VLSI DESIGN

1998, Vol. 8, Nos. (1--4), pp. 123-128
Reprints available directly from the publisher
Photocopying permitted by license only

© 1998 OPA (Overseas Publishers Association) N.V.
Published by license under

the Gordon and Breach Science

Publishers imprint.

Printed in India.

Multilevel Algorithms for Large-scope Molecular Dynamics
Simulations of Nanostructures on Parallel Computers

AIICHIRO NAKANO*, RAJIV K. KALIA and PRIYA VASHISHTA

Concurrent Computing Laboratory for Materials Simulations, Department of Computer Science,
Department of Physics and Astronomy Louisiana State University, Baton Rouge, LA 70803-4020

Molecular Dynamics (MD) is a powerful tool for the atomistic understanding of long-
range stress-mediated phenomena, phonon properties, and mechanical failure of
nanostructures. For realistic modeling of nanostructures, however, the scope of
simulations must be extended to large system sizes, long simulated times, and complex
realism. We have developed new multilevel algorithms and physical models encom-
passing multiple levels of abstraction: i) space-time multiresolution schemes; ii) adaptive
curvilinear-coordinate load balancing; iii) hierarchical dynamics via a rigid-body/
implicit-integration/normal-mode approach; iv) variable-charge MD based on electro-
negativity equalization; and v) multilevel preconditioned conjugate gradient method.
Fuzzy clustering is used to facilitate the seamless integration of the multiple levels of

abstraction.
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As new fabrication technologies for quantum
nanostructures emerge (such as strain-induced
self-organized growth [1] and substrate encoded
size-reduced epitaxy [2] ), there is growing need for
hybrid atomistic/mesoscopic computer simula-
tions. Molecular Dynamics (MD) [3] is a powerful
tool for the atomistic understanding of long-range
stress-mediated phenomena, phonon properties,
and mechanical failure of nanostructures. For
realistic modeling of nanostructures, however, the
scope of simulations must be extended to larger
system sizes, longer simulated times, and more
complex realism than what has been feasible until
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recently. In this paper we describe various new
multilevel algorithms for large-scale, long-time
MD simulations.

InMD simulations, asystemisrepresented by a set
of atomic coordinates, {x;/i = 1,..., N}, where N is
the number of atoms. Time evolution of the system is
governed by Newton’s second law of motion [3],

dZX,'

e = gi(x), )
where m; and g{{x;})=—0V/0x; are the mass and

force for the i-th atom. The potential energy
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function V({x;}) consists of a sum over atomic
pairs and triples [4].

The most prohibitive computational problem in
MD simulations is associated with the Coulomb
potential. Because of its long range, each atom
interacts with all the other atoms in the system.
Therefore the evaluation of the Coulomb potential
requires O(N?) operations. An MD algorithm is
developed based on multiresolutions in both space
and time [5]. The long-range Coulomb interaction
is computed with the Fast Multipole Method
(FMM) [6, 7]. The FMM uses the truncated multi-
pole expansion and local Taylor expansion for the
Coulomb potential field (see Fig. 1). By computing
both expansions recursively on a hierarchy of cells,
the Coulomb potential is computed with O(N)
operations. Short- and medium-range non-
Coulombic interactions are computed with the
Multiple Time-Scale (MTS) approach [8,9]. The
MTS method is based on the fact that the
farther the distance between particles the slower
is the time variation of forces. Therefore different
time steps are used to computer forces for diffe-
rent interparticle separations. To implement this
MultiResolution Molecular Dynamics (MRMD)
algorithm on parallel computers, we use spatial
decomposition. Processors are logically orga-
nized as a cubic array of dimensions P, x P,
x P,, and we partition the simulation system into
subsystem into subsystems of equal volume
accordingly (Fig. 2). For a 4.2 million-atom SiO,
system, one MD step takes only 4.8 seconds on the
512-node Intel Touchstone Delta machine [5]. The
memory-bound parallel efficiency [10] of the
program is 0.92 and the communication overhead
is 8%.

Simulation of nanostructures is often character-
ized by irregular atomic distribution. One practical
problem in simulating such irregular systems on
parallel computers is that of load imbalance [11].
Because of the irregular distribution of atoms, the
uniform spatial decomposition results in unequal
partition of workloads among processors. As a
result the parallel efficiency is degraded signifi-
cantly.
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FIGURE 1 Schematic representation of spatial multiresolu-
tion for a two-dimensional system. (Left) A hierarchy of cells in
the fast multipole method. (Right) The direct forces on a
particle (solid circle) are due to the primary (open circles within
the hatched area), secondary (open circles within the shaded
area), and tertiary (the other open circles) neighbor atoms.
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FIGURE2 Regular spatial decomposition scheme for parallel
computing. (Left) The physical system is divided into sub-
systems of equal volume. Spheres and planes represent atoms
and subsystem boundaries, respectively. (Right) Each subsys-
tem is mapped onto a computing node in a parallel computer.

To avoid this problem, a dynamic-load-balan-
cing capability is added to the MRMD program
[12]. The new load-balancing scheme introduces a
curvilinear coordinate system [13], & which is
related to the atomic coordinate, X, by a mapping,

£=x+ xpexp(iQx). 2)
)

Workloads are partitioned with a uniform 3-
dimensional mesh in the curvilinear coordinate
system. The variational parameters {x,} are
chosen to minimize the load-imbalance and com-
munication costs. Simulated annealing is used to
solve the optimization problem. For an irregular
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nanocluster-assembled material, the load-balan-
cing scheme sped up simulations by a factor of 4.2
[12].

Many important material processes (e.g., sinter-
ing and sol-gel processes) are characterized by time
scales that are many orders-of-magnitude larger
than atomic time scales (10 '°sec). A new
algorithm is developed for large-scale, long-time
MD simulations by combining a hierarchy of
subdynamics (Fig. 3) [14]. Equation (1) is
numerically integrated using a reference system
r;, which represents two types of essential dy-
namics, i.e., global conformational changes and
fast atomic oscillations. The reference system is
thus defined as a superposition, r; = ry; + Iy,
where ro; and r;,; are the collective and harmonic
parts, respectively.

The collective part of the reference system
represents the rigid-body motion of clusters. We
use the quaternion formulation of rigid-body
dynamics in order to avoid the numerical singu-
larity associated with angular coordinates [15]. A
large time step (1072 sec) is used for the numerical
integration. The harmonic part r,; of the reference

Slow Cluster Motion:
Quaternion-based
Rigid-body Dynamics

Anharmonic Mation at the Neck:
~ Implicit Integration

Fast Atomic Oscillation:
Normal-mode Analysis

FIGURE 3 Various physical processes involved in the sin-
tering of nanoclusters. i) Relative rotation of clusters is included
by rigid-body dynamics with fuzzy clustering; ii) anharmonic
atomic motions lead to surface diffusion and the growth of the
neck between clusters, and these motions are included by
implicit integration of Newton’s equations; iii) thermal atomic
motions assist the above diffusion process, and these high-
frequency motions are dealt with through the normal-mode
analysis.

system represents the fast oscillation of each atom
around the local potential minimum, and its
equation of motion can be integrated analytically
in terms of trigonometric functions [16]. The
residual system, defined as z;=x; — r;, is expected
to vary slowly, since the rapidly oscillating
harmonic motions have been subtracted. There-
fore its equation is integrated by an implicit
integration scheme using A¢ which is much larger
than atomic time scales [17]. The integration
scheme is stable for an arbitrarily large A¢, and
it is also symplectic [17]. Symplectic integrators
preserve the phase-space volume, and this is
essential for the long-time stability of orbitals.

The greatest challenge, however, is to integrate
these heterogeneous abstraction levels into a
seamless, unified scheme. To facilitate such inte-
gration, we find it useful to introduce the concept
of fuzzy clustering [18, 19]. We introduce a mem-
bership function P(i€c) which describes the
degree of association between atom i and cluster
¢. The principle of maximum entropy is used to
determine P (i€ c). The fuzzy-body/Implicit-inte-
gration/Normal-mode (FIN) scheme sped up a
simulation of nanocluster sintering by a factor of
28 over a conventional explicit integration scheme,
without loss of accuracy. A parallel implementa-
tion of the scheme achieves an efficiency of 0.94 for
a 12.7 million-atom nanocrystalline solid on 64
nodes of an IBM SP2 computer [14].

Conventional interatomic potential functions
used in MD simulations are often fitted to bulk
solid properties, and they are not transferable to
systems containing defects, cracks, surfaces, and
interfaces. In these systems, the partial charges on
the atoms vary dynamically according to the
change in the local environment. This environ-
ment-dependent charge distribution is crucial for
the physical properties of these systems including
the fracture toughness. Transferability of intera-
tomic potentials is greatly enhanced by incorpor-
ating variable atomic charges which dynamically
adapt to the local environment. Atomic charges
can be determined by equalizing electronegativity
[20].
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However, the increased physical realism in the
variable-charge MD is accompanied by increased
computational cost for minimizing the electro-
static energy at every MD step. This minimization
is equivalent to the electronegativity equalization
condition that the chemical potentials be equal for
all the atoms. This condition leads to a linear
equation system for atomic charges, {g;}:

> Mg =p—xi, 3)
J

where M;; denotes the Coulomb-interaction ma-
trix, x; is the electronegativity, and the Lagrange’s
multiplier x4 is determined from the charge-
neutrality constraint.

A Multilevel Preconditioned Conjugate-Gradi-
ent (MPCG) method is developed for this
minimization problem by splitting the Coulomb-
interaction matrix into short- and long-range
components: M = M + M, [21]. The short-range
matrix is the contributions from atomic pairs (i, )
within the nearest neighbor leaf cells used in the
FMM [5-7]. The sparse short-range matrix M, is
used as a preconditioner to improve the spectral
property of the linear system and thereby accel-
erating the convergence [22]. For a-Al,0j3 crystal,
the preconditioner reduces the execution time to
achieve the same convergence level by 20% [21].
Numerical tests involving up to 26.5 million atoms
are performed on an IBM SP2 computer. Figure 4
shows the parallel efficiency (solid lines) and
communication overhead (dashed lines) as a
function of the number of atoms. The results with
and without preconditioning are denoted by circles
and squares, respectively. For the largest system,
the preconditioning improves the parallel effi-
ciency from 0.92 to 0.95 [21]. The communication
overhead of the MPCG scheme is 5% of the total
execution time for the largest system. The multi-
level preconditioning scheme enhances the locality
of computation by extensively using the short-
range interaction matrix M, and consequently the
program runs efficiently on parallel platforms.
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FIGURE 4 Memory-bound parallel efficiency of the Multi-
level Preconditioned Conjugate Gradient (MPCG) program
(solid lines) as a function of the number of atoms. Open circles
and open squares are the results for the MPCG and the
Conjugate Gradient (CG) methods, respectively. Communica-
tion overheads of the same program are shown by the dashed
lines.

In summary, we have developed various parallel
multilevel algorithms for multiscale phenomena in
nanostructures. Using these algorithms, multi-
million-atom MD simulations are being performed
for: 1) nanocluster-assembled Si;Ny [23, 24], SiO,,
SiC, and Al,Os; ii) Si/Si3N4 and Al/Al,O; inter-
faces; and iii) GaAs stepped surfaces and mesas.
Mechanical properties including fracture, long-
range stress-mediated phenomena, and phonon
properties in these nanostructures are being
investigated.
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