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Abstract
Cisplatin (CDDP) is a potent anti-neoplastic agent with associated toxicities, especially

gastrointestinal and nephrotoxicity that are its dose-limiting factors in clinical oncology. In an
attempt to elucidate its mechanism(s) of action, liver and kidney tissues from normal and CDDP
treated (1.8 mg/kg) dogs were evaluated for changes in various dehydrogenases [MDH, SDH, I-
HBDH, IDH and G-6-PDH] and nonspecific lipase enzymes. CDDP treatment induced an inhibition
of all the enzymes studied except G-6-PDH and nonspecific lipases, where there was a significant
increase. Supplemental pretreatments with calcium 2.50 mg (150,000 USP units) ergocalciferol
plus 1000 mg of elemental calcium as Tums 500 (EffeCal; calcium carbonate)/day seemed to
retain enzyme levels close to normal with no apparent toxic side effects observed after CDDP.
Calcium supplements post-CDDP treatment did not have any protective effect.

INTRODUCTION
Cisplatin (cis-dichlorodiammineplatinum II; CDDP), a broad spectrum anticancer agent has

severe toxic side effects including nephrotoxicity, gastrointestinal toxicity and hypocalcemia.
Nephrotoxicity manifests pathologically, as renal tubular damage which results in elevation of the
blood urea nitrogen and serum creatinine levels.’ Hydrating patients markedly diminishes kidney
toxicity. Antioxidants and thiol containing compounds, such as sodium thiosulfate, have become
part of the treatment regimen in an attempt to alleviate nephrotoxicity. Despite these advances,
nephrotoxicity is still a major concern. Similarly, various antiemetics are being used to alleviate
emesis at great costs.4 We can treat the symptoms but still are unable to point out the cause(s) of
these toxicities. Although newer compounds are being synthesized with substitutions of various
ligands to increase its efficacy and decrease its toxicities. In the process we may learn more about
the structural and functional relationship.

Gastrointestinal toxicity in rats is manifest as bloating of the stomach and severe diarrhea
as the rats do not have vomiting reflexes. Dogs however, do show vomiting reflexes and diarrhea
in response to CDDP treatments. Calcium supplements have been shown to prevent stomach
bloating in rats, protect enzyme function and preserve overall organ function by minimizing the
disruption of cellular homeostasis initiated by CDDP treatment.z Present study was undertaken
to characterize CDDP-induced changes in the various dehydrogenases involved in the glycolysis
process and Kreb’s cycle responsible for ATP production using dog kidney and liver tissues.
Effort was made to explore the protective effects of calcium supplements on the dehydrogenases
to prevent severe toxicities associated with CDDP treatment.

MATERIALS AND METHODS
Animals and Treatment:.

Male dogs weighing 70-95 Ibs were kept on a 12 h light/12 h dark cycle. The dogs had
free access to water and food. Animals (2) were administered CDDP (1.8 mg/kg) in 500 ml of
0.85% NaCI as an infusion over a period of 3 hours. Another group of (2) normal dogs were given
orally 2.50 mg (500,000 USP units) of ergocalciferol (Banner Pharmacaps Inc., Elizabeth, NJ
07207) and 1000 mg of elemental calcium as Tums 500 (EffeCal; calcium carbonate) (Smithkline
Beechum, Pittsburgh, PA 15230) daily for 15 days before treating them with CDDP and every day
after CDDP infusion to maintain an elevated level of serum calcium. CDDP treated dogs were given
ergocalciferol plus Tums 500 as a post-treatment. Blood and urine samples were collected at 12 h
intervals for 3 days after CDDP treatments and once daily there after.
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Blood and Urine Analysis:
Blood and urine samples were analyzed for ionic calcium levels using 634 calcium / pH

analyzer. Blood urea nitrogen (BUN) and creatinine levels were monitored in accordance with the
established methods.8

Tissue Collection:
The dogs were given a lethal dose of sodium pentobarbital (325 mg/kg). The kidney and

liver tissues were quickly excised and mounted on cryostubs in O.C.T. medium (Miles
Laboratories) and frozen at -20C. Sections (10 pm) were cut for enzymatic analysis.

Enzyme Localization:
Frozen sections (10 #m) of normal, and treated animal tissues were picked up on standard

glass coverslips and allowed to dry at room temperature. Succinate dehydrogenase (SDH EC
1.3.99.1), glutamate dehydrogenase (GDH EC 1.4.1.2), 13-hydroxybutyrate dehydrogenase
(HBDH EC 1.1.1.30), malate dehydrogenase (MDH EC 1.1.1.37), isocitrate dehydrogenase
(IDH EC 1.1.1.41 ), and glucose-6-phosphate dehydrogenase (G6-PDH EC 1.1.1.49) were then
localized, histochemically, by the standard Nitro BT method. Sections were incubated at 37 C for
20 min with preheated media. The substrate or the coenzymes were omitted from the incubation
media to serve as controls. Nonspecific lipase (EC 3 1.1.3) activity was localized by incubation of
tissue sections in a medium according to the standarl methods.’ All slides were viewed with a
Zeiss photomicroscope II and micrographs of random sections and random areas were prepared for
quantitative analysis.

Quantitative analysis:
Staining intensity was based on an arbitrary scale from very intense response (+++++) to

intense response (++++) to moderate response (+++) to poor response (++) to very poor
response (+) to no response (-). To avoid any variations in the staining intensities due to section
thickness approximately five transmission images from five sections each of the normal, CDDP,
CDDP plus ergocalciferol/calcium treated and ergocalciferol/calcium plus CDDP treated tissues,
were examined by the Zeiss 10 Laser Scanning Confocal Microscope (LSM). Quantitative
analyses were made using the ’histogram’ computer program. Random areas of the tissues were
analyzed for staining intensity by the computer and a representative histogram detailing ’gray scale
values’ was produced for each enzyme. Statistical analysis was performed and gray scale values
were then converted to percentages based on normal staining being equivalent to 100%
intensity.

RESULTS
Effects of Various Treatments on Dehydrogenases:

Histochemically, of all the dehydrogenases studied (MDH, SDH, GDH, I-HBDH, IDH and G-
6-PDH), only G-6-PDH demonstrated an increase after CDDP, treatment (see Table I). Thus, for
the sake of simplicity, only MDH, and G-6-PDH will be discussed in detail here.

Sections of normal kidney and liver tissues, incubated for MDH localization demonstrated
a dark blue granulation with intense diffuse staining throughout the cytoplasm of the cells. In the
normal kidney, staining intensity and localization was approximately the same in both the cortical
and medullar regions with the proximal and distal tubules having equally pronounced enzyme
localization. For the sake of uniformity most of the observations described here are restricted to
the pericentral regions of the liver.

In CDDP treated tissues, MDH staining was significantly decreased compared to normal.
However, in ergocalciferol plus Tums 500 pretreated animal tissues, MDH staining and localization
were very similar to that of the normal tissues. Post-treatment of the CDDP treated animals with
ergocalciferol and Tums 500 did not show any protective effects of calcium (Table I).

Sections of normal tissues stained for G-6-PDH localization demonstrated a diffuse
staining throughout the cytoplasm. However, after CDDP treatments, G-6-PDH staining was
much more enhanced compared to the normal tissues with the exception of ergocalciferol/calcium
plus CDDP treatment where the G-6-PDH levels were similar to the normal tissues. Again,
ergocalciferol and Tums 500 administration after CDDP treatment did not show any deviations from
that of the CDDP treatment alone (Table I).
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Effects of Various Treatments on Non-specific Lipase Activity:
Under the light microscope non-specific lipase activity was observed as brown diffuse

granulation throughout the tissues. In the kidneys, staining was similar in the proximal and distal
tubules of the cortex and medulla. CDDP treatment caused an elevation in lipase throughout the
kidney tubules and the hepatocytes as compared to the normal. After calcium pretreatment
followed by CDDP the level of lipase was close to that of the normal tissues.

Table I. Average enzyme histochemical staining intensity for normal,and CDDP- treated tissues."

Treatment SDH GDH HBDH MDH IDH G6PDH Lipase
1. Normal ++++ ++++ ++++ ++++ ++++ +++ +++
2. CDDP + + + + + +++++ +++++
3. Ergocalciferol plus CDDP +++ +++ +++ +++ +++ +++ +++
4. CDDP plus ergocalciferol + + + + + +++++ +++++

a +++++, very intense reaction; ++++, intense reaction; +++, moderate reaction; +, very poor
reaction.

Dog Serum Concentrations of [Ca/] after Ergocalciferol:
In order to maintain a constantly higher than normal levels of serum calcium, ergocalciferol

and calcium carbonate in the diet proved to be very effective. Higher than normal level (1.5 m mol/
L) of serum calcium were achieved by day 7 through ergocalciferol and Tums500 administration.
Subsequent cisplatin infusions did not decrease the ionized serum calcium levels below normal
(1.25-1.45 m mol/L). After 3 such cisplatin treatments extending over 9 weeks the blood urea
nitrogen (BUN), and creatinine levels were found to be normal.

DISCUSSION
CDDP, under low intracellular chloride ion concentrations, has been shown to hydrolyze

into variously charged reactive species including monoaqua [cis-(NH) PtCI(HO)]+ and diaqua-
equated [cis-(NH)Pt(HO)]+ forms. It is these hydrolyzed forms of CDDP (diol) that have been
shown to be 1000 times more reactive than CDDP, and act through the inhibition of mitochondrial
respiration by inducing uncoupling of oxidative phosphorylation.6 This results in an efflux of
calcium from the mitochondria and a temporary increase in the cellular calcium levels, which is
thought to play a significant role in the disruption of normal calcium homeostasis, and hence cell
function. In vitro studies have demonstrated that the energy requiring calcium transport in the
mitochondria can be measured by the increased oxygen consumption after diol. This oxygen
consumption is directly proportional to the concentration of diol used and can be reversed by SH
rich N-acetyI-L-cysteine (NAC).z CDDP in an unhydrolyzed state does not seem to have any
effect.

Mitochondrial glutathione (GSH) seems to be essential in the regulation of inner
mitochondrial permeability and enzyme function by keeping SH in the reduced state. When the
SH-groups of enzymes are not maintained in a reduced form, they become inactivated. CDDP-
induced toxicities, especially nephrotoxicity, seem to be related to a decrease in the intracellular

20,21concentrations of GSH and protein bound SH-groups.
NADH, which helps to maintain SH groups, declines with CDDP treatment.

Consequently, this depletion of GSH and NADH appears to result in the inhibition of some
dehydrogenases, resulting in the uncoupling of oxidative phosphorylation leading to hydroxyl

17 22radical formation and oxidative stress. These free radicals attack polyunsaturated lipids and
proteins and initiate lipid peroxidation. This process becomes autolytic and causes severe
damage to membrane integrity.=6

Hypermetabolism is a cellular means of compensation for increased energy needs as a
result of mitochondrial damage but this also leads to the additional activation of unregulated Ca=+-
dependent degradative enzymes such as phospholipases.e Phospholipases A & C are known to
be activated after CDDP treatment.z’a Our studies have demonstrated such increases but these
can be reversed by calcium supplements only prior to CDDP treatment. Similar to lipase activity G-
6-PDH is also enhanced after CDDP treatment. It seems that elevation of G-6-PDH activity occurs
because of its unique and critical function in NADH generation and maintenance of reduced
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sulphydryl groups as part of the pentose phosphate pathway. Possible lack of essential sulphydryl
groups may be limiting its own inhibition allowing for increased activity. This may be a means for
cells to adapt to the effects of CDDP

In vitro and in vivo studies have suggested calcium to modulate CDDP-induced
toxicities. In treatments with CDDP the importance of maintaining normal or close to normal
levels of calcium is very suggestive of a competitive binding between [Ca/] and cis[(NH)
Pt(HO)]/ and the cellular membranes. In vitro experiments using MeroCalmodulin-1, a calcium-
sensitive fluorescent analog of calmodulin it has been demonstrated that only the hydrolyzed form
of CDDP is able to inhibit the conformational change which occurs after calcium binding to the
molecule. This conformational change which is calcium activated makes the molecule fluoresce.
Further, competitive binding studies for the calcium binding sites of the calmodulin molecule have
demonstrated that it is only the diol form of CDDP that is able to inhibit the conformational change.
Similarly, acetylcholine release inhibition has been tied to the hydrolyzed form of CDDP in the rat
stomach smooth muscle resulting in its bloating and ulceration. However, these adverse effects
of CDDP can be inhibited by calcium supplements only when calcium is administered in advance of
CDDP. If CDDP is administered first and calcium is administered later then the various toxicities
especially nephrotoxicity due to CDDP are not prevented. Probably once the [Ca/] binding sites
are blocked by diol, then the normal functions are disrupted especially various transport functions
across the membranes through the inhibition of ATP.

In conclusion, CDDP’s disruption of calcium homeostasis initiates primary events such as
lipid peroxidation and enzyme inhibition. These events damage the cells through mitochondrial
damage, inhibition of mitochondrial function, depletion of ATP and other cofactors. This probably
leads to apoptosis and tissue necrosis. Thus, it seems that elevated calcium levels, via calcium
supplementation, may act as another means of cytoprotection, by competing for binding sites with
diol and prevent various toxicities associated with it.
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