ac is set to correspond to the bandgap of the
material. The recombination in the quantum well

Uw is a modified Shockley-Read-Hall recombina-
tion rate given by:

Uw CrnCrpvthNt[pn pn]
(4)

Crn[n + n,] + Crp[p 4-p,]

where the trap density, Nt, is derived from the
density of the interface states. The generation term

Gw is calculated from Eq. (3) with the bulk
absorption coefficient replaced with that of the
quantum well. The absorption coefficients of the
quantum wells are calculated by a model reported
by Stevens et al. [10].
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Calculation of the absorption spectra in the
quantum wells as well as the escape and capture
times of carriers require the eigenfunctions and
eigenenergies of the carriers in the quantum wells,
which are obtained from a field-dependent
Schr6dinger equation given by:

3. RESULTS

The energy band diagram of the pin solar cell
device with four quantum wells in the intrinsic
region is shown in Figure 1. We simulated five pin
devices all with a acceptor doping level of 108/cc

h d d
2 dx m* (x) dx - V(x) (x) Eifl(x) (5)

where (x) is the envelope function, Ei are the
eigenenergies and V(x) is the potential profile.
Non-constant effective mass m*(x) is assumed.
The Schr6dinger equation is solved using the
transfer matrix method [11]. The above equations,
together with Poisson and drift-diffusion equa-
tions are solved using a finite difference scheme.

FIGURE Energy band diagram of the solar cell with four
quantum wells.
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FIGURE 2 Dark characteristics of MQW pin solar cells.
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and donor doping level of 4 x 1017/cc in the 0.2

lam p-region and 0.3 lam n-region, respectively. The
intrinsic region of all five devices is 0.5 lam. The
first device is a base-line GaAs, the second device
is a base-line A1GaAs device and the remaining
three devices are A1GaAs devices with 1, 10 and 20
quantum wells, respectively. The mole fraction of
A1 is 0.3 in all A1GaAs devices and all quantum
wells are 100 wide.
We simulated the dark characteristics of all five

cells and the results are shown in Figure 2. Because
the model incorporates both radiative and non-
radiative recombination for the bulk material, the
slope of the dark current is qv/nkT, with the
ideality factor n ranging from one for exclusively
radiative recombination to two for exclusively
non-radiative. In the pin devices without quantum
wells, n approaches one at high forward bias where
radiative recombination becomes more important.
At low biases the non-radiative recombination
dominates and n is 1.9 for the A1GaAs device at
0.1 volts applied.
The recombination in the quantum wells is

modeled as non-radiative interface recombination
using a modified Shockley-Read-Hall expression.
With the introduction of quantum wells into the
pin device, this non-radiative recombination dom-
inates at all biases and the ideality factor equals
about 1.7 for all the quantum well devices. The
observed crossover of the i-v curves of the
quantum well devices and the GaAs device has
also been reported by Ragay et al. [3].
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