
Magnetic and Electrical Separation, Vol. 10, pp. 45=55
Reprints available directly from the publisher
Photocopying permitted by license only

(C) 1999 OPA (Overseas Publishers Association) N.V.
Published by license under

the Gordon and Breach Science
Publishers imprint.

Printed in Malaysia.

SELECTION OF AN EXPRESSION
FOR THE HYDRODYNAMIC DRAG

ON A PARTICLE IN A
MAGNETIC SEPARATOR

Yu.S. MOSTIKA, V.I. KARMAZIN*,
V.Yu. SHUTOV and L.Z. GREBENYUK

The National Mining Academy of the Ukraine, 19 Karl Marx Prospect,
3200027 Dnepropetrovsk, The Ukraine

(Received 7 August 1998; Revised 5 January 1999; Accepted 12 February 1999)

The results ofa numerical solution ofequations ofthe motion ofa paramagnetic particle in
the working gap of a magnetic separator for various values of magnetic induction (from
0.2 to 2 T) and the particle diameter (from 10 tm to mm) show that along the particle
trajectory various types of flow modes: e.g. laminar, transitional and turbulent can be
present. It is also shown that some of the well-known formulae approximating the
experimental dependence of the hydrodynamic drag coefficient on Reynolds number Re
(the so-called standard hydrodynamic drag curve) as a step-smooth function, do not
ensure the condition of continuity of the hydrodynamic drag on the boundaries of the
range of values Re for which these formulae were obtained. One of the variants of
approximation of the standard hydrodynamic drag curve for the case where along the
same trajectory various types ofregimes offlow-around a particle are present, is proposed.
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INTRODUCTION

In magnetic separation the main force determining the process of
separation is the magnetic force acting on a particle in the working gap.

* Corresponding author.
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However, in order to estimate parameters ofthis process it is necessary to
determine the complete forces: the hydrodynamic drag and the gravi-
tational force. In many cases we can neglect the influence of the gravi-
tational force (small enough sizes of particles or for small difference of
the densities of particles and medium flow), whereas the hydrodynamic
drag force plays as important role as the magnetic force. To determine
the hydrodynamic drag force of spherical particles Stokes formula is
often used. It is applicable to the values of Reynolds numbers Re < Rel
where Rel is assumed to be equal to 0.3; 0.5 or depending on the level
of acceptable error (for example, with Re the error of the Stokes
formula is about 10%). In order to extend the range of solved problems
it is necessary to use the hydrodynamic drag estimation formula and the
equation of the motion of particles applicable not only in the Stokes
regime but also in a wider range of values of Reynolds number. Such
formulae and equations of motion will be considered below.

THEORETICAL MODEL

Equations ofmotion of a paramagnetic particle in the working gap of a
magnetic filter (separator) with cylindrical ferromagnetic collectors
were obtained in [1]. The hydrodynamic drag force of a particle was
determined by the Stokes formula. In a more general case when the
hydrodynamic drag depends on the particle flow regime (the Stokes
transitional or Newton regime) we can obtain the following equations:

(d2r (d0) 2) Vm(A-\dt2 r
3 -- q- cos20 Nd(gp,r- gf,r)

d20 dr dO)rh- + 2h5 N

+ cos(0

f-- sin 20 Nd gp,o gf,o)

V sin(0 fl), (2)

where r and 0 are, respectively, the radius and the angle of polar system
of coordinates, the center of which is coincides with the center of the
cross section of the cylindrical collector; is time; r/rw; rw is the
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radius of the cylindrical ferromagnetic collector;

Pp.
18/

Vg (pp pf);

#0 (Np Nf) d2p MHoVm= 18/ rw

Nd- Cd/Cd,o; Cd, Cd,0 are the coefficients of the hydrodynamic drag of
a particle in the general case and for the Stokes regime respectively; dp
is the diameter of a particle; g is the acceleration of gravity;/3 is the
angle between axis x (from this axis the polar angle 0 is measured) and
the vector (the axis x is parallel to the vector 0);Mis the magnetization
of the ferromagnetic cylinder; H0 is the strength of the magnetic field;

A #w #f.
#w + #f’

#w and #f are the magnetic permeabilities of the cylinder and the med-
ium, respectively, /0 is the magnetic constant (permeability of free
space);/p and nf are the volume magnetic susceptibilities of the particle
and the medium, respectively, pp and pf are the densities of particles and
carrying medium, respectively, /is the dynamic viscosity of the carrying
medium; Vp, Vf are the velocity vectors of the particle and of the
carrying medium; Vp,r, Vf, are the radial components ofvectors Vp and
Vf respectively, Vp,o, Vf,o are the tangential components of vectors Vp
and Vf respectively.

Expressions Vf,r(r, O) and Vf,o(r, O) are considered to be known func-
tions. Assuming a model of the potential flow around the cylinder by a
fluid with the velocity vector of the unpertubered flow V0 normal to the
axis of the cylinder, we obtain:

(1)Vf, V0 cos(0 c);

( 1) sin(0-a)Vf,o-- V0 1-[---

where a is the angle between the axis x and the vector
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FIGURE The limiting trajectories of motion of paramagnetic particles in the
vicinity of a magnetized cylindrical collector.

The plus and minus signs before the terms on the right-hand sides of
formulae (1) and (2) and also before V0 in the two last equations cor-

respond to the origin and the direction ofmeasurement of angles 0, c,/3,
which are shown in Fig. 1.

DISCUSSION OF THE RESULTS

In order to analyse the effect of technological parameters (H0, V0) of
separation and of the size of particles on the hydrodynamic flow regime
numerical integration of the equation system (1) and (2) was carried out
for a number of variants of the initial data assuming that particles have
a spherical shape.

Values ofthe magnetic field strength H0, ofthe unpertubered medium
flow velocity V0, diameter ofthe ferromagnetic collector dw 2rw and the
diameter of a particle dp for these variants are shown in the Table I.
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Number of
variant

TABLE The values of variables used in the calculations

2 3 4 5 6 7 8 9 10 11

Ho, 105 A/m
V0, m/s
alp, gm
dw, mm

1.59 3.98 7.96 7.96 7.96 7.96 15.9 15.9 1.59 15.9 15.9
0.10 0.10 0.02 0.02 0.10 0.10 0.02 0.10 0.02 0.10 0.10
100 100 10 30 30 100 10 10 100 500 1000

2 4

Values of other determining parameters in all the variants were kept
constant: specific magnetic susceptibility of particles ;p-l.5
10-6 mS/kg (p pDp); density of particles pp 4.7 x 10s kg/mS; den-
sity of carrying medium pr- l0s kg/mS; dynamic viscosity of medium
r/- 10-3N x s/m2; saturation magnetic induction of a ferromagnetic
collector Bs 2.15 T.

Magnetic permeability #w was determined for given values of H0
using known experimental dependencies. The so-called longitudinal
configuration of a collector [2], in which vector V0 is parallel with the
direction of vector H0 (c--0) was considered. Initial conditions for
numerical integration of Eqs. (1) and (2) were determined by defining a
position of the origin x x0 y Y0 (00 arctg (yo/xo); ro /xZa y)+
and components of vector Vp of the particle velocity at the o/,igin: Vp,r
and Vp,o. These values were assumed to be equal to the corresponding
components of the velocity vector of the medium flow at the origin.
With a fixed value of x0 and different values of Y0 different trajectories
were obtained. From them the limiting one, which differentiates a set of
trajectories of particles capture and a set of trajectories along which
particles are carried away by the flow medium, was selected.

Figure shows the calculation results of the limiting trajectories of
particles, and Fig. 2 shows the calculation results of the relative velocity
Vp,f/Vo as a function of the relative distance r/rw from the axis of a
collector, where Vp,r- 117p- 17r I. The numbering of curves shown in
Figs. and 2 corresponds to variants in Table I.

Velocity Vp,r is the determining quantity when calculating the
hydrodynamic drag force:
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FIGURE 2 Distribution of relative velocity Vp,f/Vo of particle motion along their
limiting trajectories (Vp,f is the velocity of particle motion relative to the flow ofmedium).

where Ca Ca(Re); Re is the Reynolds number;

Re Pf117P’fldP (3)

and Sm is the cross-sectional area of a particle.
Velocity Vv,f can exceed many times velocity V0 of the unpertubered

medium flow. For example, for variants 2, 4 and 7 the ratio Vp,d Vo near
collector is 4.9, 19.1 and 9.0 respectively.

In the initial stage ofthe trajectory the flow condition of a particle can
be laminar, while when approaching the collector, as a result of the
increasing velocity Vp,f, the transitional or turbulent condition can be
reached. In order to assess the flow condition the value of Reynolds
number is usually used [7].

Results of calculations of the Reynolds number using Eq. (3), along
the trajectory of particles (i.e. depending on the relative distance r/rw)
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FIGURE 3 Distribution of the Reynolds number along the limiting trajectories of
particles.

are shown in Fig. 3, where the numbering of curves corresponds to
the variants from Table I. It can be seen from these graphs that the
Reynolds number Re can vary substantially for different trajectories,
and for motion along a fixed trajectory. Point A on lines 2 and 6 cor-
responds to the equilibrium point on the trajectory y(x) (Fig. 1). And
when the trajectory is passing through point A it can curve sharply.
The results show that the velocity Vp,f of the particle movement

relative to the medium practically does not depend on velocity V0. It can
be seen, for example, comparing curves and 9 in Fig. 3, taking into
account that the dependence Re(?) differs from the dependence Vp,f(?)
by a factor (ppdp)/. For variants and 9 the values of velocity V0 differ
by a factor of five with other conditions constant. However, depen-
dencies Re(?), and therefore dependencies Vp,r(?), for variants and 9,
practically coincide. We can make similar conclusions when compar-
ising curves 4 and 5 and also 7 and 8 in Fig. 3.
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It is usually assumed [3-7] that for calculations of the hydrodynamic
drag of a spherical particle the Stokes formula (expressed in terms of
factor Cd):

Cd 24/Re (4)

is applicable in the range of Reynolds numbers Re < 1, although with
Re the error of the Stokes formula is about 10%. It is possible to use
the generalised experimental dependence Cd(Re), the so-called standard
hydrodynamic drag curve [5-7,10]. However, approximation of this
curve by a single formula with a small error in a wide range of Reynolds
factor will be a complicated and bulky expression. In [10] various
approximations of the curve Cd(Re) were considered and in particular
the following expressions [11] were assumed:

24/Re, Re _< 2;

Cd 18.5/Re’6, 2 < Re <_ 500; (5)
0.44, Re > 500. (6)

The same expressions are given in [9], but in contrast to [11] the
transition from Eq. (4) to Eq. (5) is supposed to occur at Re 0.2 rather
than at Re--2.

In [8] for evaluation of the hydrodynamic drag of spherical particles
various approximations of the experimental dependence Cd(Re) for
different intervals 10 < Re < 10 + (n 1,0, 1,2) are used. The
Stokes formula is considered applicable in the range Re < 0.1, while for
0.1 < Re < the following expression is suggested:

Cd Cd,0(0.947 + 0.1538Re + 0.003763/Re),

where Cd,0 24/Re.
This equation becomes equal to the Stokes formula if the expression

in the parentheses is assumed to be equal to unity.

Apparently, the value of Re 0.2 in [9] was given by mistake, since the value of Ca
calculated under Eq. (5) at Re 0.2, is approximately 60% lower than the value under the
standard drag curve, whereas with Re= 2, Eqs. (4) and (5) give almost equal values (17%
and 15% below the standard curve respectively).
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More often another type of a step-smooth function Cd(Re) is used:

for Re < Cd Cd,0;

for < Re < 1000 Cd Cd,0(1 + Re2/3/6)
or C Ca,o(1 + 0.15Re683).

(7)

Equation (7) is known as the Klatchko formula (see for example [3,10]);
Eq. (8) is given in [4,10]. Transition from the Stokes formula to (7)
and (8) at Re the function Cd(Re) changes in a step. That is why the
results of calculation using such step-smooth dependencies have sin-
gularities of artificial character which are absent in reality.
For example, the dependence of the velocity of particle motion

relative to the carrying medium on parameter r/rw considered above (see
Fig. 2.) has "a plateau", i.e. a section of almost constant value for those
values of r, which correspond to a section of trajectory with Reynolds
number close to unity. Curve 4a in Fig. 2 was obtained from the cal-
culation of variant 4 using the Stokes formula for Re < and using
Eq. (8) for Re > 1. Curve 4 in Fig. 2 was obtained for this variant using
Eq. (4) for Re < 0.3 and the formula

Cd Cd,1 --0.48/Re2 for 0.3 < Re < 920, (9)

where Cd,1 is the value of Cd, calculated using Eq. (8).
When these formulae are used the discontinuity between two dif-

ferent dependencies of Cd(Re) at point Re 0.3 is eliminated. Also the
error in Cd(Re) decreases in comparison with Eq. (8).
The upper limit of the Re range in which Eq. (9) was used

is determined from the condition that Cd(Re) reaches the value
corresponding to the Newton’s regime: CdCOnSt=0.44. Re---920
corresponds to this condition. Figure 4 shows the relative error ACd
as a function ofthe Re number for different formulae Cd(Re) in relation
to experimental data Cd,e(Re):

Afd (Cd Cd,e)/fd,e.

The experimental data were taken from [8] where they are given in a
tabular form. Lines 1, 2, 3, 4 and 5 in Fig. 4 show errors of Eqs. (4), (5),
(7), (8) and (9) respectively. When using Eqs. (4) and (9) connecting at
the point Re 0.3, the error ACd does not exceed 3% for 0.1 < Re < 100
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FIGURE 4 The relative errors ZCd=(Cd--Cd,e)/Cd,e of the hydrodynamic drag
coefficient, determined using various formulas, as a function of Reynolds number.
Curves 1, 2, 3, 4 and 5 correspond to Eqs. (4), (5), (7), (8) and (9), respectively.

and 7% for 0.1 < Re < 1000. We should note that the results of calcu-
lation expressed in Figs. 1-3 (except for curve 4a in Fig. 2), were
obtained using the dependencies (4) and (9) connecting at the point
Re =0.3.
The calculation shows that for given values of the fluid viscosity,

magnetic susceptibility of particles and other determining parameters
the turbulent flow condition takes place for dp mm and magnetic
induction B0= 2 T (variant 11), and in the case, when B0 < 2T, for
dp> mm. With the increase of the magnetic susceptibility the limiting
values of the diameter of a particle and of the magnetic field strength at
which the turbulent condition develops decrease.

CONCLUSIONS

An analysis of several formulae of the coefficient of the hydrodynamic
drag for a spherical particle has been carried out and a modification of
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one ofthe expressions, in the form ofEq. (9), was proposed. The error of
this expression, relative to the experimental data in the range 0.3 <
Re < 1000 does not exceed 7%, while for Re < 0.3 the Stokes formula is
used. The distribution of the velocity of motion of particles relative
to the carrying medium has been calculated and the corresponding
Reynolds numbers along the trajectory of motion, for a number of
characteristic combinations of the separation conditions, have been
determined.
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