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We present systematic theoretical Cellular Automata (CA) studies of a novel nanometer
scale Si device, namely vertically grown Metal Oxide Field Effect Transistors
(MOSFET) with channel lengths between 65 and 120 nm. The CA simulations predict
drain characteristics and output conductance as a function of gate length. The excellent
agreement with available experimental data indicates a high quality oxide/semiconduc-
tor interface. Impact ionization is shown to be of minor importance. For
inhomogeneous p-doping profiles along the channel, significantly improved drain
current saturation is predicted.
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1 INTRODUCTION

As a numerically very efficient discrete variant of
the Monte Carlo (MC) technique [1], the CA [2]
method significantly reduces the gap in computa-
tional speed between simulation techniques based
on solving the full Boltzmann equation, and
moment-based approaches such as the hydrody-
namic method. The CA method is therefore
particularly suited to simulate highly nonlinear
charge transport, typical for the ultra-short devices
described in this paper.

2 VERTICAL MOSFET

Molecular Beam Epitaxy (MBE) and Chemical
Vapor Deposition (CVD) allow the realization of

vertical devices with characteristic channel lengths
well below 0.1 tm. Recently, CVD epitaxy was
utilized to grow vertical MOSFET’s with ultra
short channels (see [3, 4]). The epitaxially grown
layer structures are selectively etched to a depth of
0.8 tm and thermally oxidized to grow the SiO2
gate dielectric with a thickness of 5 nm. The
quality of the oxide is comparable to planar
structures. Figure shows the cross section of
such a vertical MOS [4]. The simulated geometry is
shown on the left side of the figure, and corres-
ponds to one half of the real device.

Devices with different doping levels and channel
length were fabricated. The doping concentra-
tion in the source and drain n + regions are in the
range 1018 cm-3 .’- 2 x 1019 cm-3, while the p-buffer
layer contains an acceptor concentration of
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2 x 1018 cm-3. These devices were grown with an
effective channel length varying from 65 to 170 nm.
To investigate the influence of nonlinear trans-

port on the electrical characteristics of such ultra
short devices, we performed systematic calcula-
tions for all the realized structures and compare
our results to experimental data. We further
explore the influence of inhomogeneous p-doping
along the channel in improving the drain current
saturation behavior.
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2.1 Current-Voltage Curves

As a critical test for the nominal geometry settings
like oxide thickness and p-doping level, we have
compared the experimental and calculated sub-
threshold behavior of the devices described above.
Excellent agreement was obtained for several
devices with different geometries and doping
concentrations, which indicates that the nominal
and technologically realized values of the geometry
agree well with each other. This is exemplified in
Figure 2 for the 65 nm CVD vertical MOSFET
structure. There, the applied drain voltage is 0.5 V.

Based on these geometries, we investigated the
drain current saturation behavior of the vertical
MOSFET for different channel lengths. Figure 3
shows the output current versus drain voltage for
three different channel lengths of 170 nm, 120 nm
and 65 nm, respectively. The bias of the gate was
fixed to the value of 2V. Clear drain current
saturation behavior is found even for the ultra-
short, 65 nm device. The increasing output current
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FIGURE Layout of the vertical CVD-EPI MOS. The
growth direction is shown, while the equivalent simulated
region, is on the right side.

FIGURE 2 Sub-threshold output current of the simulated
device versus gate voltage when a low (VI 0.5 V) drain bias is
applied.
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FIGURE 3 Computed (points) and experimental (full lines)
current-voltage characteristics with decreasing channel length
at VG 2 V gate bias.

and output conductance with decreasing channel
length reflect a strong barrier reduction at the
source junction. Nevertheless, even for high bias
condition, no parasitic charge transport occurs in
the bulk parallel to the conduction channel. The
increase of drain current and output conductance
due to the electrostatic effects mentioned above are
further enhanced by velocity overshoot in the
shorter channels. This velocity overshoot is driven
by a high, inhomogeneous electric field along the
channel. For the 65 nm n-p-n + structure biased at

VD VG 2 V, we find a peak value of 800 kV/cm
at the n +p drain junction.
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For this bias condition, the average electron
velocity in the conduction channel of the 65 nm
device is shown in Figure 4. Pronounced velocity
overshoot is evident all along the conduction
channel, the maximum velocity being reached at
the drain end of the p-buffer, where it peaks to a
value of three times the saturation velocity in
homogeneous Si.
The overall agreement for the complete current-

voltage characteristics between the CA results and
experimental data is exemplified for the 70 nm
device in Figure 5. For this device, simulations were
performed up to a bias value of VD 2.5 V, to

investigate the occurrence of impact ionization at

higher bias. Up to the highest bias point shown,
negligible contributions due to impact ionization
were found. However, this process becomes im-
portant at higher drain bias. Analogous results
were found for the 65 nm device.

2.2 Bulk Effects

The potential barriers due to the np (source) and
pn (drain) junctions prevent a parasitic bulk
current from flowing parallel to the channel
inversion layer. At the same time, the electric field
due to these junctions can reach high values, giving
rise to impact ionization or even field breakdown.
Optimization of such devices must account for the
electrostatic behavior of the bulk region in order
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FIGURE 5 Computed (points) and experimental (full lines)
current-voltage characteristics of the 70 nm vertical MOS-
FET.

to improve saturation and avoid impact ionization
at a given operating bias. Figure 6 (left) shows the
concentration of carriers in the bulk 65 nm n+pn
system when a bias of 2 V is applied between the n
and n + regions corresponding to the source and
drain of the device shown in Figure 1. The fact
that the potential barrier due to the npn junction
(Fig. 6) is still intact at this drain bias ensures that
no parasitic bulk current is flowing.

2.3 Design Optimization

In order to improve the saturation behavior of the
vertical MOSFET, an additional 20 nm p+-buffer
was introduced in the central p-region. The chosen
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FIGURE 4 Average drift-velocity of electrons in the CVD-
EPI MOSFET of Figure 1" a pronounced velocity overshoot is
evident in the p-buffer.

FIGURE 6 Carrier concentration (left) and potential profile
(right) in the bulk n-p-n structure present in the vertical 65 nm
MOSFET.
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doping concentration in this p+-buffer is
3x1018 cm-3 The buffer was placed 10nm from
the n-p source junction. The buffer extension and
position were optimized to reduce the influence of
the drain potential on the output current, thus
improving the saturation behavior. Its separation
from the n-p source junction keeps the value of the
junction field low enough to avoid impact ioniza-
tion. Additionally, punch-through action is reduced
due to the higher doping, which is crucial for devices
with shorter channels. The drain current reduction
due to the presence of the buffer was compensated
by reducing the oxide thickness to 4 nm.

Simulation results for the device with the p+-
buffer are compared in Figure 8 with measure-
ments made on a transistor with a homogeneously
doped channel. The saturation behavior is re-
markably improved compared to the character-
istics shwon in Figure 5, and the reduced oxide
thickness completely compensates the current
reduction due to the p+-buffer.

3 CONCLUSIONS
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FIGURE 8 Improved saturation behavior of the simulated
MOSFET after adding an additional 20 nm p+ buffer. The
simulation results (full lines) are compared with experimental
data of Figure 5.

excellent agreement with the experiments. The
crucial role of the bulk parasitic conduction was
stressed, and an optimized device design was
proposed which improves the overall performance
of the device.

The capability of the CA approach to accurately
predict highly nonlinear transport behavior and
the resulting electrical characteristics in real
nanostructured semiconductor devices was de-
monstrated. A novel family of vertical MOSFET’s
was investigated, giving results which are in
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FIGURE 7 Cross-section of the saturation optimizing geo-
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