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The use of a wavelet basis can lead to efficient methods for performing ab initio
electronic structure calculations of inherently localized structures. In this work wavelets
are used to construct an adaptive basis which is optimized dynamically throughout the
calculation. The computational effort of such a method should scale linearly with the
number of basis functions. The adaptive basis is tested for the case of bulk Si using only

a local s-pseudopotential.
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INTRODUCTION

Much progress has been made in the area of ab
initio electronic structure calculations using the
local density approximation (LDA) of density
functional theory (DFT). Within DFT the total
energy is considered to be a functional of the
electron density. The electronic ground state is
found by minimizing this total energy, leading to
the solution of the Kohn-Sham single-particle
Schrodinger equation.

Despite its advantages, the commonly used
plane wave (PW) basis possesses serious draw-
backs when applied to localized systems. Examples
of such systems include those with deep atomic
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pseudopotentials, e.g., oxygen, or structures of a
localized nature, e.g., molecules, surfaces and
interfaces. In such cases a prohibitively high energy
cutoff is required to provide the necessary resolu-
tion. Due to the delocalized nature of the PW basis
functions, this increase in resolution is applied
globally even though the increased resolution is
needed in an essentially localized region of space.

As a result of these problems various alternatives
to the PW method have been proposed. Most can
be classified as real-space methods. These include
the use of adaptive curvilinear coordinates [1], finite
difference [2] and multigrid [3] methods as well as
wavelet bases. It is the use of a wavelet basis which
will be the topic of this paper.
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The use of a wavelet basis for electronic
structure calculations was first proposed by Cho
et al. [4] where non-orthonormal wavelets were
used. The work of Wei and Chou [5] used the
compact orthonormal wavelets constructed by
Daubechies [6]. The same Daubechies wavelets
are used in our work. In addition, both Ref. [4]
and Ref. [5] used a basis that was predetermined
by simple physical arguments and remained fixed
throughout the calculation. In our work a truly
adaptive basis is used which does not rely on any a
priori assumptions, but instead allows the calcula-
tion to dynamically determine the optimum basis
for each electronic orbital. Our work is also unique
in that the entire calculation is performed in a
wavelet basis. This creates the possibility for a
general method where both the execution time and
storage scale linearly with the number of basis
functions used to represent each electronic orbital.

WAVELET BASIS

A detailed discussion of wavelets can be found in
Ref. [6]. A wavelet basis forms a multiresolution
analysis (MRA). Such an analysis represents a
function as the limit of increasingly finer approx-
imations, with each approximation being the result
of smoothing, or averaging, the function over
some fixed length scale. The result is a series of
embedded function spaces V,, such that

V2 C Vi1 CVin C Vi1 CT Vi -

A Dbasis spanning each function space, or
approximation space, can be constructed from
the translations of some localized function ¢(x)
known as the scaling function. Thus, a basis for
the approximation space V,, can be written
{Gm(x) = 2"2p(2"x — n), n € Z}. The corres-
ponding characteristic length scale is ~ 27, The
MRA can be seen to be generated by this ‘mother
scaling function’ ¢(x). The choice of the mother
scaling function is in fact the beginning of the
MRA which generates a wavelet basis.

Next, consider the projection of a function onto
two successive approximation spaces V,,,and V,, 1 1.
Information is lost when going from the finer
approximation to the coarser one. This leads to
the introduction of an additional function space W,
defined to be the orthogonal complement of V,, in
Vipst, 1.6, Vi ® W,u=V,o1 and V,,, L W,,. This
function space, or detail space, W, contains the
information which is lost when making the coarser
approximation. Conversely, the finer approxima-
tion of a function can be constructed from its
projection onto the coarser approximation space
plus its projection onto the associated detail space.

A basis spanning each detail space can be
constructed from the translations of some loca-
lized function (x), known as a wavelet. Thus,
W,, may be spanned by {1, = 2"/?h(2"x — n),
n € Z}. Here the function 1(x) is known as the
‘mother wavelet’ and is directly related to the
associated mother scaling function used to gen-
erate the MRA. It is the combination of scaling
functions and wavelets which are commonly
referred to as a wavelet basis.

There exist a wide variety of wavelets con-
structed to have different properties. In this work
we use two types of wavelets, specifically the
wavelet known as Daubechies-6 (Dg) and the Haar
wavelet. In Figure 1 and Figure 2 the mother
scaling function and mother wavelet are shown for
Ds. Both wavelets are compact, complete and
orthonormal. In addition, the Dg wavelet has a
continuous first and second derivative.

The expansion of some function f(x) onto a
wavelet basis will therefore have the form of an
expansion onto the translations of some coarse
scaling function plus the detail of the expansion
onto the translations and dilations of the associ-
ated wavelet,

+00  +00
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The infinite sums over all translations can be
removed by imposing periodic boundary condi-
tions, which leads to periodized wavelets. A three
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FIGURE 1 Real space plot of the Daubechies-6 mother
scaling function.
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FIGURE 2 Real space plot of the Daubechies-6 mother
wavelet.

dimensional basis can be constructed from tensor
products of the one dimensional basis.

One of the key properties of a wavelet basis is its
ability to represent the localized detail of a
function using a small number of wavelets. This
is a result of the fact that the wavelet expansion
coeflicients, f,,, in Eq. (1), will decay rapidly with
increasing m> M, where the local smoothness of
the function can be characterized by the length

!Atomic units are used throughout.

scale ~27M. If the magnitude of the expansion
coefficient is less than some threshold which is small
compared to the norm of the function, then no
further detail is needed in that region. This leads to
the idea of a ‘compressed basis’, the structure of
which is determined by the above criteria, forming
a minimal basis set representation for a specific
function. Such a compressed basis will be used to
represent the electronic orbitals in the electronic
structure calculation.

CALCULATION

The electronic structure of the system is deter-
mined here using the local density functional
theory neglecting the spin. Therefore we determine
the electronic ground state by solving the Kohn-
Sham equation’,

Hys ¢i(r) = Eivi(r) (2)

where the electron density is given by p(r)
=23 Ji(r)|* for a 2N-electron system since
each state r) is doubly-occupied [7]. Details
of this equation and methods of solution can be
found in Ref. [8].

A wavelet based Laplacian operator is needed
for the kinetic energy term of the Kohn-Sham
Hamiltonian as well as in the solution of Poisson’s
equation. This Laplacian operator is performed by
matrix multiplication. The elements of the differ-
entiation matrix are pre-calculated using the
method described in Ref. [9] The solution of
Poisson’s equation in a wavelet basis is by itself an
interesting topic. The efficiency of the wavelet basis
in this problem is well established [10].

The operation involving the multiplication of
the wave function by the local potential is
performed using the following algorithm. First,
both the wave function and the local potential are
mapped from a D¢ wavelet representation to a
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Haar wavelet representation using a transform.
Then, the two functions are multiplied in their Haar
representations. The product is then mapped back
to a Dg wavelet representation using an inverse to
the transform mentioned above. Thus, the multi-
plication is performed entirely in a wavelet basis.

The electronic ground state of the system is
found by solving Eq. (2) iteratively. The wavelet
basis is held fixed until convergence is achieved.
The basis is then compressed, removing unnece-
ssary basis functions. Then basis functions are
added to effectively double the resolution globally.
This is necessary to allow the basis to ‘grow’ to the
optimum structure. With this new basis, the total
energy is again minimized and the process is
repeated.

RESULTS

We have tested this method by applying it to a
supercell containing 8 Si atoms located at their
bulk positions and using a local s-pseudopotential.
First, a simpler calculation is performed where the
multiplication of the electronic orbital with the
local potential is performed by first mapping both
functions to real space via a fast wavelet transform,
multiplying the two functions and then mapping
back to wavelet space. This procedure is similiar to
that used in Ref. [5]. In this calculation there is no
compression since the full cubic grid must be used.
This “full grid” method is performed for increasing
grid sizes of 4% 8 16> and 32°. The results are
shown in Figure 3. The correct degeneracies (1-6-
6-3) of the 16 eigenvalues are achieved consistent
with the symmetry of the problem.

Next, the same calculation is performed with an
adaptive wavelet basis. Here, the multiplication is
performed using the algorithm, described above,
where the entire calculation is performed in a
wavelet basis. The correct degeneracies are again
achieved to within 10™* a.u. The adaptive basis
converges to the correct eigenvalues. For the three
lowest levels the convergence requires less basis
functions.
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FIGURE 3 Eigenvalues of the Kohn-Sham Hamiltonian for a
supercell containing 8 Si atoms. A local s-pseudopotential is
used. The eigenvalues are plotted vs. (basis size)'/*>. Compari-
sion is between the adaptive and non-adaptive calculations
indicated by the solid and dashed lines, respectively.

CONCLUSION

We have demonstrated that it is possible to
minimize the total energy in an electronic structure
calculation while simultaneously optimizing the
wavelet basis set used to represent each electronic
orbital. This general method should lead to
efficient, potentially linearly scaling electronic
structure calculations. Furthermore, if the atoms
are allowed to move as in a molecular dynamic
simulation, the adaptive basis should adjust to the
needs of the structure. Presently, the various
corrections resulting from exchange-correlation
and non-local effects need to be implemented to
perform calculations precise enough to compare
with other more established methods. The advan-
tages of an adaptive wavelet basis should lead to
efficient methods when applied to larger, localized
structures.

Acknowledgements

This work was supported by the Office of Naval
Research and the Army Research Office.



ELECTRONIC STRUCTURE CALCULATIONS 163

References

[11 Gygi, F. and Galli, G. (1995). Phys. Rev., B52, R2229.

[2] Chelikowsky, J. R., Troullier, N. and Saad, Y. (1994).
Phys. Rev., B50, 11355.

[3] Briggs, E. L., Sullivan, D. J. and Bernholc, J. (1996). Phys.
Rev., B54, 14362.

[4] Cho, K., Arias, T. A., Joannopoulos, J. D. and Lam,
Pui K. (1993). Phys. Rev. Lett., 71, 1808.

[S] Wei, S. and Chou, M. Y. (1996). Phys. Rev. Lett., 76, 2650.

[6] Daubechies, 1. (1992). Ten Lectures on Wavelets (SIAM,
Philadelphia).

[71 Kohn, W. and Sham, L. J. (1965). Phys. Rev., A140, 1133.

[8] Stich, I., Car, R., Parrinello, M. and Baroni, S. (1989).
Phys. Rev., B39, 4997.

[9] Beylkin, G. (1992). SIAM J. Numer. Anal., 6, 1716.

[10] Goedecker, S. and Ianov, O. V., unpublished.

Author’s Biographies

David A. Richie received his B.S. degree in
electrical engineering from the University of
Wisconsin-Madison. He is currently a doctorate
student at the University of Illinois at Urbana-
Champaign where he is working towards a Ph.D.
in physics. He was previously a student fellow at
Sandia National Laboratories where his research
involved the study of vertical cavity surface
emitting lasers. He is currently studying the use
of adaptive wavelet bases in electronic structure
calculations and molecular dynamics simulations.

Paul von Allmen obtained his B.S. and Ph.D. in
Physics from the Swiss Federal Institute of
Technology at Lausanne, Switzerland. He joined
the Zurich IBM Research Laboratory as a
Postdoctoral Research Associate in 1990 and was
an Invited Scholar at the Beckman Institute,
University of Illinois at Urbana-Champaign from
1992 to 1997. He presently is a Senior Scientist at
the Motorola Phoenix Corporate Research La-

boratories. His interests include subband struc-
tures and many-body effects in confined electron
systems and dynamical properties of nanostruc-
tures and surfaces. He has performed ab initio
simulations of hydrogen and deuterium desorption
from a silicon surface. He presently investigates
the field emission properties of carbon materials.

Karl Hess has dedicated the major portion of his
research career to the understanding of electronic
current flow in semiconductors and semiconductor
devices with an emphasis on effects pertinent to
device miniaturization. He is currently the Swan-
lund Professor of Electrical and Computer En-
gineering, Professor of Physics, Adjunct Professor
for Supercomputing Applications and a Research
Professor in the Beckman Institute working on
topics related to Molecular and Electronic Nanos-
tructures. He has received numerous awards
including the IEEE David Sarnoff Field Award
for electronics in 1995.

Richard M. Martin is Professor of Physics at the
University of Illinois, Urbana-Champaign. His
area of research is theoretical condensed matter
physics, with emphasis on the electronic structure
of materials and quantum devices. The primary
goals of his research are to predict the properties
of real systems by simulating the many-body
quantum system of electrons using density func-
tional and quantum Monte Carlo methods and
advanced computational methods. He received his
Ph.D. in physics from the University of Chicago
and has worked at Bell Laboratories and the
Xerox Palo Alto Research Center. He is a fellow of
the American Physical Society and the American
Association for the Advancement of Science.



- i

/> . =
= &

Advances in

Civil Engineering

Journal of

Robatics

Advances in
OptoElectronics

International Journal of

Chemical Engineering

The Scientific
WQrId Journal

International Journal of

Rotating
Machinery

Journal of

Sensors

Hindawi

Submit your manuscripts at
http://www.hindawi.com

Y :-
.

VLSI Design

‘.
.

Internatio Urna
Antennas and
Propagation

Modelling &
Simulation
in Engineering

International Journal of
Navigation and
Observation

e

Active and Passive
Electronic Components

Shock and Vibration

International Journal of

Distributed
Sensor Networks

Journal of
Control Science
and Engineering

Journal of
Electrical and Computer
Engineering

International Journal of

Aerospace
Engineering



