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Traditional placement problems are studied under a fully specified cell library and a
complete netlist. However, in the first, e.g., 2 years of a 2-3 year microprocessor design
cycle, the detailed netlist is unavailable. For area and performance estimation, layout
must nevertheless be done with incomplete information. Another source of incomplete-
ness comes from logic synthesis changes; some instances and their parameters will change
as the project evolves. In the re-configurable computing area, sometimes we need to
perform quick placement before all information is available. The problem of placement
with incomplete data (PID) can be abstracted as having to place a circuit when pc% of
the cells and pn/O of the nets are missing. The key challenge in PID is how to add missing
cells and nets.

In this paper, two "patching-methods" for adding missing nets and cells are proposed.
The methods are called abstraction andfusion.

Experimental results are very interesting. First, they show that PID is a difficult prob-
lem and an arbitrary (and perhaps intuitively sound) method may not produce high-
quality results. Experiments verify that the abstraction method is a very good predictor
and that fusion is not. Specifically, when a circuit has 10% incompleteness, abstraction
can predict the final total wirelength with an error of 5.8% while fusion has a 67.8% error
in predicting the wirelength in the same circuit.
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1. INTRODUCTION

The placement problem is defined as problems
given a set of cells and a netlist of connections, opti-
mizing the placement to minimize area, wirelength,
delay, etc. In this problem, 100% cells and netlist is
known.

Numerous placement algorithms exist, such as
force directed approach [1,7, 18, 6], simulated an-
nealing [14, 15], and partitioning-based placement
algorithms [3,2,5,8]. A constructive placement
method that employs resistive networks as a work-
ing domain was proposed in [4]. Various optimiza-
tion objectives have been used. In [17], a comparison
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between linear and quadratic cost functions was
reported. The linear cost function used in the
GordianL placement tool achieves results with up
to 20% less area than the quadratic cost function
of the original Gordian procedure. Therefore, in
this paper, we will use the half-perimeter cost func-
tion for area minimization.
The timing-driven placement problem has also

been studied. The notion of zero-slack was intro-
duced in [11]. In [9] criticality was used as a guide to
select cells from a cell library. For a history of the
timing-driven placement problem, see [10, 16, 13].

In this paper we study the placement problem
with incomplete data (PID). This problem is of
fundamental importance since VLSI design is get-
ting more and more complicated. Now a state-
of-the-art VLSI design contains millions of gates,
and this number keeps increasing according to
Moore’s law. Such a complicated design will typi-
cally take 2 to 3 years to complete. In the first 2
years, a detailed netlist is not available. However,
for area estimation and performance estimation,
several placement runs are done with such incom-
plete information. Traditional placement prob-
lems are based on a fully specified cell library and a
complete netlist. Obviously, this cannot handle this
problem.
Another source of incompleteness will come

from re-use of instances from earlier generations.
The hardware instances are modified to some ex-
tent and more information may be added as the
project moves forward. Thus even if we do have a
complete cell library and netlist, this cell library
and netlist will not be the same library and netlist
as in the final version of the design. The designer
will definitely want to know how much he or she
can trust the placement result. If 5% of the cells in
the library are changed later, it will not be good
news to know the placement results will therefore
change by 50%. In the re-configurable computing
area, this problem is also practical. Sometimes we
need to perform quick placement before all infor-
mation is available from a compiler.
PID is the problem of trying to place the final

design while only a part of the netlist and a fraction

of the cell library is known. PID is of fundamental
importance. It is also a very challenging problem, as
will be shown later. To the best of our knowledge,
no research has been done on this problem.

In our experiments, we use MCNC benchmarks.
We randomly delete p% of the nets and p% of
the cells. We then try to re-construct the netlist us-
ing different "patching-methods". We compare the
wire-length of the original circuit against the wire-
length of the "patched" circuit as a basis to judge
the quality of the proposed patching-methods. Ex-
periments on different values ofp and p and dif-
ferent benchmarks have been performed.

This paper is organized as follows: In Section 2
we introduce some terminology which we are
going to use throughout the paper. In Section 3 we
formally described the placement with incomplete-
ness problem followed by a detailed summary of
approaches and implementations in Section 4. In
Section 5, experimental results will be shown and
discussed, followed by conclusions in Section 6.

2. TERMINOLOGY

In this paper we assume that we are given a

complete synchronous circuit denoted C(A//,A/’),
which consists of a set of modules A//= {Mili
1,...,IMI), and a set of nets Af= (Nili=
1,..., I Vl}. The set of modules consists of four
subsets: primary inputs 27, primary outputs (.9,
storage elements , and combinational elements
A, i.e., Ad 27 t_J O t_J t_J jr. A sample circuit is
given in Figure 1.
Each net Nk consists of a set of terminals. For

simplicity, it will be assumed that each net is driven
by a single module output, or source terminal So,k,

M, PO,
PI

FIGURE Sample circuit.
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and that the remaining sink terminals Sa:-{s0,a:}
are module inputs. This assumption simplifies the
capture of signal flow directions and is used in the
construction of the timing model. Terminals are
given a location on the surface of an IC by the
placement process. This location is used by many of
the physical design steps. The location of a termi-
nal is represented by si,k (Xi, k; Yi, a:), thus Sk C 2,
where R is the set of real numbers and si,a: is the
ith terminal in net net Na:. The rectilinear distance
between two terminals si,a:, Sj,m is [Ise,,S,mll-
Ixi,a:- Xj,ml + lYe,a:- Yj,ml. Similarly, each module

M contains a set of terminals S(Mj)= {s,li
0... IS (Mj)I}. Let the location on the plane of the
module Mj be denoted by (xej, y,j). Then the loca-
tion of a terminal s,a: E S (Mj) is a function of the
module location.
For this work, we only consider standard cell

layout style. We shall use the terms modules and
cells interchangeably. Restriction on standard cells
adds simplicity to our initial algorithms and im-
plementation. The concepts developed here can
be applied to other styles. However, we have not
explored them yet.

3. PROBLEM FORMULATION

The general idea of the placement problem with
incomplete data has been illustrated in Section 1.
We are going to further formalize the problem
here in this section.

During a design process, what we have in hand
is the incomplete netlist and library. The complete
netlist and library in the future will never be
known at this time. Suppose there is an algorithm
which can predict the final placement result only
using the known incomplete information about the
circuit. The question then is how good this result
is. Therefore it is very important to first establish a
standard for evaluating any PID algorithm.

Obviously, the best way to do this is to start
from a complete circuit. This circuit, including the
complete netlist and the cell library, will be no
doubt the only fair metric to measure how good

any kind of PID algorithm is. A good algorithm
will give a good prediction on area or performance
using only part of the original circuit information.

Starting from this complete circuit C, we can
easily build an incomplete circuit Ci simply by
deleting or modifying cells and nets from the
original circuit C. There are two numbers to quanti-
tively measure the incompleteness, pc and Pn. We
denote by Pc the percentage of cells we deleted or
modified from C to get Ci. Similarly, Pn is the per-
centage of nets we deleted or modified from C to
get Ci. For example, a complete circuit C contains
100 cells and 100 nets. After modification, the in-
complete circuit has only 90 cells and 95 nets which
are still the same as in C. The other 10 cells and 5
nets are either deleted or modified. Then in this
case, Pc 10% and pn 5%.
Now we are ready to describe the placement with

incompleteness problem formally:
Given a complete circuit C(A4,A;), an incom-

plete circuit Ci(A4i, A/’i) is formed by deleting a
number of cells and nets from C(A//,A/’). Two
real numbers Pc and Pn satisfy the following
conditions:

1. 0<pc < 1,0 <pn< 1.
2. ]A//f) ail (1 Pc)"
3. IA/" n./g’i[ (1 -Pn)"

We are going to make predictions on issues
like final chip area, power consumption, etc., of
the circuit C(A//,A/’) based only on the circuit
Ci(Ji,Ji) and parameters Pc, P. These predic-
tions will be compared to the actual value of the
circuit C(A4, A/’).

This above description concludes the formula-
tion of the placement problem with incomplete
data. There will be numerous ways to obtain such
predictions for circuit C. In this paper, we are
actually trying to "reconstruct" the circuit C from
the incomplete circuit Ci. Specifically, we are going
to find a set of modules Ja and a set of nets A/’a.
We use Ja and A/’a, together with Ji and A/’i, to
form a new circuit C’((ja I,.J .A/[i) (Ja I._J Jr’i)).

Figure 2 shows an example of a complete circuit
C with 8 cells and 10 nets. The incomplete circuit
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FIGURE 2 Original circuit

FIGURE 3 Incomplete circuit (i.

FIGURE 4 Reconstructed circuit C’.

C; can be obtained by deleting cells M4, M6 and
all the nets attached to them. Figure 3 shows the
result of Ci. In this case, Pc 25% and Pn 20%
since only 2 nets are gone. We can add two new

dummy cells, N1 and N2 and some dummy nets to
get circuit C . Figure 4 shows a possible way to get
C . Of course, most probably, C will not be exactly
the same as the original circuit C. Our hope is that
by using a "clever" way to get C , the placement
result of C will be very close to the placement re-
sult of C.
Now the question is how can we get the sets .A/[a

and N’a. One approach is by randomly determin-
ing all the details, such as the size of the new dum-
my cells, the number of pins on the new dummy
cells, etc. Obviously, this is not a good method
since we have not made use of the known informa-
tion. Since the missing part of the circuit will not
be too large, we will expect the missing part to
be "very much" like the rest of the circuit.

In the next section, we will study appropriate
approaches to this problem.
Note that in this paper, we only try to make a

prediction on the total net lengths, which is con-
sistant with the final chip area. "Half perimeter

bounding box" is what we will use to measure the
length of each net.

4. OUR APPROACH
AND IMPLEMENTATION

As mentioned in the previous section, a totally
random approach is not good. On the other hand,
we should notice the following fact:

FACT There are no algorithms which can always
reconstruct a totally identical circuit as circuit C us-

ing only the imcomplete circuit Ci.

Proof The proof is simple. Suppose Ci is the
incomplete circuit with which we will start with.
Then arbitrarily add two different sets of cells and
nets to Ci. This will give us two different circuits

C1 and C2, and they share the same incomplete cir-
cuit Ci. After we run our "universal" algorithm on
Ci, we get the reconstructed circuit C’. If
then C’ :/: C2, and vice versa. This means that this
"universal" algorithm cannot get an identical cir-
cuit for both C1 and C2 at the same time. Since both
C1 and C2 are the correct results, the above fact
is true.

This fact suggests that the problem itself is very
hard since we have no hope of getting a completely
correct answer. Before we start thinking about the
actual approach, let us first make some assump-
tions about this problem.

First, the incompleteness measurement Pc and pn
should not be too large. We cannot get any sort of
prediction if we only know 5% of the netlist. We
should know at least half of the original circuit,
and it is very reasonable to assume that the missing
part of the circuit is very much like the remaining
part of it. That is, if we miss a very special part in
this incomplete circuit, we should not expect to get
a decent prediction,

Foliowing this assumption, sets .A/[a and ./V"a
should be "similar" to sets Adi and Jfi in circuit

Ci. The question is, what does "similar" mean
here. Our interpretation for this is that they have
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similar statistics. For example, two module sets
should have similar size distribution curves (to be
discussed later).

There are a lot of possible statistics on which we
can base our studies. Among these, we chose three
of them to be the statistics for the module set. They
are:

1. The size distribution of cells.
2. The number of terminals distribution on each

cell.
3. The I/O type distribution of all terminals.

There is no question that the size of cells is the
most important information in area estimation.
Besides this, the number of terminals on each cell
is also important since it determines the connec-
tivity of each cell. The larger this number is, the
larger the total final area will be. An appropriate
I/O type distribution of terminals will assure a
netlist similar to the original circuit. An I/O type

.distribution means that we should know approxi-
mately how many terminals we are going to add
are inputs, how many are outputs and how many
are bidirectional. Without this I/O type distribu-
tion, any pair of terminals can be hooked up, leav-
ing too much freedom to deal with. If we know this
distribution, since an output terminal has to be
hooked up with an input or bidirectional one, it
is easier for us to construct a "similar" netlist as
the original one.
The above is a brief description of these statistics

and reasons why they are important to us. We will
discuss them in detail in the following paragraphs.
The size distribution function Ps(s) is a prob-

ability function of cell size. For any possible physi-
cal size s of a cell, Ps (s) will give us the probability
that a cell in the circuit has size s.

Since the probability function P(s) is not ana-
lytical, we will use a linear array to represent it.
Thus we need to quantitize the size s first.
The actual implementation is: first find the mini-

mum cell size Smin and the maximum cell size Smax
in the circuit. We assume that function P(s) will
have a non-zero value only when Smin_<Size_<
Sma. This means, all the cells to be added later

will have sizes no larger than Smax and no smaller
than Smin.
Then we evenly divide the range [Smirl, Smax] into

100 sub-ranges so that we have 100 buckets. Each
bucket corresponds to a sub-range and records the
number of cells whose size falls into this sub-range.
Finally, in order to get a real probability function,
we normalize the values in all buckets. The result is
the size distribution function which actually is a
discrete function.

Let us revisit the example shown in Figures 2, 3
and 4. In that circuit, we have 3 types of cells,
inverters, AND gates and OR gates. Suppose an
inverter has a size of 1, and AND gate and an OR
gate each have a size of 100. Note that all statistics
should be derived from circit Ci since Ci is the only
information we know in PID. As shown in Figure 3,
we have four inverters, one AND gate and one OR
gate. Thus the number in our first bucket is 4, the
number in our last bucket is 2, and the numbers in
the other buckets are all zero. After normalization,
the probability of being in the first bucket is 66.7%
the probability of being in 100th bucket is 33.3%
and probability of being in other buckets is zero.

Figure 5 shows this size distribution function P.
The probability function Pt is a function of the

number of terminals in a cell. It tells us for a cer-
tain cell, what the probability is of having a cer-
tain number of terminals on it. Obviously, this

% probability

100

20 40 60 80 100 bucket

FIGURE 5 Size distribution function Ps for circuit in
Figure 3.
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function is not independent of the size distribu-
tion. A smaller cell will almost certainly have fewer
terminals than a larger cell. We have to take this
fact into account. Remember we will have 100
buckets for cell sizes. Then for each bucket, we
have a separate distribution function of the num-
ber of terminals in a cell.
Take the same example circuit Ci as above. The

first bucket contains only inverters, so in this
bucket, all the cells have a 100% chance to have 2
terminals. The last bucket contains AND gates and
OR gates, but since they both have 3 terminals,
so all the cells there have a 100% chance to
have 3 terminals. Figure 6 shows two distribution

functions of the number of terminals correspond-
ing to the first and the last bucket.

Finally, due to the same reason as above, the
I/O type distribution for terminals is not an inde-
pendent function either. Thus we have a separate
I/O type distribution function for each bucket.
Specifically, for all cells in a certain bucket, count
the number of input, output and bidirectional
terminals. Then normalize the values. Again for
circuit Ci shown in Figure 3, the first bucket has
four inverters, so 50% of the terminals are inputs
and 50% of them are outputs. Similarly, the last
bucket has one AND gate and one OR gate, so
66.7% of the terminals are inputs and 33.3% of

probability

of in cell

probability

(a) probability function for the first bucket (b) probability function for the last bucket

FIGURE 6 Distribution function Pt for circuit in Figure 3.

% probability

5O

% probability

75"

50-

Inputs Out:uts Bidirect. pins In rots Outputs Bidirect. pins

(a) probability function for the first bucket. (b) probability function for the last bucket.

FIGURE 7 I/O type distribution function for circuit in Figure 3.
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the terminals are outputs. Figure 7 shows two I/O
type distribution functions for these two buckets.

This is useful in determining the I/O type of a

newly added terminal. If a terminal belongs to a
cell in bucket 1, there is a 50% chance that it will
be an input or output terminal.

It is natural to have these three for the set of cells.
If timing information is an issue in the placement,
we should also include some statistics about the
timing information. For constructing a missing
cell, we think these three statistics are adequate
to represent the characteristics of the set Adj.

Based on this discussions, we can write the
pseudo-code for finding missing cells, set Ja as

following:

1. AddCell(circuit C,i,pc) {
2. Get these three statistics discussed above.
3. nc (pc. Il/1 pc)
4. fori= tOnc
5. Create a cell data structure.
6. Determine the size of this cell using the size

distribution.
7. Determine the number of terminals on

this cell using the appropriate distribution
function.

8. For each terminal on the cell, determine its
type using the appropriate terminal type
distribution.

9.}

In Steps 6, 7 and 8, we use randomly generated
numbers and distribution functions to determine
different properties of each missing cell. For
example, the size distribution function Ps (s) gives
the percentage of cells in each of the 100 buckets.
Thus we can randomly pick a bucket according to
this probability function. The size of the cells in
this bucket will be assigned to the to be added
missing cell. This method can also apply to Steps 7
and 8.

After this procedure is done, we have added a
set of cells -/a to the circuit C’. These newly added
cells are isolated since no nets are connected to
them. The next step is to add some nets to the in-
complete circuit C,i. We will refer to all the exist-

ing nets already in Ci as "old nets" and all the nets
we will add later as "new nets". Similarly, all the
cells previously existing in C,i are called "old cells"
and all the cells added by AddCell() are called
"new cells".

Things are not so easy when finding the set of
new nets, A/’a. The reason for this is because the set
of nets is more like a graph, so it is vague to say
one graph is more similar to a given graph than
another one. On the other hand, netlist informa-
tion is the very factor which we cannot ignore.

In the actual implementation, we use only one
statistic for the set of nets, the number of terminals
in each net. That is, we need to know how many
nets are 2-pin nets, how many nets are 3-pin nets,
etc. This is no doubt be an important statistic, but
it should not be the only one to determine the set
of nets. The reason why we only chose this one is
because:

1. It is not clear what other statistics will be good
representatives for the set A/’i.

2. This one is easy to implement, and other useful
statistics can be easily added later.

Even after deciding to use only one statistic, it is
still not clear how to get the whole missing netlist,
the set A/’a.
The first thing we need to know is the number of

nets to be added. This can be found by using the
input parameter Pn.

After that, a natural scheme will be similar to
what we did on adding new cells: Look at all the
cells in the circuit, including those "old" cells in
and those "new" cells added by AddCell(), and
create a list of all the terminals unattached to
any nets. Initially, this list/ will include all ter-
minals from all new cells and those unattached ter-
minals in the old cells.
As the example shown in Figure 4, this list will

contain two pins in N1, two pins in N2 and the
input pin in M8.

After the list/ is created, for each to be added
new net, first determine the number of terminals
in it using the distribution function. Then assign
terminals from the list/ to this new net and delete
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those assigned terminals from the list Z;. Repeat
this procedure on the next to be added new net.
One of these following three cases will happen

during this procedure.

1. List/2 is empty after all nets have been added.
(This is great.) Then we have finished our re-
construction procedure on the circuit C .

2. There are no terminals left in list/2 when add-
ing a new net.
Then we can randomly pick any terminals in
the circuit C and assign it to this net.

3. There are still some terminals left in list/2 after
all nets have been added.

Actually, Case 3 will happen a lot in real life.
This is because of the way we get the circuit Ci. For
example, if in the original circuit C, a 4-pin-net is
connected to cell A, B, C and D, and later we only
delete cell D from the circuit C to form the circuit

Ci while retaining cells A, B and C, then this net
will still exist in the incomplete circuit Ci, except
that now it becomes a 3-pin-net instead of a 4-pin-
net.

This fact suggests that some terminals in newly
added cells should be assigned to an old net as
well. That is why the number of terminals in list/2

is almost always larger than the total number of
terminals in all new nets.

Based on this analysis, if Case 3 happens, for
each terminal left in the list ;, we will randomly
pick either an old net or a new net and assign this
terminal to it. We will refer to this patch method as

fusion as shown in Figure 8.
However, fusion is not the only way to

accomplish such a task. We have an alternative
patching method, abstraction, described as the
following: if Case 3 happens, instead of assigning
the remaining terminals to an existing net as in
fusion, we will keep adding new nets and assign
these terminals to these new nets until the list/2

becomes empty. Since most terminals initially in
list/2 are just terminals in new cells, in abstraction,
all new cells are inter-connected and rarely is there
a connection between new cells and old cells. This
is shown is Figure 9.

FIGURE 8 Method fusion.

FIGURE 9 Method abstraction.

We briefly summarize the difference between

fusion and abstraction as in the following: In
fusion, new cells are attached to both new nets and
old nets, so they are connected to both old cells
and new cells; while in abstraction, new cells are
only attached to new nets, new cells form kind of a
cluster since most of their nets are internal nets.
Another difference is that the circuit C created by
abstraction will have more nets than its counter-
part created by fusion.
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Based on these discussions, we write the pseudo-
code for both patching methods as in following:
Fusion:

1. AddNetFusion(circuit Ci,Pn) {
2. Get net statistics discussed above.
3. Create unassigned terminal list .
4. nn Pn 1-/’/1
5. for/= tOnn
6. Create a net data structure.
7. Determine the number of terminals on this

net using the appropriate statistics.
8. Randomly pick n terminals from
9. Assign these n terminals to this net.
10. Delete these nn terminals from .
11. while/2 is not empty, do {
12. Get a terminal from/3.

13. Randomly pick a net from
14. Assign this terminal to this net.
15. Delete this terminal from/2.

16. }
17.}

Abstraction

1. AddNetAbstraction(circuit Ci) {
2. Get net statistics discussed above.
3. Create unassigned terminal list
4. while/2 is not empty, do {
5. Create a net data structure.
6. Determine the number of terminals on this

net using the appropriate statistics.
7. Randomly pick nn terminals from ;.
8. Assign these nn terminals to this net.
9. Delete these n terminals from/2.
10. }
11.}

Intuitively, fusion makes much more sense than
abstraction, since it appears thatfusion will generate
a circuit more like the original one, circuit C, while
abstraction will almost never look like C.

Contrary to people’s intuition, experimental
results show that abstraction offers much more
accurate prediction than fusion does. In the next
section, we will present this interesting experimen-
tal result, followed by an explanation.

5. EXPERIMENTAL RESULTS
AND DISCUSSION

In Section 4, we gave the pseudo-code for our
approaches. These approaches were implemented
using C + +. All experiments were run on a Sun
Sparc-20 workstation. Three MCNC benchmark
standard cell circuits were used for experiments.
Table I shows some basic statistics for these three
benchmark circuits. We delete all the I/O pads
from all three of these circuits, allowing us to con-
centrate on the effects of incomplete data on core
cells. As shown in Table I, circuit Nprimaryl is
the MCNC benchmark circuit primary without

I/O pads, and circuit Nprimary2 and Nstruct are
MCNC benchmark primary2 and struct without

I/O pads, respectively.
We feed the reconstructed circuit to the high

quality placement tool called NRG [12]. Since this
is a statistical approach, we needed to run a good
number of trials to get the data. Thus we run NRG
using the fast mode.
For each benchmark circuit C(3//,A/’), for a

specified degree of incompleteness pc. We first
delete Pc" 13/[] cells and the nets attached to them
to form Ci. Then we run our two reconstruc-
tion procedures, fusion and abstraction, to get a
"reconstructed" circuit C’ (fusion and abstraction
were discussed in detail in Section 4). After that,
we use the NRG placement tool to get the total
wirelength of C and compare this value with the
value of the original circuit C.

Table II shows the basic statistics for the
"reconstructed" circuit Nprimaryl using different
degrees of incompleteness. The first row, 0% in-
completeness, is the statistics for the original circuit
Nprimary .

Table III shows the total wirelength results
achieved from the reconstructed circuit Nprimaryl
For each degree of incompleteness, column "Ave
WL" shows the average total wirelength over all
trials; column "std. Dev." shows the standard
deviation of all trials, and "% error" shows the
percent error compare to the real value from the
original complete circuit Nprimaryl.
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TABLE Statistics for tested benchmark circuits

Circuit # cells # I/O pads # pins # nets # rows WL

Nprimary 750 0 3062 1156 16 642853
Nprimary 2 2907 0 11681 3671 32 3215512
Nstruct 1888 0 5407 1920 16 374940

TABLE II Netlist statistics for Nprimaryl after reconstructing the circuit

Fusion Abstraction

% of incomp. # trials # cells # pins # nets # trials # cells # pins # nets

0% 750 3062 1156 750 3062 1156
5% 10 750 3049 1156 10 750 3052 1198
10% 10 750 3071 1156 10 750 3072 1240
15% 10 750 3065 1156 10 750 3064 1270
20% 10 750 3094 1156 10 750 3092 1314
25% 10 750 3109 1156 10 750 3106 1362
30% 10 750 3061 1156 10 750 3074 1376

TABLE III Wirelength results for Nprimaryl after reconstructing the circuit

Fusion Abstraction

% of incomp. # trials Ave WL std. Dev. % error # trials Ave WL std. Dev. % error

0% 10 642853 6782 0% 10 642853 6782 0%
5% 10 740452 11697 15.2% 10 609263 9470 5.2%
10% 10 874490 14284 36.0% 10 605948 6398 5.7%
15% 10 941024 12486 43.4% 10 593153 7697 7.7%
20% 10 1080158 16305 68.0% 10 597267 4250 7.1%
25% 10 1202426 10309 87.1% 10 599750 8384 6.7%
30% 10 1231592 11368 91.6% 10 560518 9623 12.8%

%

100

of prediction

results from fusion
A

results from abstra

10 15 20 25 30 k of incompleteness

FIGURE 10 Prediction error vs. percentage of incompleteness
for Nprimaryl.

Figure 10 shows the prediction error vs. per-
centage of incompleteness for circuit Nprimaryl.
It’s clear that fusion has a much bigger error than
abstraction for any percentage of incompleteness.

% std dev.

1.6

1.2

0.8

0.4

A results from fusion

results from abstraction

10 15, 20 25 30 %of incompleteness

FIGURE 11 Std. deviation vs. percentage of incompleteness
for Nprimaryl.

Since this is a non-deterministic procedure, stand-
ard deviation is another important factor to look
at. Figure 11 shows the std. deviation vs. percen-
tage of incompleteness for Nprimaryl. However,
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there is not a clear pattern in this figure. All the
data points are spread in the range between 0.7%
and 1.7%. Standard deviation does not increase
as the percentage of incompleteness increases. This
is determined by the nature offusion and abstrac-
tion. Since fusion and abstraction rely heavily on
the statistics from the incomplete circuit Ci, the
increase of incompleteness really does not affect
the degree of randomness in reconstructing cir-
cuit C t. That is why the standard deviation
does not increase along with the percentage of
incompleteness.

Similar statistics and results for Nprimary2 and
struct were provided in Tables IV, V, VI and VII.

Figure 12 shows the prediction error vs. percentage
of incompleteness for circuit Nprimary2. Figure 13
shows the prediction error vs. percentage of in-
completeness for circuit Nstruct.

Table VIII and Figure 14 are a summary table
and a summary figure of these three circuits.
From Figures 10, 12,13 and 14 we can conclude

that abstraction’s prediction is much more ac-
curate than fusion’s. That is very surprising and
counter-intuitive.
The reason we might think fusion is better than

abstraction is because it seems that fusion has
at least some chance to reconstruct the origi-
nal circuit. However, the chances of perfectly

% of incomp. # trials

TABLE IV Netlist statistics for Nprimary2 after reconstructing the circuit

Fusion Abstraction

# cells # pins # nets # trials # cells # pins # nets

0%
5% 10
10% 10
15% 10
20% 10
25% 10
30% 10

2907 11681 3671 2907 11681
2907 11691 3671 10 2907 11689
2907 11684 3671 10 2907 11687
2907 11596 3671 10 2907 11597
2907 11663 3671 10 2907 11679
2907 11686 3671 10 2907 11692
2907 11735 3671 10 2907 11729

3671
3895
3998
4235
4395
4538
4646

TABLE V Wirelength results for Nprimary2 after reconstructing the circuit

% of incomp. # trials

Fusion Abstraction

Ave WL std. Dev. % error # trials Ave WL std. Dev. % error

0% 10
5% 10
10% 10
15% 10
20% 10
25% 10
30% 10

3215512 33806 0% 10 3215512
5229648 55474 62.7% 10 3384501
5772115 109263 79.50/o 10 3418518
7217765 92149 124% 10 3612617
8575307 116364 167/o 10 3576452
9466555 90891 194% 10 3698880
10029639 91762 212% 10 3836407

33806 0%
87486 5.3%
80982 16.3%
142242 12.3%
96928 11.2%
93940 15.0%
134678 19.3%

% of incomp. # trials

TABLE VI Netlist statistics for Nstruct after reconstructing the circuit

Fusion Abstraction

# cells # pins # nets # trials # cells # pins # nets

0%
5% 10
10% 10
15% 10
20% 20
25% 21
30% 29

1888 5407 1920 1888 5407
1888 5412 1920 10 1888 5408
1888 5408 1920 10 1888 5410
1888 5411 1920 10 1888 5410
1888 5389 1920 20 1888 5387
1888 5411 1920 20 1888 5408
1888 5399 1920 21 1888 5403

1920
2076
2186
2290
2375
2459
2565
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TABLE VII Wirelength results for Nstruct after reconstructing the circuit

Fusion Abstraction

% of incomp. # trials Ave WL std. Dev. % error # trials Ave WL std. Dev. % error

0%
5%
10%
15%
20%
25%
30%

10 374940 6456 0% 10
10 576419 5564 53.7% 10
10 703867 4643 87.7% 10
10 778197 4304 108% 10
20 819950 2500 119% 20
21 907997 4628 142% 20
29 983995 3562 162% 21

374940 6456 0%
360179 3976 -3.9%
354738 5807 -5.4%
354167 5796 -5.5%
340646 2787 -9.1%
353466 3556 -5.7%
315854 4331 -15.8%

A results from fusion

160

results abstraction

120

80 AA

10 20 25 30 incompleteness

FIGURE 12 Prediction error vs. percentage of incompleteness
for Nprimary2.

% error of prediction

100
A results from fusion

results from abstraction

8O

6O

4O

10 15 20 25 30 % of incompleteness

FIGURE 13 Prediction error vs. percentage of incompleteness
for Nstruct.

reconstructing the original circuit is too small to
be realized. According to the Fact described in
Section 3, there is no hope to reconstruct an iden-
tical circuit as C. Our only hope is that the
"netlist-space" is smooth enough so that even if we
make some mistakes in the wiring, the final total

TABLE VIII Average wirelength prediction results for all
three testing circuits

Absolute % error for Absolute % for error
% of incomp, fusion for abstraction

0% 0% 0%
5% 43.9% 4.8%
10% 67.8% 5.8%
15% 91.8% 8.5%
20% 118% 9.1%
25% 141% 9.1%
30% 155% 16.0%

results from fusion

resultsAfrom abstraction

% std dev.

1.6

1.2

0.8

0.4

10 15 20 25 30 %of incompleteness

FIGURE 14 Prediction error vs. percentage of incompleteness
for all three testing circuits.

wirelength would not be affected by much. This
is not a bad guess, but unfortunately, it is proven
not to be true. Figures 10, 12, 13 show that with
fusion, even for 5% incompleteness, the final re-
sult can be altered by more than 50% (Nprimary2
and Nstruct), which is not tolerable. The reason
why abstraction is successful is because almost
all the nets it adds are within the newly added
cells. That is to say, it does not alter the netlist
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topology in the incomplete circuit Ci. As for the
final prediction, the wirelength for the newly
added part may not be correct, but at least the
wirelength for the old part is very accurate. Based
on the assumption we made in Section 3, the old
part should be the dominating part, so we are going
to get a decent prediction for the final result.

6. CONCLUSIONS AND FUTURE WORK

We formally proposed a new problem in place-
ment area, placement with incomplete data. This
problem arises along with the increasing complex-
ity of current VLSI designs. It will become more
and more important in the future.
We tried two approaches: fusion and abstraction.

We want to see how good they can predict the final
wirelength/chip area using only an incomplete net-
list and library.

Experimental results show that abstraction is a
much better patching method than fusion. With
10% incompleteness in the circuit, abstraction can
still predict the wirelength with an error of 5.8%;
while fusion can have an error more than 50%
even with a 5% incompleteness in the circuit.
Comparisons between fusion and abstraction

shows that the netlist topology is essential to the
final wirelength. In order to get a good prediction,
we should try to preserve the original topology as
much as possible.
Although abstraction did a decent job on

prediction, there are still quite a few things we
need to work on in the future. If we look at
Tables III, V and VII carefully, we will notice
that for the same circuit, errors for abstraction
are either all positive or negative. This suggests
that some systematic error exists. This gives us an

opportunity to find a way to make the prediction
error even smaller. Based on some properties of
circuit Ci, if we can predict the sign of the error,
then we can add or substract a small amount
from our prediction to get a more accurate value.
However, the relationship between the signs of

the predicted error and circuit properties is not
known yet.
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